Unfolding of bandstructres

An alloy on triangular lattice

generate random binary potential in the supercell

How to average over different realizations of the disorder?
How to get a 'bandstructure' in the elementary (1-atom) unit cell?

Brute force approach - many realizations of disorder

120 deg order on triangular lattice

Calculate the band dispersion and density of states for a triangular lattices with 120 def spin order. Consider non-interacting electrons on triangular lattice (calculate the band dispersion and density of states). Add a local exchange field which has a direction as indicated in the picture.

Hint: Use the enlarged unit cell indicated in the figure. Note that the local term depend on the lattice site (sublattice) and mixes the up and down spin directions (i.e. spin is not a good quantum number). Use $t=1$ and several different values of b (starting from 0).

$$
H_{0}=t \sum_{\langle i j\rangle}\left(\begin{array}{ll}
c_{i \uparrow}^{\dagger} & c_{i \downarrow}^{\dagger}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{c_{j \dagger}}{c_{j \downarrow}}
$$

$$
\begin{aligned}
& \boldsymbol{H}_{i}(b)=\left(\begin{array}{ll}
c_{i+}^{\dagger} & c_{i+}^{\dagger}
\end{array}\right)\left(\begin{array}{ll}
0 & b \\
b & 0
\end{array}\right)\binom{c_{i+}}{c_{i \alpha}} \\
& \left(\begin{array}{ll}
c_{i+}^{\dagger} & c_{i \downarrow}^{\dagger}
\end{array}\right)\left(\begin{array}{cc}
0 & b e^{-i 2 / 3 \pi} \\
b e^{i 2 / 3 \pi} & 0
\end{array}\right)\binom{c_{i t}}{c_{i j}} \\
& \left(\begin{array}{ll}
c_{i \uparrow}^{\dagger} & c_{i+}^{\dagger}
\end{array}\right)\left(\begin{array}{cc}
0 & b e^{i 2 / 3 \pi} \\
b e^{-i z / 3 \pi} & 0
\end{array}\right)\binom{c_{i t}}{c_{i+}}
\end{aligned}
$$

Tight-binding Hamiltonian

$H=t \sum_{\mathbf{R}}\left(c_{R+(1,0)}^{\dagger} c_{\mathbf{R}}+c_{\mathbf{R}+(0,1)}^{\dagger} c_{\mathbf{R}}+c_{\mathbf{R}+(1,1)}^{\dagger} c_{\mathbf{R}}+\right.$ H.c. $)$

$(1,1)$

$$
T_{\mathbf{k}}=\left(\begin{array}{ccc}
0 & 1+e^{-i k_{1}}+e^{-i k_{2}} & e^{-i k_{1}}+e^{-i k_{2}}+e^{-i\left(k_{1}+k_{2}\right)} \\
1+e^{i k_{1}}+e^{i k_{2}} & 0 & 1+e^{-i k_{1}}+e^{-i k_{2}} \\
e^{i k_{1}}+e^{i k_{2}}+e^{i\left(k_{1}+k_{2}\right)} & 1+e^{i k_{1}}+e^{i k_{2}} & 0
\end{array}\right)
$$

local fields in xy-plane

$$
X=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \exp \left(-\frac{2}{3} i \pi\right) & 0 \\
0 & 0 & \exp \left(\frac{2}{3} i \pi\right)
\end{array}\right)
$$

total 6×6 structure

$$
H_{\mathbf{k}}(b)=\left(\begin{array}{cc}
T_{\mathbf{k}} & b X \\
b X^{\dagger} & T_{\mathbf{k}}
\end{array}\right)
$$

Bandstructure (3-site unit cell)

Bandstructure (3-site unit cell)

$$
\mathrm{k}=(\mathrm{x}, 0)
$$

$$
\mathrm{k}=(\mathrm{x},-\mathrm{x})
$$

Density of states
$b=0$
$b=1$

How to go back to 1-band (= 1 atom unit cell)?
(3)

Bandstructure (3-site unit cell)

$$
\mathrm{k}=(\mathrm{x}, 0)
$$

$$
\mathrm{k}=(\mathrm{x},-\mathrm{x})
$$

Density of states

How to go back to 1-band (= 1 atom unit cell)?
${ }^{\mathrm{b}}$ Chose the right quantity!
Dispersion
is too 'narrow'.

Spectral function
$\epsilon(\mathbf{k})$

Spectral function

$$
\begin{aligned}
\left(b ; a^{\dagger}\right\rangle_{\omega} \equiv A_{b a}(\omega)= & \left.\sum_{m}\langle 0| b \mid m\right)\left(m\left|a^{\dagger}\right| 0\right\rangle \delta\left(\omega-E_{m}+E_{0}\right) \\
& \left.+\sum_{m^{\prime}}\langle 0| a^{\dagger} \mid m^{\prime}\right)\left(m^{\prime}|b| 0\right\rangle \delta\left(\omega+E_{m^{\prime}}-E_{0}\right) \\
& \left.=\sum_{n, k}\left\langle\varphi_{b}\right| n, k\right)\left(n, k \mid \varphi_{a}\right) \delta\left(\omega-\epsilon_{n, k}\right)
\end{aligned}
$$

many-body (general) formalism
non-interacting electrons (1p functions)
$\left\langle c_{\mathrm{k}} ; c_{\mathrm{k}}^{\dagger}\right\rangle_{\omega}=?$

$$
\begin{aligned}
\mathrm{c}_{\mathbf{k}}^{\dagger}=\frac{1}{\sqrt{3}}\left(r_{\overline{\mathbf{k}}(\mathbf{k})}^{\dagger}+e^{i k_{1}} b_{\overline{\mathbf{k}}(\mathbf{k})}^{\dagger}+e^{2 i k_{1}} g_{\mathbf{k}(\mathbf{k})}^{\dagger}\right) & \\
& \bar{k}_{1}=k_{1}-k_{2} \\
& \bar{k}_{2}=2 k_{1}+k_{2}
\end{aligned}
$$

$$
\left\langle c_{\mathbf{k}} ; c_{\mathbf{k}}^{\dagger}\right\rangle_{\omega}=\frac{1}{3}\left(\left\langle r_{\overrightarrow{\mathbf{k}}} ; r_{\overline{\mathbf{k}}}^{\dagger}\right)_{\omega}+e^{i \mathbf{k}_{1}}\left(r_{r_{\overline{\mathbf{k}}} ;} ; b_{\overline{\mathbf{k}}}^{\dagger}\right\rangle_{\omega}+e^{2 i k_{1}}\left(r_{\overline{\mathbf{k}}} ; g_{\overline{\mathbf{k}}}^{\dagger}\right\rangle_{\omega}\right.
$$

k-diagonal elements of object,

$$
+e^{-i k_{1}}\left(b_{\overline{\mathbf{k}}} ; r_{\mathbf{k}}^{\dagger}\right\rangle_{\omega}+\left\langle b_{\mathbf{k}} ; b_{\mathbf{k}}^{\dagger}\right)_{\omega}+e^{i k_{1}}\left\langle b_{\mathbf{k}} ; g_{\mathbf{k}}^{\dagger}\right\rangle_{\omega}
$$ which has also off-diagonal (kk')

$$
\left.+e^{-2 i k_{1}}\left(g_{\overline{\mathbf{k}}} ; r_{\overline{\mathbf{k}}}^{\dagger}\right\rangle_{\omega}+e^{-i k_{1}}\left(g_{\overline{\mathbf{k}}} ; b_{\mathbf{k}}^{\dagger}\right)_{\omega}+\left\langle g_{\overline{\mathbf{k}}} ; g_{\overrightarrow{\mathbf{k}}}^{\dagger}\right\rangle_{\omega}\right)
$$ elements

Going between different cells

$$
H=t \sum_{\mathbf{R}}\left(c_{\mathbf{R}+(\mathbf{1}, \mathbf{0})}^{\dagger} c_{\mathbf{R}}+c_{\mathbf{R}+(0,1)}^{\dagger} c_{\mathbf{R}}+c_{\mathbf{R}+(1, \mathbf{1})}^{\dagger} c_{\mathbf{R}}+H . c\right)
$$

$$
\begin{aligned}
\tilde{\mathbf{R}} & \equiv \bar{m} \mathbf{b}_{1}+\bar{n} \mathbf{b}_{\mathbf{2}} \\
& =(2 \bar{n}+\bar{m}) \mathbf{a}_{1}+(\bar{n}-\bar{m}) \mathbf{a}_{2} \\
\binom{m}{n} & =\left(\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right)\binom{\bar{m}}{\bar{n}}
\end{aligned}
$$

$$
\binom{\bar{m}}{\bar{n}}=\frac{1}{3}\left(\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right)\binom{m}{n} \quad \begin{aligned}
& \binom{\bar{m}}{\bar{n}}=\operatorname{Div}\left[\left(\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right)\binom{m}{n}, 3\right] \\
& \text { Flavor }=\operatorname{Mod}\left[\left(\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right)\binom{m}{n}, 3\right]
\end{aligned}
$$

Going between different cells

$$
H=t \sum_{\mathbf{R}}\left(c_{\mathbf{R}+(\mathbf{1}, \mathbf{0})}^{\dagger} c_{\mathbf{R}}+c_{\mathbf{R}+(0,1)}^{\dagger} c_{\mathbf{R}}+c_{\mathbf{R}+(1, \mathbf{1})}^{\dagger} c_{\mathbf{R}}+H . c\right)
$$

$$
\begin{aligned}
\tilde{\mathbf{R}} & \equiv \bar{m} \mathbf{b}_{1}+\bar{n} \mathbf{b}_{2} \\
& =(2 \bar{n}+\bar{m}) \mathbf{a}_{1}+(\bar{n}-\bar{m}) \mathbf{a}_{2} \\
\binom{m}{n} & =\left(\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right)\binom{\bar{m}}{\bar{n}}
\end{aligned}
$$

$$
\begin{array}{r}
\binom{\bar{m}}{\bar{n}}=\frac{1}{3}\left(\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right)\binom{m}{n} \quad\binom{\bar{m}}{\bar{n}}=\operatorname{Div}\left[\left(\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right)\binom{m}{n}, 3\right] \\
\text { Flevor }=\operatorname{Mod}\left[\left(\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right)\binom{m}{n}, 3\right]
\end{array}
$$

$\operatorname{Div}\left[\left(\begin{array}{cc}1 & -2 \\ 1 & 1\end{array}\right)\binom{1}{1}, 3\right]=\binom{-1}{0}$
$\operatorname{Mod}\left[\left(\begin{array}{cc}1 & -2 \\ 1 & 1\end{array}\right)\binom{1}{1}, 3\right]=\binom{2}{2}(g r e e n)$

Going between different cells

$$
H=t \sum_{\mathbf{R}}\left(c_{\mathbf{R}+(\mathbf{1}, 0)}^{\dagger} c_{\mathbf{R}}+c_{\mathbf{R}+(0,1)}^{\dagger} c_{\mathbf{R}}+c_{\mathbf{R}+(1, \mathbf{1})}^{\dagger} c_{\mathbf{R}}+H . c\right)
$$

$$
\begin{aligned}
\tilde{\mathbf{R}} & \equiv \bar{m} \mathbf{b}_{1}+\bar{n} \mathbf{b}_{2} \\
& =(2 \bar{n}+\bar{m}) \mathbf{a}_{1}+(\bar{n}-\bar{m}) \mathbf{a}_{2} \\
\binom{m}{n} & =\left(\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right)\binom{\bar{m}}{\bar{n}}
\end{aligned}
$$

$$
\begin{array}{r}
\binom{\bar{m}}{\bar{n}}=\frac{1}{3}\left(\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right)\binom{m}{n} \quad\binom{\bar{m}}{\bar{n}}=\operatorname{Div}\left[\left(\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right)\binom{m}{n}, 3\right] \\
\text { Flevor }=\operatorname{Mod}\left[\left(\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right)\binom{m}{n}, 3\right]
\end{array}
$$

$\operatorname{Div}\left[\left(\begin{array}{cc}1 & -2 \\ 1 & 1\end{array}\right)\binom{2}{1}, 3\right]=\binom{0}{1}$
$\operatorname{Mod}\left[\left(\begin{array}{cc}1 & -2 \\ 1 & 1\end{array}\right)\binom{2}{1}, 3\right]=\binom{0}{0}(\mathrm{red})$

Going between different cells

$$
H=t \sum_{\mathbf{R}}\left(c_{\mathbf{R}+(\mathbf{1}, \mathbf{0})}^{\dagger} c_{\mathbf{R}}+c_{\mathbf{R}+(0,1)}^{\dagger} c_{\mathbf{R}}+c_{\mathbf{R}+(1, \mathbf{1})}^{\dagger} c_{\mathbf{R}}+H . c\right)
$$

$$
\begin{aligned}
\tilde{\mathbf{R}} & \equiv \bar{m} \mathbf{b}_{1}+\bar{n} \mathbf{b}_{2} \\
& =(2 \bar{n}+\bar{m}) \mathbf{a}_{1}+(\bar{n}-\bar{m}) \mathbf{a}_{2} \\
\binom{m}{n} & =\left(\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right)\binom{\bar{m}}{\bar{n}}
\end{aligned}
$$

$$
\begin{array}{r}
\binom{\bar{m}}{\bar{n}}=\frac{1}{3}\left(\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right)\binom{m}{n} \quad\binom{\bar{m}}{\bar{n}}=\operatorname{Div}\left[\left(\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right)\binom{m}{n}, 3\right] \\
\text { Flevor }=\operatorname{Mod}\left[\left(\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right)\binom{m}{n}, 3\right]
\end{array}
$$

$\operatorname{Div}\left[\left(\begin{array}{cc}1 & -2 \\ 1 & 1\end{array}\right)\binom{2}{0}, 3\right]=\binom{0}{0}$
$\operatorname{Mod}\left[\left(\begin{array}{cc}1 & -2 \\ 1 & 1\end{array}\right)\binom{2}{0}, 3\right]=\binom{2}{2}($ green $)$

Going between different cells

$$
H=t \sum_{\mathbf{R}}\left(c_{\mathbf{R}+(\mathbf{1}, \mathbf{0})}^{\dagger} c_{\mathbf{R}}+c_{\mathbf{R}+(0,1)}^{\dagger} c_{\mathbf{R}}+c_{\mathbf{R}+(\mathbf{1 , 1})}^{\dagger} c_{\mathbf{R}}+H . c .\right)
$$

$$
\begin{aligned}
& b_{1}=a_{1}-a_{2} \\
& b_{2}=2 a_{1}+a_{2}
\end{aligned}
$$

$$
\begin{aligned}
& c_{\mathbf{k}}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{\mathbf{R}} e^{i \mathbf{k} \cdot \mathbf{R}_{2}} c_{\mathbf{R}}^{\dagger} \\
& {\tau_{\mathbf{R}}}_{\dagger}=\frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{-i \mathbf{k} \cdot \mathbf{R}_{1} c_{\mathbf{k}}^{\dagger}}
\end{aligned}
$$

$$
\begin{aligned}
r_{\overline{\mathbf{k}}}^{\dagger} & =\sqrt{\frac{3}{N}} \sum_{\overline{\mathbf{R}}} e^{i \mathbf{k} \cdot \overline{\mathbf{R}}_{r_{\overline{\mathbf{R}}}}^{\dagger}} \\
r_{\overline{\mathbf{R}}}^{\dagger} & =\sqrt{\frac{3}{N}} \sum_{\overline{\mathbf{k}}} e^{-\overline{\mathbf{k}} \cdot \overline{\mathbf{R}}_{r_{\mathbf{k}}}^{\dagger}}
\end{aligned}
$$

$$
\sum_{\mathbf{R}} f(\mathbf{R}) c_{\mathbf{R}}^{\dagger}=\sum_{\overline{\mathbf{R}}}\left(f[\mathbf{R}(\overline{\mathbf{R}})] r_{\overline{\mathbf{R}}}^{\dagger}+f\left[\mathbf{R}(\overline{\mathbf{R}})+\mathbf{a}_{1}\right] b_{\overline{\mathbf{R}}}^{\dagger}+f\left[\mathbf{R}(\overline{\mathbf{R}})+2 \mathbf{a}_{1}\right] g_{\overline{\mathbf{R}}}^{\dagger}\right)
$$

Going between different cells

$$
H=t \sum_{\mathbf{R}}\left(c_{\mathbf{R}+(\mathbf{1}, \mathbf{0})}^{\dagger} c_{\mathbf{R}}+c_{\mathbf{R}+(\mathbf{0 , 1})}^{\dagger} c_{\mathbf{R}}+c_{\mathbf{R}+(\mathbf{1 , 1})}^{\dagger} c_{\mathbf{R}}+H . c .\right)
$$

No reference to Hamiltonian
(lattice dimension) needed in principle

$$
\begin{array}{ll}
\mathbf{c}_{\mathbf{k}}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{\mathbf{R}} e^{i \mathbf{k} \cdot \mathbf{R}} c_{\mathbf{R}}^{\dagger} & r_{\overrightarrow{\mathbf{R}}}^{\dagger}=\sqrt{\frac{3}{N}} \sum_{\overline{\mathbf{R}}} e^{i \overline{\mathbf{k}} \cdot \overline{\mathbf{R}}_{r_{\mathbf{R}}}^{\dagger}} \\
\mathbf{c}_{\mathbf{R}}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{-i \mathbf{k} \cdot \mathbf{R}} c_{\mathbf{k}}^{\dagger} & r_{\mathbf{R}}^{\dagger}=\sqrt{\frac{3}{N}} \sum_{\overline{\mathbf{R}}} e^{-\bar{i} \cdot \overline{\mathbf{R}}} r_{\overline{\mathbf{k}}}^{\dagger}
\end{array}
$$

$$
\left.\sum_{\mathbf{R}} f(\mathbf{R}) \mathrm{c}_{\mathbf{R}}^{\dagger}=\sum_{\overline{\mathbf{R}}}\left(f[\mathbf{R}(\overline{\mathbf{R}})] r_{\mathbf{R}}^{\psi}+f\left[\mathbf{R}(\tilde{\mathbf{R}})+\mathbf{a}_{1}\right]\right]_{\mathbf{R}}^{\dagger}+f\left[\mathbf{R}(\overline{\mathbf{R}})+2 \mathbf{a}_{1}\right] g_{\mathbf{R}}^{\psi}\right)
$$

Going between different cells

$$
\begin{aligned}
& c_{\mathbf{k}}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{\mathbf{R}} e^{i k-R_{n}} c_{\mathbf{R}}^{\dagger} \\
& c_{\mathbf{R}}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{-i k \cdot R} c_{\mathbf{k}}^{\dagger}
\end{aligned}
$$

$b_{1}=a_{1}-a_{2}$
$b_{2}=2 a_{1}+a_{2}$

$\left.\sum_{\mathbf{R}} f(\mathbf{R}) \mathrm{c}_{\mathbf{R}}^{\dagger}=\sum_{\overline{\mathbf{R}}}\left(f[\mathbf{R}(\overline{\mathbf{R}})] r_{\mathbf{R}}^{\dagger}+f\left[\mathbf{R}(\tilde{\mathbf{R}})+\mathbf{a}_{1}\right]\right]_{\mathbf{R}}^{\dagger}+f\left[\mathbf{R}(\overline{\mathbf{R}})+2 \mathbf{a}_{1}\right] g_{\mathbf{R}}^{\dagger}\right)$

$$
\sum_{\mathbf{R}} e^{i \mathbf{k} \cdot \mathbf{R}} C_{\mathbf{R}}^{\psi}=\sum_{\overline{\mathbf{R}}} e^{i \overline{\mathbf{R}}(\mathbf{k}) \cdot \overline{\mathbf{R}}}\left(r_{\overline{\mathbf{R}}}^{\dagger}+e^{i k_{1}} b_{\overline{\mathbf{R}}}^{\dagger}+e^{2 i \mathbf{i k}_{1}} g_{\mathbf{R}}^{\dagger}\right)
$$

$$
\begin{gathered}
\bar{k}_{1}=k_{1}-k_{2} \\
\vdots
\end{gathered}
$$

$$
\bar{k}_{2}=2 k_{1}+k_{2}
$$

$$
\begin{aligned}
\tilde{\mathbf{R}} & \equiv m \mathbf{b}_{1}+n \mathbf{b}_{2} \\
& =(2 n+m) \mathbf{a}_{1}+(n-m) \mathbf{a}_{2} \equiv \mathbf{R}(\tilde{\mathbf{R}})
\end{aligned}
$$

$$
\mathbf{k} \cdot \mathbf{R}(\overline{\mathbf{R}}) \equiv(2 n+m) k_{1}+(n-m) k_{2}
$$

$$
=m\left(k_{1}-k_{2}\right)+n\left(2 k_{1}+k_{2}\right) \equiv m \bar{k}_{1}+n \bar{k}_{2}
$$

Going between different cells

$$
b_{1}=\mathbf{a}_{1}-\mathbf{a}_{2}
$$

$$
b_{2}=2 a_{1}+a_{2}
$$

> Strictly speaking we are working with covariant and contravariant tensors: $k^{\boldsymbol{a}} \boldsymbol{R}_{\mathrm{a}}$

$$
\begin{aligned}
& { }_{k}^{d}=\frac{1}{\sqrt{N}} \sum_{n_{n}}^{e^{+n_{c}^{d}}} \\
& { }_{\mathrm{f}}^{\mathrm{A}}=\frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{-\boldsymbol{k} \cdot R_{c}^{t}}
\end{aligned}
$$

$$
\sum_{\mathbf{R}} f(\mathbf{R}) c_{\mathbf{R}}^{\dagger}=\sum_{\overline{\mathbf{R}}}\left(f[\mathbf{R}(\overline{\mathbf{R}})] r_{\mathbf{R}}^{\dagger}+f\left[\mathbf{R}(\mathbf{R})+\mathbf{a}_{1}\right] b_{\overline{\mathbf{R}}}^{\bar{l}}+f\left[\mathbf{R}(\mathbf{R})+2 \mathbf{a}_{1}\right] g_{\mathbf{R}}^{\prime}\right)
$$

$$
\sum_{\mathbf{R}} e^{i \mathbf{i k} \cdot \mathbf{R}} c_{\mathbf{R}}^{\dagger}=\sum_{\overline{\mathbf{R}}} e^{i \overline{\mathbf{R}}(\mathbf{k}) \cdot \cdot \mathbf{R}}\left(r_{\mathbf{R}}^{\dagger}+e^{i \mathbf{k}_{1}} b_{\overline{\mathbf{R}}}^{\dagger}+e^{2 i \mathbf{k}_{\mathbf{k}}} g_{\mathbf{R}}^{\dagger}\right)
$$

$$
\tilde{\mathbf{R}}=\begin{aligned}
& m \mathbf{b}_{1}+n \mathbf{b}_{2} \\
& (2 n+m) \mathbf{a}_{1}+(n-m) \mathbf{a}_{2} \equiv \mathbf{R}(\tilde{\mathbf{R}})
\end{aligned}
$$

$$
\mathbf{k} \cdot \mathbf{R}(\overline{\mathbf{R}}) \equiv(2 n+m) k_{1}+(n-m) k_{2}
$$

$$
\mathrm{c}_{\mathbf{k}}^{\dagger}=\frac{1}{\sqrt{3}}\left(r_{\mathbf{k}(\mathbf{k})}^{\dagger}+e^{i k_{1}} b_{\overline{\mathbf{k}}(\mathbf{k})}^{\dagger}+e^{2 i \mathbf{k}_{1}} g_{\overline{\mathbf{k}}(\mathbf{k})}^{\dagger}\right)_{\begin{array}{l}
\bar{k}_{1}=k_{1}-k_{2} \\
\bar{k}_{2}=2 k_{1}+k_{2}
\end{array}}
$$

$$
=m\left(k_{1}-k_{2}\right)+n\left(2 k_{1}+k_{2}\right) \equiv m \bar{k}_{1}+n \bar{k}_{2}
$$

Spectral function

$$
\begin{aligned}
\left(b ; a^{\dagger}\right\rangle_{\omega} \equiv A_{b a}(\omega)= & \left.\sum_{m}\langle 0| b \mid m\right)\left(m\left|a^{\dagger}\right| 0\right\rangle \delta\left(\omega-E_{m}+E_{0}\right) \\
& \left.+\sum_{m^{\prime}}\langle 0| a^{\dagger} \mid m^{\prime}\right)\left(m^{\prime}|b| 0\right\rangle \delta\left(\omega+E_{m^{\prime}}-E_{0}\right) \\
& \left.=\sum_{n, k}\left\langle\varphi_{b}\right| n, k\right)\left(n, k \mid \varphi_{a}\right) \delta\left(\omega-\epsilon_{n, k}\right)
\end{aligned}
$$

many-body (general) formalism
non-interacting electrons (1p functions)
$\left\langle c_{\mathrm{k}} ; c_{\mathrm{k}}^{\dagger}\right\rangle_{\omega}=?$

$$
\begin{aligned}
\mathrm{c}_{\mathbf{k}}^{\dagger}=\frac{1}{\sqrt{3}}\left(r_{\overline{\mathbf{k}}(\mathbf{k})}^{\dagger}+e^{i k_{1}} b_{\overline{\mathbf{k}}(\mathbf{k})}^{\dagger}+e^{2 i k_{1}} g_{\mathbf{k}(\mathbf{k})}^{\dagger}\right) & \\
& \bar{k}_{1}=k_{1}-k_{2} \\
& \bar{k}_{2}=2 k_{1}+k_{2}
\end{aligned}
$$

$$
\left\langle c_{\mathbf{k}} ; c_{\mathbf{k}}^{\dagger}\right\rangle_{\omega}=\frac{1}{3}\left(\left\langle r_{\overrightarrow{\mathbf{k}}} ; r_{\overline{\mathbf{k}}}^{\dagger}\right)_{\omega}+e^{i \mathbf{k}_{1}}\left(r_{r_{\overline{\mathbf{k}}} ;} ; b_{\overline{\mathbf{k}}}^{\dagger}\right\rangle_{\omega}+e^{2 i k_{1}}\left(r_{\overline{\mathbf{k}}} ; g_{\overline{\mathbf{k}}}^{\dagger}\right\rangle_{\omega}\right.
$$

k-diagonal elements of object,

$$
+e^{-i k_{1}}\left(b_{\overline{\mathbf{k}}} ; r_{\mathbf{k}}^{\dagger}\right\rangle_{\omega}+\left\langle b_{\mathbf{k}} ; b_{\mathbf{k}}^{\dagger}\right)_{\omega}+e^{i k_{1}}\left\langle b_{\mathbf{k}} ; g_{\mathbf{k}}^{\dagger}\right\rangle_{\omega}
$$ which has also off-diagonal (kk')

$$
\left.+e^{-2 i k_{1}}\left(g_{\overline{\mathbf{k}}} ; r_{\overline{\mathbf{k}}}^{\dagger}\right\rangle_{\omega}+e^{-i k_{1}}\left(g_{\overline{\mathbf{k}}} ; b_{\mathbf{k}}^{\dagger}\right)_{\omega}+\left\langle g_{\overline{\mathbf{k}}} ; g_{\overrightarrow{\mathbf{k}}}^{\dagger}\right\rangle_{\omega}\right)
$$ elements

Spectral function

$$
\begin{aligned}
\left(b ; a^{\dagger}\right\rangle_{\omega} \equiv A_{b a}(\omega)= & \left.\sum_{m}\langle 0| b \mid m\right)\left(m\left|a^{\dagger}\right| 0\right\rangle \delta\left(\omega-E_{m}+E_{0}\right) \\
& \left.+\sum_{m^{\prime}}\langle 0| a^{\dagger} \mid m^{\prime}\right)\left(m^{\prime}|b| 0\right\rangle \delta\left(\omega+E_{m^{\prime}}-E_{0}\right) \\
& \left.=\sum_{n, k}\left\langle\varphi_{b}\right| n, k\right)\left(n, k \mid \varphi_{a}\right) \delta\left(\omega-\epsilon_{n, k}\right)
\end{aligned}
$$

many-body (general) formalism
non-interacting electrons (1p functions)
$\left\langle c_{\mathrm{k}} ; c_{\mathrm{k}}^{\dagger}\right\rangle_{\omega}=?$

$$
\begin{aligned}
\mathrm{c}_{\mathbf{k}}^{\dagger}=\frac{1}{\sqrt{3}}\left(r_{\overline{\mathbf{k}}(\mathbf{k})}^{\dagger}+e^{i k_{1}} b_{\overline{\mathbf{k}}(\mathbf{k})}^{\dagger}+e^{2 i k_{1}} g_{\mathbf{k}(\mathbf{k})}^{\dagger}\right) & \\
& \bar{k}_{1}=k_{1}-k_{2} \\
& \bar{k}_{2}=2 k_{1}+k_{2}
\end{aligned}
$$

$$
\left\langle c_{\mathbf{k}} ; c_{\mathbf{k}}^{\dagger}\right\rangle_{\omega}=\frac{1}{3}\left(\left\langle r_{\overrightarrow{\mathbf{k}}} ; r_{\overline{\mathbf{k}}}^{\dagger}\right)_{\omega}+e^{i \mathbf{k}_{1}}\left(r_{r_{\overline{\mathbf{k}}} ;} ; b_{\overline{\mathbf{k}}}^{\dagger}\right\rangle_{\omega}+e^{2 i k_{1}}\left(r_{\overline{\mathbf{k}}} ; g_{\overline{\mathbf{k}}}^{\dagger}\right\rangle_{\omega}\right.
$$

k-diagonal elements of object,

$$
+e^{-i k_{1}}\left(b_{\overline{\mathbf{k}}} ; r_{\mathbf{k}}^{\dagger}\right\rangle_{\omega}+\left\langle b_{\mathbf{k}} ; b_{\mathbf{k}}^{\dagger}\right)_{\omega}+e^{i k_{1}}\left\langle b_{\mathbf{k}} ; g_{\mathbf{k}}^{\dagger}\right\rangle_{\omega}
$$ which has also off-diagonal (kk')

$$
\left.+e^{-2 i k_{1}}\left(g_{\overline{\mathbf{k}}} ; r_{\overline{\mathbf{k}}}^{\dagger}\right\rangle_{\omega}+e^{-i k_{1}}\left(g_{\overline{\mathbf{k}}} ; b_{\mathbf{k}}^{\dagger}\right)_{\omega}+\left\langle g_{\overline{\mathbf{k}}} ; g_{\overrightarrow{\mathbf{k}}}^{\dagger}\right\rangle_{\omega}\right)
$$ elements

Bandstructure (3-site unit cell)

Bandstructure (1-site unit cell)

Bandstructure (1-site unit cell)

Bandstructure (1-site unit cell)

Density of states

Symmetry and asymmetry (1-site unit cell)

Brillouin zone folding

basis vectors:

$$
\begin{aligned}
& b_{1}=a_{1}-a_{2} \\
& b_{2}=2 a_{1}+a_{2}
\end{aligned}
$$

k-vectors coordinates:

$$
\begin{aligned}
& \dot{k}_{1}=k_{1}-k_{2} \\
& \bar{k}_{2}=2 k_{1}+k_{2}
\end{aligned}
$$

1-atom unit cell:

The reciprocal lattice is also triangular

Brillouin zone folding

basis vectors:

$$
\begin{aligned}
& b_{1}=\mathbf{a}_{1}-a_{2} \\
& b_{2}=2 a_{1}+a_{2}
\end{aligned}
$$

k-vectors coordinates:

$$
\begin{aligned}
& \dot{k}_{1}=k_{1}-k_{2} \\
& \bar{k}_{2}=2 k_{1}+k_{2}
\end{aligned}
$$

1-atom unit cell:
(k-space)

Brillouin zone

Brillouin zone folding

basis vectors:

$$
\begin{aligned}
& b_{1}=a_{1}-a_{2} \\
& b_{2}=2 a_{1}+a_{2}
\end{aligned}
$$

k -vectors coordinates:

$$
\begin{aligned}
& \bar{k}_{1}=k_{1}-k_{2} \\
& \bar{k}_{2}=2 k_{1}+k_{2}
\end{aligned}
$$

Brillouin zone

3-atom unit cell (k-space):

The small $B Z$ is $1 / 3$ of the large $B Z$.

3-atom unit cell (lattice):

Brillouin zone folding

basis vectors:

$$
\begin{aligned}
& \mathbf{b}_{1}=\mathbf{a}_{1}-\mathbf{a}_{2} \\
& \mathbf{b}_{2}=2 \mathbf{a}_{1}+\mathbf{a}_{2}
\end{aligned}
$$

k-vectors coordinates:

$$
\begin{aligned}
& \bar{k}_{1}=k_{1}-k_{2} \\
& \bar{k}_{2}=2 k_{1}+k_{2}
\end{aligned}
$$

1-atom unit cell:
(k-space)

Brillouin zone

3-atom unit cell
(k-space):

For each point in the small (blue) BZ there are 3 points in the large $B Z$.

Band folding: 1 -> 3 bands
Band unfolding: 3 bands (+ off diagonal elements) @ k-point in small BZ
-> 3 k-points in large BZ

An alloy on triangular lattice

generate random binary potential in the supercell

How to average over different realizations of the disorder?
How to get a 'bandstructure' in the elementary (1-atom) unit cell?

Brute force approach - many realizations of disorder

Lattice <-> continuum (theo <-> exp)

Lattice models 'live' on k-space torus <-> materials live in non-compact k-space ?
Bring in the structure of the underlying orbitals.

$$
\begin{aligned}
m(r) & =\sum_{R, s} S_{R, s} \rho(r-R-s) \\
m(k) & =\int d r e^{-i k \cdot r} m(r) \\
& =\sum_{R, s} e^{-i k \cdot R} e^{-i k \cdot s} S_{R, s} \int d r e^{i k \cdot r} \rho(r) \\
& \equiv f(k) \sum_{s} e^{-i k \cdot s} S_{s}(k)
\end{aligned}
$$

$\langle m(k) ; m(-k)\rangle=f(k)^{2} \sum_{s, s^{\prime}}\left\langle S_{s}(k) ; S_{s}^{\prime}(-k)\right\rangle e^{i k \cdot\left(s^{\prime}-s\right)}$

$$
=\left\langle S_{A}(k) ; S_{A}(-k)\right\rangle+\left\langle S_{B}(k) ; S_{B}(-k)\right\rangle+\left\langle S_{A}(k) ; S_{B}(-k)\right) e^{i \frac{k_{k}-k_{0}}{B}}+\left\langle S_{B}(k) ; S_{A}(-k)\right\rangle e^{-i \frac{k_{k}-k_{0}}{3}}
$$

Lattice <-> continuum (theo <-> exp)

Lattice models 'live' on k-space torus <-> materials live in non-compact k-space ?
The model correlation functions capture long wavelength behavior (k inside the 1st BZ). The matrix elements encode the short wavelength behavior (variation between BZs).

A: $s=(2 / 3,1 / 3)$
B: $s=(1 / 3,2 / 3)$

$$
\begin{aligned}
m(r) & =\sum_{R, s} S_{R, s} \rho(r-R-s) \\
m(k) & =\int d r e^{-i k \cdot r} m(r) \\
& =\sum_{R, s} e^{-i k \cdot R} e^{-i k \cdot s} S_{R, s} \int d r e^{i k \cdot r} \rho(r) \\
& \equiv f(k) \sum_{B} e^{-i k \cdot s} S_{s}(k)
\end{aligned}
$$

$\langle m(k) ; m(-k)\rangle=f(k)^{2} \sum_{s, s^{\prime}}\left\langle S_{s}(k) ; S_{s}^{\prime}(-k)\right\rangle e^{i k \cdot\left(s^{\prime}-s\right)}$

$$
=\left\langle S_{A}(k) ; S_{A}(-k)\right\rangle+\left\langle S_{B}(k) ; S_{B}(-k)\right\rangle+\left\langle S_{A}(k) ; S_{B}(-k)\right\rangle e^{\frac{i_{L}-k_{0}}{3}}+\left\langle S_{B}(k) ; S_{A}(-k)\right\rangle e^{-i \frac{k_{k}-k_{0}}{3}}
$$

