10. Plasma Enhanced Chemical Vapor Deposition

10.1 Introduction to PECVD

Chemical Vapor Deposition (CVD)

thermally driven chemical deposition from gas phase:

 transport of by-products from deposition space

Low Pressure CVD (LPCVD) is often used in microelectronics or in applications requiring excellent control over impurities

Plasma Enhanced (or Assisted) CVD (PECVD or PACVD)

CVD method in which discharge is ignited in the gas mixture:
 collisions of energetic electrons with heavy gas particles
 production of highy reactive species

more competing processes take place, deposition can be generally divided into thermal and plasma branches

PECVD x CVD

reaction branch:

plasma reaction branch at PECVD is much more important 250-350°C because:

sticking coefficient is much higher for reactive radicals and activated surface

activation energies of chemical reactions are lower for excited reactants

PECVD - lower deposition temperature, novel reaction schemes leading to new materials, replacement of toxic and dangerous reactants but

high complexity of chemical reactions and processes, worse selectivity and reaction control, possibility of damages by energetic ions, UV radiation or electrostaticaly (charge accumulation)

10.2 PECVD of Silicon-Based Thin Films

O dielectric films for microelectronics

silicon nitride: (final protective passivation for integrated circuit) SiH_4 +NH₃ or SiH_4 +N₂ T=250-400 °C

silicon oxide: (insulating film - el. separation)

SiH₄+N₂O/NO/CO₂/O₂ T=200-400 °C

$$\begin{split} Si(OC_{2}H_{5})_{4} + e^{-} &\rightarrow Si(OC_{2}H_{5})_{3}(OH) + C_{2}H_{4} + e^{-} \\ O_{2} + e^{-} &\rightarrow 2O + e^{-} \\ O + Si(OC_{2}H_{5})_{3}(OH) &\rightarrow Si(OC_{2}H_{5})_{2}(OH)_{2} + C_{2}H_{4}O \end{split}$$

PECVD of materials with silicon • more dielectric films for microelectronics low-k dielektrics: organosilicons + $O_2/...$ + ... (el. separation for ULSI) organosilicon glass (OSG) • semiconducting films for microelectronics epitaxial silicon: SiH₄+H₂ T=800 °C polycrystalline silicon: SiH₄/SiH₂Cl₂+H₂/Ar T=450-700 °C (gate electrode, connections in MOS i.c., solar energy pannels)

\bigcirc SiO_x and SiO_xC_yH_z for many other applications

scratch resistant films for plastics, anticorrosion films for metals, barrier films for packaging and pharmacy, biocompatible films

mixtures with organosilicons (TEOS, HMDSO, HMDSZ)

PECVD of films using HMDSO

(hexamethyldisiloxane)

SiO_xC_yH_z plasma polymers

 concentration of HMDSO in the gas feed, especially oxygen

power

- bias voltage / ion energy
- pressure
- pulsing

PECVD from HMDSO/O₂ in CCP and ICP (13.56 MHz)

5-100 % HMDSO in O₂

CCP:

> Q_{hmdso} = 4 sccm, Q_{o2} = 0 − 80 sccm
 > pressure 1 - 40 Pa
 > rf power 100 - 450 W
 > dc self-bias from -20 and -335 V

helical antenna in ICP mode:

- pressure 0.4 Pa
- ➢ rf power 300 W
- substrate at ground

Variation of film composition

⇒ 0.4 Pa: SiO₂ structure, almost no impurities ⇒ 2.5 Pa: SiO₂ structure, OH groups and H₂O ⇒ 40 Pa: organosilicon films

Film microstructure

for CCP 40 Pa

 $50 \mu m$

10.3 PECVD of Carbon-Based Thin FIIms Diamond, graphite and much more

Besides well known materials such as crystalline diamond or graphite carbon can form many other interesting nanomaterials such as fullerenes, carbon nanotubes, graphene.

 $sp^{3}C$ - diamond

sp² C - graphite

graphene

C₆₀ - Buckminsterfullerene

carbon nanotube

O crystalline diamond films

0.1 - 5% $CH_4/C_2H_2/...$ in H_2 T=700-1000°C RF plasma p=0.01-4kPa, T_{gas} =1000-1500°C, P=0.5-3kW MW plasma p=2-10kPa, T_{gas} =2000-2500°C, P=0.5-2kW

• amorphous diamond like carbon (DLC) films

!! ion bombardment

 $CH_4/C_2H_2/... + (Ar/H_2), T < 300 \circ C$

• polymer hydrogenated carbon films (a-C:H)

Acc.V Spot Magn Det WD Exp

PECVD of carbon based materials

Classification of carbon films

- classification of carbon films by Fraunhofer Institute for Surface Engineering and Thin Films (IST) 2009
- activities on international standardization, e.g. workshop at 12th International Conference on Plasma Surface Engineering (PSE) in 2010

		Carbon films													
	1 Discore									3 Crystalline carbon films					
Designation	polymer films	r 2 Amorphous carbon films (diamond-like-carbon films / DLC)							Diamond films					Graphite films	
Thin film / thick film	Thin film	Thin film							Thin film			Thick film (free standing)		Thin film	
Doping, additional elements		hydrogen-free			hydrogenated										
				modified			modified		undoped		doped	undoped	doped	undoped	
				with metal			with metal	with non-metal							
Crystal size on the growth side	Ŀ	(amorphous)							1 to 500nm, nano- crystalline	0.5 to 10 µm, mikro- crystalline	0.1 to 5 μm	(5μm to) 80to 500 μm	80 to 500 μm		
Predomina- ting C-C- bond type	sp ² or sp ³ , linear bond	sp ²	sp ³	sp ²	sp ² ar sp ³	sp ³	sp ²	sp ²	sp ³	sp ³	sp ³	sp ³	sp ³	sp ²	
Film No.	1	2.1	2.2	2.3	2.4	2.5	26	2.7	3.1	3.2	3.3	3.4	3.5	3.6	
Designation	Plasma- polymer film	Hydrogen- free amorphous carbon film	Tetrahedral hydrogen- free amorphous carbon film	Metal- containing hydrogen- free amorphous carbon film	Hydrogenated amorphous carbon film	Tetrahedral hydrogenated amorphous carbon film	Metal- containing hydrogenated amorphous carbon film	Modified hydrogenated amorphous carbon film	nano- crystalline CVD diamond film	micro- crystalline CVD diamond film	doped CVD diamond film	CVD diamond	doped CVD diamond	graphite film	
Recom- mended abbreviation	L	a-C	ta-C	a-C:Me	a-C:H	ta-C:H	a-C:H:Me (Me = W, Ti,)	a-C:H:X (X = Si, O, N, F, B,)	1.	J.	L	L	1.	L	

http://www.ist.fraunhofer.de/english/c-products/tab/complete.html

Classification of amorphous hydrogenated carbon films

Necessity of carbon film classification:

 ternary phase diagram (sp³C, sp²C and H) for amorphous films (Jacob and Moller 1993, Robertson 2002)

classification of a-C:H films into 4 cathegories by Cambridge University group (2005):

- ▶ polymer-like a-C:H (PLCH): high H content (40–60 at. %); up to 70 % sp³ but most sp³C are H terminated ⇒ soft, low density, optical band gap 2–4 eV
- but more C-C sp³ bonds than PLCH ⇒ better mechanical properties, optical gap 1–2 eV.
- hydrogenated tetrahedral amorphous carbon films (ta-C:H): increased C-C sp³ content whilst keeping a H content low (25–30 at. %) ⇒ higher density (up to 2.4 g/cm³) and Young's modulus (up to 300 GPa)
- graphite-like a-C:H (GLCH): low H content (< 20 at. %); high sp² content and sp² clustering ⇒ gap under 1 eV

C. Casiraghi, A. C. Ferrari, and J. Robertson, Phys. Rev. B 72(8):1-14, 2005.