
E7441: Scientific computing in biology and
biomedicine

Parallel programming in Python

Vlad Popovici, Ph.D.

RECETOX



Modes of parallelism

Main modes

embarrassingly parallel: code that can run independently and the
results combined at the end (e.g. apply a function to each element of
an array)

multithreading: parallel threads of execution that needs to
communicate via shared memory (variables, etc)

multiprocessing: different processes that manage their own memory
and share data via message passing

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 2 / 7



GIL

Python

interpreted language: source code is compiled into bytecode which is
interpreted by the interpreter

there are optimizing implementations (e.g. PyPy) that interpret and
compile into optimized machine code

the standard interpreter (CPython) executes only one thread at a time

only the thread which acquired the Global interpreter Lock (GIL) (a
mutex) can execute

on multi-threaded systems this is a performance-bounding design

GIL protects the reference count - helps with memory management

GIL allows integration of non-thread-safe modules written in other
languages

GIL is released at I/O or forced-released at specific intervals

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 3 / 7



I/O-bound applications

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 4 / 7



Multiprocessing and multithreading

Example 1 - see the Jupyter notebook.

not much gain from distributing the computation

the two threads fight to acquire the GIL

possible solution: multiprocessing: each process has its own
interpreter

external libraries (written in C, etc.) can release the lock and run
multi-threaded (e.g. NumPy, SciPy, etc.)

non-standard implementations of Python do not necessarily use GIL:
Jython, IronPython, and PyPy - they have their own limitations

checkout “‘joblib“‘ library for a lightweight implementation of parallel
processing

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 5 / 7



MPI - message passing interface

tasks (cores) have a rank and are numbered 0, 1, 2, 3, etc.

each task (core) manages its own memory

tasks communicate and share data by sending messages

high-level API for distributing and gathering information to/from other
tasks

all tasks typically run the entire code: needs care to avoid doing the
same thing

Example 2 - see the Jupyter notebook.

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 6 / 7



Dask

scale arrays (numpy.array) and data frames (pandas.Dataframe)
across computing resources

Dask extension to scikit-learn: Dask-ML

transparently manages larger-than-memory arrays and data frames

transparently scales from desktop to cloud resources

See Example 3 in the Jupyter notebook.

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 7 / 7



Questions?

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 8 / 7


