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5. 5. Streamer breakdown mechanism
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. Thermonuclear fusion, Lawson criterion, magnetic confinement systems, plasma heating and
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Where are we on the IV chart

* At some conditions, the transition from Townsend to glow si not as ,,smooth” and gradual as we

explained.

* At high fields, low currents and typically higher pressures, a filamentary structure typically called a

,Streamer” starts to form
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https://en.wikipedia.org/wiki/Streamer_discharge

Streamer physics is a living topic

* Even though the interest peaked around the mid 2010s, it is still of interest

* There are no ,definitive answers”, so whatever we are teaching here is an attempt to capture the best current
theory for streamer formation that will likely be improved in future.
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Streamer physics is a living topic

* Even though the interest peaked around the mid 2010s, it is still of interest

* There are no ,definitive answers”, so whatever we are teaching here is an attempt to capture the best current
theory for streamer formation that will likely be improved in future.
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Streamer physics is a living topic

* Even though the interest peaked around the mid 2010s, it is still of interest

* There are no ,,definitive answers”, so whatever we are teaching here is an attempt to capture the best current
theory for streamer formation that will likely be improved in future.

* Streamers are important in geophysics, biophysics, and in planetary plasma research, as well as on-ground uses
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- Examples of streamers

* There are no ,definitive answers”, so whatever we are teaching here is an attempt to capture the best current theory for
streamer formation that will likely be improved in future.

Upper atmospheric lightning

gigantic jet over Oklahoma in May 2018.

Chris Holmes

Nanosecond discharge in liquid water
(M.Simek, CAS, Praha)




Engineering / historical understanding of
streamer = filamentary discharge

Die Entwicklung der Elektronenlawine
in den Funkenkanal.

(Nach Beobachtungen in der Nebelkammer.)

Von H. Raether in Jena.
Mit 8 Abbildungen. (Eingegangen am 28. Februar 1939.)
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Terminology associated with streamers

Physics description of a “streamer head”
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Figure 2. Axial distributions of electric field E, number density of
electrons n. and ionization rate S; in the streamer head. The
dot-dashed line shows approximation (11) for the electric field.
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Streamer formation and its similarities with Townsend > Arc transition

* Inthe previous description of glow discharge ignition, we have always assumed that the electron avalanche creates
charge carriers and these move around between the electrodes, forming a diffuse discharge

* But it can occur that electron avalanche itself forms sufficient space charge and turns into a plasma?
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Electron avalanche and its transition to quasineutral plasma

* If the avalanche has enough space and the external field E, is large enough, the space charge field E‘ becomes non-negligible

* Electrons accumulate in the “head” of the streamer and the electric field drives further ionization and causes expansion.

* The expansion rate of the approx. spherical “streamer head” is driven by the electric field of the electrons themselves.

dR -
at = peE' = epe R 2 exp(az) , z = p.Eot
* The field E* is proportional to R but the electron density is independent of E*:

3¢ \'/ 3E  _ak
R‘(E) b (3)=2F ™=

* If the space-charge field becomes non-negligible compared to the external field, typically E‘ > 0.03 E, the effects of space charge
become dominant and the avalanche transforms into a “negative streamer” — a filamentary type of plasma (quasineutral,
collective)



Electron avalanche and its transition to quasineutral plasma

We can have a look at the (minimum) streamer physics through equations
https://arxiv.org/pdf/physics/0508109.pdf

* Electrons are created in ionization collisions and lost through attachment

» Positive are created through collisions and depend only on local electron density => streamers are so fast, that
positive ions do not have time to be transported.

* Same for negative ions, which are formed by attachment

Ot Ne = VR - (DeVRne + Ue Ene) + (Ne |E| az(lED — Va) Ne,

Oty = pe | Bl a; (| E[) ne,
Ot N_ = Vg Ne,
e

Vi ®

— (Me+n_—ny) , E=-Vg9,
€0


https://arxiv.org/pdf/physics/0508109.pdf

Raether-Meek criterion

* The Raether-Meek criterion states the condition for streamer breakdown.
* If the space charge field is E > 0.03 E,, the streamer forms.

* Through numerical modeling, this can be translated to ,Townsend terminology” arriving at

e(IENd ~ 108 to 10°.

a|E|) d =~ 18 to 21

* This can be understood as a criterion describing at what conditions will an avalanche transition to a
streamer, as opposed to a situation when an avalanche serves as a “seed” of charge carriers for
igniting glow discharge plasma




Positive vs negative streamers

* Experience shows that there are two types of streamers — those propagating from a cathode and those
propagating from an anode.

* |n positive streamers, the dominant ionization mechanism is photoionization.
* In negative streamers, the dominant ionization mechanism is direct electron-impact ionization.

* |In both cases, the ionization occurs mostly in the streamer head, because the electric field is strong
there.

Cathode streamer = positive streamer Anode streamer = negative streamer
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Figure 2. Axial distributions of electric field E, number density of
electrons n. and ionization rate S; in the streamer head. The
dot-dashed line shows approximation (11) for the electric field.
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Statistical nature of breakdown in gases

* Same as with Townsend breakdown, the streamer breakdown is also a statistical/random phenomenon!

* After Wijsman (1943) and his work on statistical breakdown through Townsend mechanism, other theories have emerged
which could also capture the transition from a Townsend mechanism to a streamer mechanism, e.g.Hodges (1985):

Breakdown probability for Townsend breakdown:
[Wijsman]

Breakdown probability for streamer breakdown:
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Pt

Including attachment in Wijsman theory

P*= [ vt (n*)dn* =(1—n/alexp(—n /") . (14)

Purely streamer breakdown with avalanches transitioning
into streamers

(I*n/a)f:V(n:)dn; for u* <1

(1—n/a) [1—1/p'+f:V(n;)dn;] foru*>1.

Unified ignition probability, considering both Townsend
breakdown and Streamer breakdown




Statistical nature of breakdown in gases

* With increasing pressure, the ignition probaibility curve is shifting towards higher E and its shape is
changing too

* Qualitatively, this is similar to Townsend breakdown but the physics behind is a bit more complex ©
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The Brno trace in streamer research ©

* Not-so-historically (1980s-2000s), streamers were researched y prof Mirko Cernak.

* An important technique for quantifying streamers is TCSPC = time-correlated single-photon counting pioneered a.o. by
Tomas Hoder
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* By time-correlating the origin of individual photons, light was emitted with the exponential spatial resolution up to 1
microsecond before the streamer, which suggested the Townsend mechanism
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The Brno trace in streamer research ©

Explaining the fundamentals through simulations — Zdenék Bonaventura and team.
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Figure 4. The multiple spatial scales in streamer discharges:

(a) collision of an electron with an atom or molecule, (b) multiple
electrons accelerate in a local electric field, collide with neutral gas
molecules and form an ionization avalanche, (c) a branching
streamer discharge with field enhancement at the tips, (d) a
discharge tree with multiple streamer branches. Panel (d) is
reproduced from a figure in [29].



But what happens next with the streamers?

Q: What do you think could happen when we have such a propagating plasma structure?

Al: Streamer reaches a counter-electrode

A2: Streamer does not reach a counter-

Conductive channel is formed electrode

Electric field drops significantly .
We see an arc plasma forming if the power .
supply can support it.

We see a spark plasma forming if the power

supply cannot support an arc .

The counter electrode is large and far

lonization stops to increase and ultimately starts to
decrease in space because the plasma is expanding
to a large volume.

Streamers can exist as semi-stable structures in
time, called corona discharge




CORONA DISCHARGE



Corona discharge

* If the field is highly non-uniform, e.g. close to sharp tips surrounded by ground, a corona discharge can appear
* There is no counter-electrode to reach but streamers still form and consume some energy

* Sometimes referred to as partial discharge

positive corona at 125 kV
in atmosphere

16



Corona discharge

* Corona can form in the proximity of both a positive and negative tip

Positive corona — tip is extended by a positive streamer

Negative corona — negative streamers propagate towards the tip

@ Positive ions

- } Electrons
"W\~ Photons

© Photoelectrens f

Ionization-zone boundary
z

44— Positive ions
Electrons

*-'WV— Photons

lonization-zone boundary

Photoionization important
Appears as diffuse glow around a wire.
Stable in all gases.

17

Secondary emission and volume ionization important
Has a glow discharge structure.
Appears as a series of luminous spots.
Stable only in electronegative gases.




Corona discharge

* Corona can form in the proximity of both a positive and negative tip

Positive corona — tip is extended by a positive streamer Negative corona — negative streamers propagate towards the tip

Figure 4. Negative polarity dc corona (sphere diameter of 20 mm, h = 15 cm). (a) Corona
close to the extinction conditions (-54.5 kV) with few moving streamers; (b) Advanced
negative corona at =75 kV showing an amalgam of moving surface streamers.

Figure 3. Positive polarity dc corona (sphere diameter of 20 mm, h = 15 cm). (a) Initial
corona glow at +55.5 kV; (b) Corona glow and streamer initiation at +56.0 kV; (c)
Advanced positive corona combining glow and streamers at +62 kV; (d) Spark breakdown
at approximately +80 kV.
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Negative corona structure

* The negative corona has a structure similar to a glow discharge with highly asymmetrical electrodes
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Trichel pulses in negative corona

* Trichel pulses are kHz — MHz oscillations inherent
to negative corona discharges.

* The fundamental physics is driven by the nature
of the plasma:

1. A negative streamer starts to form

2. lonization grows exponentially 300 F
3. Formed charge carriers start to shield the -150
external E field.
4. At some point, the external field is shielded -160
perfectly by the discharges => no more corona 2\
5. Plasma takes some characteristic time to e;
“dissipate” — that time scale is typically ~ 0 L 1 4
microseconds, determined by the plasma -600 -300
ambipolar diffusion time scale. -300 I ' I '
6. Asthe plasma dissipates, external field starts -150 (d)
to dominate again 0 k ) . .
7. A negative streamer starts to form ... -80 -40
-500 F1 T
r (e)
-250
0 L i 1
-20 -10
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Trichel pulses in negative corona

Time recording of a Trichel pulse (Sigmond 1973):

approx.
3mm

N,/O, = 1/1 37 Torr

We see electron multiplication, space charge formation and ultimately a glow discharge structure — but what is the dynamics behind it?

23
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Trichel pulses in negative corona — current measurement

> ]
%’ \ \\
21§l \
il 1\1\“\ ,/" t’/‘\ N PSS DA e First current peak sensitive to material, second current
I\ 1 \ peak is not!
1 &\
: \v,m - streamer initiation and generation of energetic photons.
} ] & First peak is probably the impact of the streamer
J ] ~ onto the cathode — probably the first Trichel pulse
(a) 2 ns/div - for repeated Trichel pulses, it is likely that transient glow

Figure 16. First Trichel pulses measured in dry air at 40 kPa,
r=0.625mm, § = 10 mm and a gap voltage of 5.28kV using the
brass (1) and the Cul-coated cathode (2). From Cerndk et al [220].

Photoemission coefficient
’Yp—CuI > ’Y‘p—brass

Has no effect on the maximum but it affects the rise time!

discharge starts to form, as qualitatively outlined
a few slides back.
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Trichel pulses in negative corona — emission measurement

Nitrogen emission in time and space before the Trichel pulse:
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SPARK DISCHARGE



Spark discharge

* |f a sufficient amount of current is available and the streamer reaches a counter-electrode, what we call a spark discharge

starts to form.
* This can be understood as an. early stage of an arc discharge but arc itself will operate only if the power supply can provide

ample current.
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Spark discharge (Janda, Machala 2010)

* |If the voltage is pulsed at the right frequency and duty cycle, the spark can be transient.

* Interesting special case of this plasma source, used at UK Bratislava.

streamer spark -

U 28 + Ueiectrode
¥

planar electrode

Figure 14. Images of the streamer and spark of a single TS pulse
taken by iCCD camera, exposure 25 ns, acquisition started ~25 ns

Figure 3. Photograph of TS in positive needle—plane gap of 4 mm, after the beginning of the streamer and spark, respectively,
f =2kHz, R = 6.6 MQ2 and exposure 0.05 s. ;: 3‘9 ki, f o 2kHn R =6.6MR2, € =32 L4 pFand
= 4 Inm.
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Spark discharge formation (Janda, Machala 2016)

* The IV measurements of a pulsed spark discharge shed more lithght onto how it is formed.
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* We see around 1.2 us, that if the discharge would not be stopped, the current would run away exponentially and an arc
discharge would be formed.

* We also see the voltage decreasing, as the plasma is becoming ore conductive.
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Spark discharge formation (Janda, Machala 2016)

* Measurements of electron density in spark plasma suggest that the plasma densities reach full ionization

* If the supply of power is not interrupted by the power supply at microsecond scales, the plasma will thermalize and an arc

discharge will form.
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Figure 6. Comparison of electron density evolution after the
beginning of the spark phase of the TS, calculated from the Stark
broadening of H, line, N line at 746 nm and O triplet near 777 nm,
f ~ 1-2kHz.
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Figure 1. Comparison between typical streak photographs of the spark formation in different cases according to Marode [96]. (a) Uniform
field gap: nitrogen, pulsed gap with small overvoltage (7.55%), generation mechanism, p = 300 Torr, d = 2 cm (after Doran in [97]), (b)
uniform field gap: nitrogen, pulsed gap with high overvoltage (35%), streamer mechanism, p = 300 Torr, d = 2 cm, (after Koppitz [98] and
Chalmers and Duffy [99], (c) non-uniform field gap: air, DC potential, p = 760 Torr, d = 1 cm, point radius 100 pm (after Marode [28]).
The picture is taken from [96].
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APPLICATION OVERVIEW



Corona discharge applications

* Corona discharge is often unwanted, appearing on high voltage components where it induces loss power.

* One major application are electrostatic precipitators. In these devices, corona discharge softly charges microparticles of
combustion products so that they can be captured and not contaminate the environment.
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Spark discharge applications

* Historically spark plugs... we all know where that is going ©

* Understanding of sparks, Trichel pulses, etc.. is still super important in circuit breakers because it affects how fast you are
able to switch current on/off in the grid.
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Streamer ,,applications”

Understanding streamers is absolutely crucial in geophysics, biophysics and planetary plasmas.
Thanks to the, we can understand upper atmospheric lighting

They also help to elucidate how life started to form — plasma was one of the “activation channels” converting inorganic
molecules to organic ones.
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Takeaways

What is a streamer, positive and negative
What are the main physics phenomena
What happens when a streamer reaches a counter-electrode

The few applications of streamers and their importance for fundamental science.



