Homework problems #1

1. Helmholtz free energy of liquids can by approximated by

$$F(T,V,N) = -kT \ln \left\{ \left(\frac{h^2}{2\pi mkT} \right)^{-3N/2} \left[\frac{4}{3}\pi \left(\left(\sqrt{2}\frac{V}{N} \right)^{1/3} - \sigma \right)^3 \right]^N \right\},$$

where h, m, k and σ are constants. Determine the equation of state of this gas p = p(T, V), the difference of specific heats $c_p - c_V$, and show that both formulae correspond to ideal gas for $V/N \gg \sigma$.

2. Computer problem: The number of microstates of the system of N classical noninteracting particles with energy lower than E in a volume V is given by

$$\Omega(E) = \left(\frac{2\pi mE}{h^2}\right)^{\frac{3}{2}N} \frac{V^N}{N! \Gamma(\frac{3}{2}N+1)}.$$

Let us study two such systems in a thermal interaction with total energy 2E. We shall study fluctuations in these systems, within which one of the system has energy $E + \Delta E$ and the second one $E - \Delta E$. Plot the number of microstates of combined system as a function of ΔE for N=10, 10^2 , 10^4 . (It is advisable to express the energy in units of $\varepsilon = h^2/(2\pi m)$ an number of states in units of $\gamma = V^N/(N!\Gamma(\frac{3}{2}N+1))$.) Let us assume that ΔE changes discountinuously by the value of $\varepsilon/100$ and determine an error introduced by assuming that the entropy is calculated only from the states corresponding to the equilibrium. (calculate for N=10, 10^2 , 10^4 , 10^5).

The solution should be submitted not later than on April 2nd.