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1. Basic Principles

1.1 Units

We mostly use the natural system of units where the Planck constant, speed of light

and the Boltzman constant are equal to one

h̄ = c = kB = 1 . (1.1)

Then the mass M , energy E and temperature T have the same dimensions since

[E] = [Mc2] = [M ] (1.2)

and also we have

[E] = [kBT ] = [T ] = [M ] . (1.3)

Time t and length l have in natural system dimension [M ]−1 as follows from the fact

that

[E] = [h̄ω] = [ω] = [t−1] (1.4)

so that [t] = [M ]−1. In the same way we have

[l] = [ct] = [t] = [M ]−1 . (1.5)

It is useful to know coeficients that relate various units
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Quantity SI dimensions Natuaral dimensions Conversions

mass kg M 1GeV = 1.8× 10−27kg

length m M−1 1GeV −1 = 0.197× 10−15m

time s M−1 1GeV −1 = 6.58× 10−25s

energy kg ·m2 · s−2 M 1GeV = 5.39× 10−19kg ·m · s−1

momentum kg ·m · s−1 M 1GeV = 5.39× 10−19kg ·m · s−1

velocity m · s−1 1 = 2.998× 108m · s−1

cross section m2 M−2 1GeV −2 = 0.389× 10−31m2

force kg ·m · s−2 M2 1GeV 2 = 8.19× 105Newton
The traditional unit of length in cosmology is Megaparsec

1 Mpc = 3.1× 1022m . (1.6)

It is interesting to mention the several units of length that are used in astronomy.

Besides the metric system in use are the astronomical unit (a.u.) which is the average

distance from the Earth to the Sun

1 a.u. = 1.5× 1011m (1.7)

Further, there is a light year, the distance that a photon travels in one year

1 year = 3.16× 107s , 1 light year = 0.95× 1016m (1.8)

parsec (pc)-distance from which an object of size 1a.u. is seen at angle 1arc second

1 pc = 2.1 · 105a.u. = 3.3 light year = 3.1× 1016m (1.9)

It is instructive to give distances of various objects expressed in above units.

10a.u. is the average disance to Saturn, 30a.u. is the same for Pluto, 100a.u. is

the estimate of the maximum distance which can be reached by solar wind (particles

emitted by the Sun). The nearest stars-Proxima and Alpha Centauri are at 1.3pc

from the Sun. The distance to Arcturus, which is the brightest star on the night

sky, is about 36 light years. The distance to Capella, which is one of the most

brightest stars on night sky, is more than 42 light years. The distances to Canopus

and Betelgeuse, which are again one of the most brightest stars on the night sky, are

about 100pc (300 l.y.) and 200pc (642 l.y.) respectively. Crab Nebula-the remnant

of supernova SN1054 is 2kpc (6523 l.y.) away from us.

The next point on the scale of distance is 8kpc. This is the distance from the

Sun to the center of our Galaxy. Our Galaxy is of spiral type, the diameter of its

disc is about 30kpc and the thickness of the disc is about 250pc. The distance to

the nearest dwarf galaxies that are satelites of our Galaxy is about 30kpc. Fifteen

of these satellites are known, the largest of them are Large and Small Magellanic

Clouds are about 50kpc away. It is also interesting to note that only eight Milky

Way satellites were known by 1994.
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The mass density of the usual matter in usual (not dwarf) galaxies is about 105

higher than the average over Universe.

The nearest usual galaxy-the spiral galaxy M31 in Andromeda constellation- is

800kpc away from the Milky Way. Another nearby galaxy is in Triangulum constella-

tion. Our Galaxy together with Andromeda and Triangulum galaxies , their satelites

and other 35 smaller galaxies constitute the Local Group which is the gravitationally

bound object consisting of about 50 galaxies.

The next scale is the size of clusters of galaxies which is 1− 3Mpc. Rich clusters

contain thounsands of galaxies. The mass density in clusters exceeds the average

density over the Universe by a factor of a hundred and even sometimes a thousand.

The distance to the center of the nearest cluster, which is the Vigo constellation, is

about 15Mpc. Clusters of galaxies are the largest gravitationally bound systems in

the Universe.

2. Brief Introduction to General Relativity

As the first step we introduce concept of covariant derivative which is an operator

which reduces to the partial derivative in flat space with Cartesian coordinates, but

transforms as a tensor on an arbitrary manifold.

In flat space in Cartesian coordinates, the partial derivative operator ∂µ is a map

from (k, l) tensor fields to (k, l+1) tensor fields, which acts linearly on its arguments

and obeys the Leibniz rule on tensor products. All of this continues to be true in

the more general situation we would now like to consider, but the map provided by

the partial derivative depends on the coordinate system used. We would therefore

like to define a covariant derivative operator ∇ to perform the functions of the

partial derivative, but in a way independent of coordinates. We therefore require

that ∇ be a map from (k, l) tensor fields to (k, l + 1) tensor fields which has these

two properties:

1. linearity: ∇(T + S) = ∇T +∇S ;

2. Leibniz (product) rule: ∇(T ⊗ S) = (∇T )⊗ S + T ⊗ (∇S) .

It can be shown that ∇ takes the form

∇µV
ν = ∂µV

ν + ΓνµλV
λ , (2.1)

where (Γµ)ρσ (an n × n matrix known as connection coefficients, where n is the

dimensionality of the manifold, for each µ). Further, we also demand that ∇µV
ν

transform as (1, 1) tensor

∇µ′V
ν′ =

∂xµ

∂xµ′
∂xν

′

∂xν
∇µV

ν . (2.2)
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This requirement implies following transformation rules for metric coefficients

Γν
′

µ′λ′ =
∂xµ

∂xµ′
∂xλ

∂xλ′
∂xν

′

∂xν
Γνµλ −

∂xµ

∂xµ′
∂xλ

∂xλ′
∂2xν

′

∂xµ∂xλ
. (2.3)

which of course is not the tensor transformation law; the second term on the right

spoils it. The covariant derivative of a one-form takes the form

∇µων = ∂µων − Γλµνωλ . (2.4)

Then it is clear that the connection coefficients encode all of the information necessary

to take the covariant derivative of a tensor of arbitrary rank. The formula is quite

straightforward; for each upper index you introduce a term with a single +Γ, and

for each lower index a term with a single −Γ:

∇σT
µ1µ2···µk

ν1ν2···νl = ∂σT
µ1µ2···µk

ν1ν2···νl
+Γµ1

σλ T
λµ2···µk

ν1ν2···νl + Γµ2

σλ T
µ1λ···µk

ν1ν2···νl + · · ·
−Γλσν1

T µ1µ2···µk
λν2···νl − Γλσν2

T µ1µ2···µk
ν1λ···νl − · · · . (2.5)

This is the general expression for the covariant derivative.

It turns out that in order to define unique connection on a manifold with a metric

gµν we have to introduce two additional properties:

• torsion-free: Γλµν = Γλ(µν).

• metric compatibility: ∇ρgµν = 0.

This requirement implies that we can express connection coefficients as functions of

metric

Γσµν =
1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν) . (2.6)

This connection we have derived from the metric is the one on which conventional

general relativity is based . It is known as Christoffel connection or as the Levi-

Civita connection.

Now we define the notion of parallel transport that corresponds to the motion

of a vector along a path, keeping constant all the while. The parallel transport is

defined whenever we have a connection. In fact the crucial difference between flat

and curved spaces is that, in a curved space, the result of parallel transporting a

vector from one point to another will depend on the path taken between the points.

More precisely, let us have a curve xµ(λ) and define the covariant derivative along

the path to be given by an operator

D

dλ
=
dxµ

dλ
∇µ . (2.7)
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We then define parallel transport of the tensor T along the path xµ(λ) to be the

requirement that, along the path,(
D

dλ
T
)µ1µ2···µk

ν1ν2···νl ≡
dxσ

dλ
∇σT

µ1µ2···µk
ν1ν2···νl = 0 . (2.8)

This is a well-defined tensor equation, since both the tangent vector dxµ/dλ and the

covariant derivative ∇T are tensors. This is known as the equation of parallel

transport. For a vector it takes the form

d

dλ
V µ + Γµσρ

dxσ

dλ
V ρ = 0 . (2.9)

It is clear that the notion of parallel transport depends on the connection, and

different connections lead to different answers. On the other hand since we consider

the connection that is metric-compatible we obtain that the metric is always parallel

transported
D

dλ
gµν =

dxσ

dλ
∇σgµν = 0 . (2.10)

Then we show that the inner product of two parallel-transported vectors is preserved.

In fact, if V µ and W ν are parallel-transported along a curve xσ(λ), we have

D

dλ
(gµνV

µW ν) =
(
D

dλ
gµν

)
V µW ν + gµν

(
D

dλ
V µ
)
W ν + gµνV

µ
(
D

dλ
W ν

)
= 0 . (2.11)

This means that parallel transport with respect to a metric-compatible connection

preserves the norm of vectors, the sense of orthogonality, and so on.

Now we are going to discuss the geodesics. To begin with we recall that the

tangent vector to a path xµ(λ) is dxµ

dλ
. The condition that it be parallel transported

is thus
D

dλ

dxµ

dλ
= 0 , (2.12)

or alternatively
d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0 . (2.13)

This is the familiar geodesic equation.

It is important to stress that geodesics in general relativity are the paths followed

by unaccelerated particles. To see this note that we can think about the geodesic

equation as the generalization of Newton’s law f = ma for the case f = 0. In fact it

can be shown that the equation of motion for a particle of mass m and charge q in

general relativity takes the form

d2xµ

dτ 2
+ Γµρσ

dxρ

dτ

dxσ

dτ
=

q

m
F µ

ν
dxν

dτ
. (2.14)
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2.1 Gravitational Field Equations

As we know in General Relativity (GR) the metric tensor is dynamical field and the

equations of GR arise as extrema conditions for the action functional. The principle

of equivalence means that all equations have to have the same form in all reference

frames. In other words we require that the action function has to be same in all

reference frames which means that the action is scalar. Since the action is given as

the integral over time of the Lagrangian we find also that the Lagrangian has to be

given as the integral over space section of the spacetime. In summary we postulate

thath the gravity action has the form

Sgr =
∫
d4x
√
−gLgr , (2.15)

where the Lagrangian density Lgr(x) transforms under coordinate transformations

x′µ = x′µ(x) as

L′(x′) = L(x) (2.16)

and due to the fact that d4x′
√
−g′(x′) = d4x

√
−g(x) we really see that Sgr does not

change under diffeomorphism transformations. Note that
√
−g means square root

of determinant of the metric gµν where µ, ν = 0, 1, 2, 3 and we work with the metric

with signature (−1, 1, 1, 1). In more details, the fundamental object of the general

relativity is the metric tensor gµν that transforms under coordinate transformations

x′µ = x′µ(x) as

g′µν(x
′) = gρσ

∂xρ

∂x′µ
∂xσ

∂x′ν
, (2.17)

where we presume that the transormation x′µ = x′µ(x) is invertible with inverse

xµ = xµ(x′).

The simplest possibility is to take the Lagrangian density to be equal to constant

L = −Λ so that

SΛ = −Λ
∫
d4x
√
−g . (2.18)

However this action does not contain the time derivatives of the metric and hence

the dynamics that would follow from this action is trivial. For that reason we should

search more complicated form of the Lagrangian density.

The Lagrange density is a tensor density, which can be written as
√
−g times a

scalar that is function of the metric and its derivatives. The question is the form of

given scalar. Since we know that the metric can be set equal to its canonical form and

its first derivatives set to zero at any one point, any nontrivial scalar must involve at

least second derivatives of the metric. The Riemann tensor is of course made from

second derivatives of the metric, and we argued earlier that the only independent

scalar we could construct from the Riemann tensor was the Ricci scalar R. What we

did not show, but is nevertheless true, is that any nontrivial tensor made from the

metric and its first and second derivatives can be expressed in terms of the metric
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and the Riemann tensor. Therefore, the only independent scalar constructed from

the metric, which is no higher than second order in its derivatives, is the Ricci scalar.

Hilbert figured that this was therefore the simplest possible choice for a Lagrangian,

and proposed

LH =
√
−gR . (2.19)

The equations of motion should come from varying the action with respect to the

metric. In fact let us consider variations with respect to the inverse metric gµν ,

which are slightly easier but give an equivalent set of equations. Using R = gµνRµν ,

in general we will have

δS =
∫
dnx

[√
−ggµνδRµν +

√
−gRµνδg

µν +Rδ
√
−g
]

= (δS)1 + (δS)2 + (δS)3 . (2.20)

The second term (δS)2 is already in the form of some expression times δgµν ; let’s

examine the others more closely.

Recall that the Ricci tensor is the contraction of the Riemann tensor, which is

given by

Rρ
µλν = ∂λΓλνµ + ΓρλσΓσνµ − (λ↔ ν) . (2.21)

We perform the variation of the Riemann tensor in such a way that we firstly perform

variation of the connection coefficients and then we substitute into this expression.

In fact, after some calculations we find the variation of the Riemann tensor in the

form

δRρ
µλν = ∇λ(δΓ

ρ
νµ)−∇ν(δΓ

ρ
λµ) . (2.22)

Therefore, the contribution of the first term in (2.20) to δS can be written

(δS)1 =
∫
d4x
√
−g gµν

[
∇λ(δΓ

λ
νµ)−∇ν(δΓ

λ
λµ)
]

=
∫
d4x
√
−g ∇σ

[
gµσ(δΓλλµ)− gµν(δΓσµν)

]
, (2.23)

where we have used metric compatibility. However the integral above is an integral

with respect to the natural volume element of the covariant divergence of a vector;

by Stokes’s theorem, this is equal to a boundary contribution at infinity which we

can set to zero by making the variation vanish at infinity. Therefore this term does

not contribute to the total variation.

In order to calculate the (δS)3 term we have to use the variation

δ(g−1) =
1

g
gµνδg

µν . (2.24)

and consequently

δ
√
−g = −1

2

√
−ggµνδgµν . (2.25)
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If we now return back to (2.20), and remembering that (δS)1 does not contribute,

we find

δS =
∫
d4x
√
−g

[
Rµν −

1

2
Rgµν

]
δgµν . (2.26)

However this should vanish for arbitrary variations and consequently we derive Ein-

stein’s equations in vacuum:

1√
−g

δS

δgµν
= Rµν −

1

2
Rgµν = 0 . (2.27)

However we would like to get the non-vacuum field equations as well. In other words

we consider an action of the form

S =
1

8πG
SH + SM , (2.28)

where SM is the action for matter, and we have presciently normalized the gravita-

tional action (although the proper normalization is somewhat convention-dependent).

Following through the same procedure as above leads to

1√
−g

δS

δgµν
=

1

8πG

(
Rµν −

1

2
Rgµν

)
+

1√
−g

δSM
δgµν

= 0 , (2.29)

and we recover Einstein’s equations if we set

Tµν = − 1√
−g

δSM
δgµν

. (2.30)

In fact (2.30) turns out to be the best way to define a symmetric energy-momentum

tensor.

Einstein’s equations may be thought of as second-order differential equations for

the metric tensor field gµν . There are ten independent equations (since both sides are

symmetric two-index tensors), which seems to be exactly right for the ten unknown

functions of the metric components. However, the Bianchi identity ∇µGµν = 0 which

we prove below represents four constraints on the functions Rµν , so there are only six

truly independent equations. In fact this is appropriate, since if a metric is a solution

to Einstein’s equation in one coordinate system xµ it should also be a solution in

any other coordinate system xµ
′
. This means that there are four unphysical degrees

of freedom in gµν (represented by the four functions xµ
′
(xµ)), and we should expect

that Einstein’s equations only constrain the six coordinate-independent degrees of

freedom.

It is important to stress that as differential equations, these are extremely com-

plicated; the Ricci scalar and tensor are contractions of the Riemann tensor, which

involves derivatives and products of the Christoffel symbols, which in turn involve

the inverse metric and derivatives of the metric. Furthermore, the energy-momentum

tensor Tµν will generally involve the metric as well. The equations are also nonlinear,

9



that implies that two known solutions cannot be superposed to find a third. It is

therefore very difficult to solve Einstein’s equations in any sort of generality. Then

in order to solve them we have to perform some simplifying assumptions. The most

popular sort of simplifying assumption is that the metric has a significant degree of

symmetry, and we will talk later on about how symmetries of the metric make life

easier.

We are mainly interested in the existence of solutions to Einstein’s equations

in the presence of “realistic” sources of energy and momentum. The most common

property that is demanded of Tµν is that it represent positive energy densities —

no negative masses are allowed. In a locally inertial frame this requirement can be

written as ρ = T00 ≥ 0. We write it in the coordinate-independent notation as

TµνV
µV ν ≥ 0 , for all timelike vectors V µ . (2.31)

This is known as the Weak Energy Condition, or WEC. It seems like a reasonable

requirement however it is very restrictive. Indeed it is straightforward to show that

there are many examples of the classical field theories which violate the WEC, and

almost impossible to invent a quantum field theory which obeys it. Nevertheless, it

is legitimate to assume that the WEC holds in most cases and it is violated in some

extreme conditions. (There are also stronger energy conditions, but they are even

less true than the WEC, and we won’t dwell on them.)

An important property of the energy momentum tensor is that it is conserved.

In the flat background the conservation equation takes the form

∂µT
µν = 0 , (2.32)

where the first equation ∂µT
µ0 = 0 expresses the conservation of the energy den-

sity while the remaining three equations ∂µT
µi = 0 defines the conservation of the

momentum density. In general relativity the conservation equation takes the form

∇µT
µν = 0 . (2.33)

This equation can be proved using the equation of motion for the metric when we

apply the covariant derivative on both sides of this equation

∇µ
(
Rµν −

1

2
gµνR

)
= 8πG∇µTµν . (2.34)

We show that the left side of this equation is identically zero. Note that generally the

matter fields do not have to be on shell since this equation follows from the variation

of the action with respect to the metric. To see this we recall the Bianchi identity

for the Riemann tensor

∇ρR
λ
σµν +∇νR

λ
σρµ +∇µR

λ
σνρ = 0 . (2.35)
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Now we contract λ and µ indices and by definition Rµ
σµν = Rσν we obtain the identity

∇ρRσν −∇νRρσ +∇λR
λ
σνρ = 0 . (2.36)

Then we contract this equation with gρσ and we obtain

0 = ∇ρR
ρ
ν −∇νR +∇λRλν = 2∇µ(Rµν −

1

2
gµνR) = 0 . (2.37)

which implies that the covariant conservation law of the stress energy-tensor is a

necessary condition for the consistency of the Einstein equation.

On the other hand the stress energy tensor is determined by the matter action.

Clearly when we search the extremum of the action we perform the variation of the

action with respect to the matter fields so that the energy momentum tensor should

be conserved as the consequence of the matter equations of motions as well. Alter-

natively, we can presume the evolution of the matter fields on the fixed background

and in this case the energy-momentum tensor should be conserved as well.

To proceed note that the matter action is diffeomorphism invariant so that the

conservation of the energy momentum tensor should follow from the invariance of the

action under general diffeomorphism transformation. In fact, under transformation

x′µ = xµ + ξµ . (2.38)

Then

g′µν(x′) = gρσ
∂x′µ

∂xρ
∂x′ν

∂xσ
⇒

g′µν(x′) = gµν(x) + gνλ(x)∂λξ
µ + ∂λx

µgλν(x)

(2.39)

If we expand

g′µν(x′) = g′µν(x+ ξ) = g′µν(x) + ∂λg
′µνξλ = g′µν(x) + ∂λg

µνξλ (2.40)

we find the variation gµν as

δgµν(x) = g′µν(x)− gµν(x) = −∂λgµν(x)ξλ + gµλ∂λξ
ν + ∂λξ

µgλν . (2.41)

Now we proceed to the transformation property of the matter fields. Their form

depends on the character of these fields, whether they are scalars, vectors,..... For

example, in case of the scalar field we find

φ′(x′) = φ(x)⇒ φ′(x)− φ(x) = −∂λφξλ (2.42)

Since the action is invariant under the diffeomorphism invariance we obtain

δξSm =
1

2

∫
d4x
√
−gTµν(∇µξν +∇νξµ) +

∫
d4x
√
−g δLm

δψ
δψξ = 0 , (2.43)
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where we also used the fact that the variation of the metric can be written as

g′µν − gµν = ∇µξν +∇νξµ (2.44)

Note that the equation (2.43) has to be zero of shell. Let us now presume that

the matter field equations are satisfied which implies that the second term in (2.43)

vanishes. Then using integration by parts we can rewrite (2.43) into the form

δξSm(on shell) = −
∫
d4x
√
−gξµ∇µTµν = 0 (2.45)

that using the fact that ξµ is arbitrary implies the conservation of the stress energy

tensor.

We continue with the study of the Einstein equations where we now discuss the

possibility of the introduction of a cosmological constant. In order to introduce it we

add it to the conventional Hilbert action. We therefore consider an action given by

S =
∫
d4x
√
−g(R− 2Λ) , (2.46)

where Λ is some constant. The resulting field equations are

Rµν −
1

2
Rgµν + Λgµν = 0 , (2.47)

and of course there would be an energy-momentum tensor on the right hand side if

we had included an action for matter. Λ is the cosmological constant. In order to

find its meaning it is convenient to move the additional term in (2.47) to the right

hand side, and think of it as a kind of energy-momentum tensor, with Tµν = −Λgµν
(it is automatically conserved by metric compatibility). Then Λ can be interpreted

as the “energy density of the vacuum,” a source of energy and momentum that

is present even in the absence of matter fields. This interpretation is important

because quantum field theory predicts that the vacuum should have some sort of

energy and momentum. In ordinary quantum mechanics, an harmonic oscillator with

frequency ω and minimum classical energy E0 = 0 upon quantization has a ground

state with energy E0 = 1
2
h̄ω. A quantized field can be thought of as a collection of

an infinite number of harmonic oscillators, and each mode contributes to the ground

state energy. The result is of course infinite, and must be appropriately regularized,

for example by introducing a cutoff at high frequencies. The final vacuum energy,

which is the regularized sum of the energies of the ground state oscillations of all the

fields of the theory, has no good reason to be zero and in fact would be expected to

have a natural scale

Λ ∼ m4
P , (2.48)

where the Planck mass mP is approximately 1019 GeV, or 10−5 grams. Observations

of the universe on large scales allow us to constrain the actual value of Λ, which turns
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out to be smaller than (2.48) by at least a factor of 10120. This is the largest known

discrepancy between theoretical estimate and observational constraint in physics,

and convinces many people that the “cosmological constant problem” is one of the

most important unsolved problems today. On the other hand the observations do

not tell us that Λ is strictly zero, and in fact allow values that can have important

consequences for the evolution of the universe.

2.2 Basic principles of Cosmology

In this section we review basic facts about classical cosmology, following mainly [3].

There are many reviews available on hep-th, see for example [4, 5, 6] 1. Contemporary

cosmological modes are based on the idea that the Universe is pretty much the same

everywhere-the idea known as Copernican principle. It is clear that this principle

can be applied on the large scales only where local variations of density is averaged

over.

In other words, we can define cosmology as physics on very large scales that

vary from 1kpc which is typical size of galaxies to 1Mpc that is typical intergalactic

distance in the local group of galaxies up to thousands of Mpc that corresponds to

the most distant observed light source which is cosmic microwave background.

It is important to stress that the galaxy distribution in our neighbourhood (about

tens of Mpc) is not regular and it is characterized by clusters of matter. On the

other hand observation on much large distances (hundreds of Mpc) suggests that the

Universe is homogeneous and isotropic with very good approximation. Moreover, this

presumption is even more supported by observation of Cosmic microwave background

that is radiation background of cosmic origin that goes back to 13 billions ago when

matter is transparent to radiation. Today the temperature of CMB is T0 = 2.7255±
0, 0006 K with very small variation 4T

T
∼ 10−5 that means that the early Universe

is homogeneous and isotropic.

The main conclusion of these arguments is that the Universe is spatially ho-

mogeneous and isotropic on the largest scales. Since these claims need more

explanation let us pause in our explanation of cosmology and give some more precise

definition of mathematical claims given above.

2.3 Map of Manifolds

Since we do not have enough time with explanation of the notion of manifold we

presume that reader has enough knowledge regarding this point.

Let M and N be manifolds (generally with different dimensions) and let φ :

M → N be a map. In a natural manner, φ ”pulls back” a function f : N → R on N

to the function f ◦ φ → M → R that is derived by composing f with φ. Similarly,

1Our metric signature is −+ ++. We use units h̄ = c = 1 and define the reduced Planck mass

by Mp = (8πG)−1/2 ≈ 1018GeV .
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in a natural way, φ maps tangent vectors at p ∈ M to tangent vectors at φ(p) ∈ N .

In other words it defines ma φ∗ : Vp → Vf(p) in following way: For V
∫
Vp we define

φ∗(v) by

(φ∗(v))(f) = v(f ◦ φ) (2.49)

for all smooth f : N → R. It is easy to see that φ∗v satisfies the properties of tangent

vector at φ(p). Further, in the coordinate bases of a coordinate system (xν) at p and

a coordinate system (yµ) at φ(p) the upper expression takes the form

wµ(y)
∂

∂yµ
f(y) = vν(x)

∂

∂xν
f((φ(x))) = vν(x)

∂f(y)

∂yµ
∂yµ

∂xν
⇒

wµ(φ(x)) = vν(x)
∂yµ

∂xν
, (φ∗v)µ ≡ wµ .

(2.50)

In the same way we can use φ to ”pull back” one forms at φ(p) to one forms at p.

We define the map (”pull back”) φ∗ : V ∗φ(p) → V ∗p by requiring that for v ∈ Vp

(φ∗ω)µv
µ = ων(φ

∗v)ν , (2.51)

where we used tensor notation. Using the definition of the map φ∗ given in (2.50)

we easily get

(φ∗ω)µ = ων
yν

∂xµ
. (2.52)

We can easily extend the action of φ∗ to map tensors of type (0, l) at φ(p) to tensors

of type (0, l) at p by

(φ∗T )µ1...µlv
µ1
1 . . . vµll = Tµ1...µl(φ

∗v1)µ1 . . . (φ∗vl)
µl . (2.53)

In the same way we can extend the action of φ∗ to map tensors of type (k, 0) at p to

tensors of type (k, 0) at φ(p) by

(φ∗T )µ1...µk(ω1)µ1 . . . (ωk)µk = T µ1...µk(φ∗ω1)µ1 . . . (φ∗ωk)µk (2.54)

If φ : M → M is diffeomorphism and T is a tensor field on M we can compare T

with φ∗T . If φ∗T = T then even though we have moved T via φ it is still the same.

In other words φ is a symmetry transformation for the tensor field T . In the case of

the metric gµν a symmetry transformation-a diffeomorphism φ such that

(φ∗g)µν = gµν

is called an isometry.

Let us now return to our explanation of basic principles of cosmology. Our first

task is to formulate precisely the mathematical meaning of this assumption. The

evidence comes from the smoothness of the temperature of the cosmic microwave
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background. In other words, given any two points p and q there is an isometry

which takes p into q. We must mention that there is no necessary relationship

between homogeneity and isotropy; a manifold can be homogeneous but nowhere

isotropic (such as R × S2 in the usual metric) or it can be isotropic around a point

without being homogeneous (such as a cone, which is isotropic around its vertex but

certainly not homogeneous). On the other hand, if a space is isotropic everywhere

then it is homogeneous. On the other hand it should be pointed that, in general,

at each point, at most one observer can see the universe as isotropic. For example,

if ordinary matter fills the universe, any observer in motion relative to the matter

must see an anisotropic velocity distribution of the matter. With this fact in mind

we have to give precise formulation of the notion of isotropy than the clam that

Isotropy is the claim that the Universe looks the same in all directions.: A spacetime

is said to be (spatially) isotropic at each point if there exists a congruence of time-

like curves (observes) with tangent vectors denoted uµ filling the spacetime and

satisfying the following property. Given any point p and any two unit spatial tangent

vectors sµ1 , s
µ
2 ∈ Vp (In other words vector that are orthogonal to uµ) there exists an

isometry of gµν that leaves p and uµ at p fixed but rotates sµ1 into sµ2 . Thus, in

an isotropic universe it is impossible to construct a geometrically preferred tangent

vector orthogonal to uµ. Then we can see that in the case of a homogeneous and

isotropic spacetime the surface Σt of homogeneity must be orthogonal to the tangents

uµ to the world-lines of the isotropic observers. Now the space-time metric gµν
induces a Riemannian metric hµν(t) on each Σt by restricting the action of gµν at

each p ∈ Σt to vectors tangent to Σt. The induced spatial geometry of the surfaces

Σt is greatly restricted by the following requirements:

• Due to the homogeneity, there must be isometries of hµν that carry any p ∈ Σt

into any q ∈ Σt.

• Due to the isometry it must be impossible to construct any geometrically pre-

ferred vectors on Σt.

Since there is observation evidence for isotropy and the Copernican principle says

that we are not the center of the Universe and therefore observers elsewhere should

also observe an isotropy all cosmological models are based on the existence of homo-

geneity and isotropy of manifold. However it is important to stress that this claim

is not certainly true. The Universe is apparently not static, but changing in time.

Therefore the cosmological models are based on the idea that the Universe is homo-

geneous and isotropic in space but not in time. This means that the Universe can

be foliated into space-like surfaces such that each slice is homogeneous and isotropic.

Then it is natural to consider our space-time to be R × Σ where R represents the

time direction and Σ is a homogeneous and isotropic three-manifold. Since we may

think of isotropy as invariance under rotation and homogeneity as invariance under
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translation we get that Σ must be a maximally symmetric space. More precisely, the

homogeneity and isotropy imply that the space has its maximum possible number of

Killing vectors. Therefore we can write the metric in the form

ds2 = −dt2 + a2(t)γij(x)dxidxj . (2.55)

Here t is time-like coordinate and (x1, x2, x3) are the coordinates on Σ where γij is

the maximally symmetric metric on Σ. The function a(t) is known as scale factor

that tells us how big the space-like slice Σ is at the moment t. The coordinates used

here in which the metric is free of cross terms dtdxi and the space-like components

are proportional to a single function of t are known as comoving coordinates and

an observer who stays at constant xi is also called as “comoving”. Only comoving

observer will think that the Universe looks isotropic.

It is important to stress that these observers, that are at rest to this frame are

geodesic which means that they are free. Note that for these particles (observers) we

have ds2 = −dt2 as follows from the fact that dxi = 0 which implies that t has the

meaning of the proper time for particles at rest.

We show that the world-line xi = const obeys the geodesic equation in the metric

(2.55). Note that the geodesic equation takes the form

duµ

dλ
+ Γµνλu

νuλ = 0 , (2.56)

where uµ is 4− velocity
dxµ

dλ
(2.57)

and where λ is the parameter along the world-line of the particle. To begin with we

calculate the Christoffel symbols

Γµνλ =
1

2
gµσ(∂νgλσ + ∂λgνσ − ∂σgνλ) . (2.58)

For the metric (2.55) we have following non-zero components

g00 = −1 , gij = a2(t)γij (2.59)

with the inverse components

g00 = −1 , gij =
1

a2(t)
γij , (2.60)

where

γijγjk = δik . (2.61)

It can be shown that the only non-zero components of Γµνλ are

Γi0j =
1

2
gik∂0gjk =

ȧ

a
δij ,Γ

0
ij = −aȧγij ,Γijk = (3)Γijk , (2.62)
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where (3)Γijk are the Christoffel symbols for metric γij.

Let us now again consider the equation (2.56). The only non-zero component of

the 4−velocity uµ = dxµ

dλ
of the particle at rest is

u0 =
dx0

dλ
(2.63)

Now the on-shell condition implies

uµuνgµν = −1⇒ dx0

dλ
= 1 . (2.64)

Then clearly (2.56) is obviously satisfied since du0

dλ
= 0 and Γµ00 for all µ. In other

words the world-lines of particles which are at rest in our reference frame are indeed

geodesic.

As we have shown in introduction the maximally symmetric Euclidean three-

metric γij obey

R
(3)
ijkl = k(γikγjl − γilγjk) , (2.65)

where k is some constant and the superscript on the Riemann tensor reminds to us

that it is associated with the three metric γij not to the metric of entire space-time.

Then the Ricci tensor is

R
(3)
jl = γikR

(3)
ijkl = 2kγjl . (2.66)

Since the space is maximally symmetric then it will certainly be spherically symmetric

as well. For such a space-time the metric can be put in the form

dσ2 = γijdx
idxj = e2βdr2 + r2(dθ2 + sin2 θdφ2) . (2.67)

The Ricci tensor for the metric given above has components

R
(3)
11 =

2

r
∂rβ ,

R
(3)
22 = e−2β(r∂rβ − 1) + 1

R
(3)
33 = [e−2β(r∂rβ − 1) + 1] sin2 θ .

If we compare these expressions to (2.66) we can solve for β(r):

2

r
∂rβ = 2ke2β ⇒ 2dβe−2β = 2kr ⇒ β = −1

2
ln(C − kr2) ,

e−2β(r∂1β − 1) + 1 = 2kr2 ⇒ e−2β(r2ke2β − 1) + 1 = 2kr2 ⇒
⇒ −e−2β + 1 = kr2 ⇒ C = 1

(2.68)

and the third equation is identically solved. Then we obtain following metric on

space-time:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
. (2.69)
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This form of metric is known as Friedman-Robertson-Walker metric (FRW).

Then the Einstein equations will determine the behavior of the scale factor a(t). We

can also easily see that the metric is invariant under the scaling transformations:

k → k

|k|
,

r →
√
|k|r ,

a→ a√
|k|

.

(2.70)

Therefore it is clear that the only relevant parameter is k/|k| and there are three

cases of interest: k = −1 , k = 0 and k = 1. The case k = −1 corresponds to

constant negative curvature on Σ and is called open, the case k = 0 corresponds no

curvature on Σ and is called flat ; the case k = 1 corresponds to positive curvature

on Σ and is called closed. Now we will examine these possibilities in more details:

• For k = 0 the metric on Σ is

dσ2 = dxidx
i , i = 1, 2, 3 (2.71)

that is simply the Euclidean space. Globally, it could describe R3 or more

complicated manifold, as for example three torus S1 × S1 × S1.

• For k = 1 we define

r = sin ξ , dr = cos ξdξ (2.72)

and hence the metric on Σ can be written as

dσ2 = dξ2 + sin2 ξdΩ2 (2.73)

which is the metric of three sphere. In this case the only possible global struc-

ture is actually three sphere.

• The case k = −1 we can write

r = sinhψ (2.74)

and the metric on Σ is

dσ2 = dψ2 + sinh2 ψdΩ2 (2.75)

which is the metric of three dimensional space of constant negative curvature.

Globally such a space can extend forever but it can also describe a non-simply

connected compact space.
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In order to solve the Einstein’s equations of motion we have to calculate the Christof-

fel’s symbols for the metric ansatz (2.69). If we denote ȧ ≡ da
dt

then these symbols

are given by

Γ0
11 =

aȧ

1− kr2
, Γ0

22 = aȧr2 , Γ0
33 = aȧr2 sin2 θ ,

Γ1
01 = Γ2

02 = Γ2
20 = Γ3

03 = Γ3
30 =

ȧ

a
,

Γ1
22 = −r(1− kr2) , Γ1

33 = −r(1− kr2) sin2 θ ,

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1

r
,

Γ2
33 = − sin θ cos θ ,Γ3

23 = Γ3
32 = sin θ .

(2.76)

After simple calculations we can find following nonzero components of the Ricci

tensor

R00 = −3
ä

a
,

R11 =
aä+ 2ȧ2 + 2k

1− kr2
,

R22 = r2(aä+ 2ȧ2 + 2k) ,

R33 = r2(aä+ 2ȧ2 + 2k) sin2 θ .

(2.77)

Then the Ricci scalar is equal to

R = gµνRνµ =
6

a2
(aä+ ȧ2 + k) . (2.78)

Since Universe is not empty we are not interested in the vacuum Einstein equations.

Rather we must study the solutions of the Einstein’s equations that contain the

nontrivial right hand side. The standard model with we begin is the Universe filled

by a perfect fluid that is defined as fluids that are isotropic in their rest frame. The

energy momentum tensor for a perfect fluid can be written

Tµν = (p+ ρ)UµUν + pgµν , (2.79)

where p and ρ are energy density and pressure as measured in the rest frame and Uµ
is the four-velocity of the fluid. It is clear that if a fluid which is isotropic in some

frame leads to a metric which is isotropic in some frame, the two frames will coincide,

that is the fluid will be in rest frame in comoving coordinates. The four-velocity is

then

Uµ = (1, 0, 0, 0) , (2.80)
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and the energy tensor is

Tµν =


ρ 0 0 0

0

0 gijp

0

 . (2.81)

If we raise its index we obtain

T µν = gµκTκν = diag(−ρ, p, p, p) (2.82)

and note that the trace is equal to

T ≡ T µµ = −ρ+ 3p . (2.83)

For letter purposes it is also instructive to consider the zero component of the con-

servation of the stress energy tensor

0 = ∇µT
µ
0 = ∂µT

µ
0 + Γµµ0T

0
0 − Γλµ0T

µ
λ =

= −∂0ρ− 3
ȧ

a
(ρ+ p) .

(2.84)

To proceed it is necessary to choose the equation of state, the relation between ρ and

p. It appears that all perfect fluids relevant to cosmology obey the simple equation

of state

p = wρ , (2.85)

where w is constant independent on time. Then the conservation of energy becomes

ρ̇

ρ
= −3(1 + w)

ȧ

a
(2.86)

that can be integrated and we obtain

ρ = a−3(1+w) . (2.87)

The most interesting examples of cosmological are dust and radiation. Dust is

characterized with w = 0. Examples include ordinary stars and galaxies where the

pressure is negligible in comparison with the energy density. Dust is also known as

matter and Universes whose energy is mostly due to dust are known as matter-

dominated. The energy density in matter falls as

ρ ∼ a−3 (2.88)

that can be interpreted as the decrease in the number density of particles as the

Universe expands. (For dust the energy density is dominated by the rest energy that

is proportional to the number density.)
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The second form of the fluid, Radiation may be used to describe either actual

electromagnetic radiation, or massive particles moving at relative velocities suffi-

ciently close to the speed of light so that they become indistinguishable from pho-

tons. The stress energy tensor of the radiation can be expressed in terms of the field

strength as

T µν =
1

4π

(
F µλF ν

λ −
1

4
gµνF λσFλσ

)
. (2.89)

Then the trace of this stress energy tensor is

T = T µνgνµ =
1

4π

[
F µλFµλ −

(4)

4
F λσFλσ

]
= 0 (2.90)

Since this should be also equal to (2.83) we get that

p =
1

3
ρ . (2.91)

An Universe in which most of the energy density is in the form of radiation is known

as radiation-dominated. The energy density in radiation then falls off as

ρ ∼ a−4 . (2.92)

This result implies that the energy density of radiation falls of faster than that in

matter. It is believed that today the energy density of the Universe is dominated by

matter with ρmat/ρrad ∼ 106. However in the past the Universe was much smaller

and the energy density in radiation would have dominated at very early times.

There is also one important form of energy density that is sometimes considered,

namely that of the vacuum itself. Introducing energy into the vacuum is equivalent

to introducing a cosmological constant so that Einstein’s equations with cosmological

constant are

Eµν = 8πGTµν − Λgµν (2.93)

that is clearly the same form as the equations with no cosmological constant but an

energy-momentum tensor for the vacuum

T vacµν = − Λ

8πG
gµν . (2.94)

This has form of the perfect fluid with

ρ = −p =
Λ

8πG
(2.95)

that implies that w = −1 and from (2.87) we see that the energy density is inde-

pendent on a. Since the energy density of matter and the radiation decreases as the

Universe expands, if there is nonzero vacuum energy it tends to wind over the long

term. If this happens we say that the Universe became vacuum-dominated.
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Now we turn to the Einstein’s equations. Recall that they can be written in the

form

Rµν = 8πG
(
Tµν −

1

2
gµνT

)
. (2.96)

The µν = 00 components is

−3
ä

a
= 4πG(ρ+ 3p) , (2.97)

and the µν = ij equations give

ä

a
+ 2

(
ȧ

a

)2

+ 2
k

a2
= 4πG(ρ− p) . (2.98)

Using (2.97) we simplify (2.98) as(
ȧ

a

)2

=
8πG

3
ρ− k

a2
. (2.99)

(2.99) together with (2.97) are known as Friedmann equations. More precisely, the

equation (2.99) contains a term proportional to the energy density and a pure GR

term (which we cannot obtain in a Newtonian derivation) proportional to spatial

curvature. On the other hand the equation (2.97) is about of acceleration in the

universe expansion. In order to solve this equation we should know the equation of

state of the matter p = p(ρ).

Now we introduce some terminology considering cosmological parameters. The

rate of expansion is characterized by the Hubble parameter

H =
ȧ

a
. (2.100)

The value of the Hubble parameter at present epoch is the Hubble constant, H0.

There is also the deceleration parameter

q = −aä
ȧ2

(2.101)

that measures the rate of change of the rate of expanding. Another useful parameter

is the density parameter

Ω =
8πG

3H2
ρ =

ρ

ρcrit
, (2.102)

where the critical density is defined by

ρcrit =
3H2

8πG
. (2.103)

This quantity, that is generally time dependent, is called critical density because the

Friedmann equation (2.99) can be written as

Ω− 1 =
k

H2a2
, (2.104)
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where generally H is time dependent. The sign of k is therefore determined by

whether Ω is greater than, equal to, or less than one. In other words, we have

ρ < ρcrit ⇒ Ω < 1⇒ k = −1→ open ,

ρ = ρcrit ⇒ Ω = 1⇒ k = 0→ flat ,

ρ > ρcrit ⇒ Ω > 1⇒ k = 1→ closed .

(2.105)

It is useful to know the qualitative behavior of various possibilities of the solutions of

the Friedman equations. Let us for the moment set Λ = 0 and consider the behavior

of Universe filled with fluids of positive energy ρ > 0 and nonnegative pressure p > 0.

Then (2.97) implies that ä < 0 . Since we know from observation that the Universe

is expanding (ȧ > 0) this means that the Universe is decelerating which could be

intuitively expected since the gravitation attraction of the matter in the Universe

works against the expanding. The fact that the Universe is decelerating means

that it must have been expanding even faster in the past; if we trace the evolution

backward in time, we reach the singularity at a = 0. Notice that if ä were exactly

zero, a(t) would be straight line a(t) = Ct (we have chosen the integration constant

that at t = 0, a(0) = 0 and hence H(t) = ȧ
a

= 1
t

so that H−1
0 would determine the

age of the Universe.

The singularity at a = 0 is known as Big Bang. It represents the creation of

Universe from a singular space, not explosion of matter into a pre-existing space-

time. Since for a → 0 the energy density becomes arbitrary high we do not expect

classical general relativity to give a correct description of nature in this regime.

The future evolution is different for different k. For the open and flat cases

k = −1, 0 the (2.99) implies

ȧ2 =
8πG

3
ρa2 + |k| . (2.106)

Since the right hand side is strictly positive so ȧ never passes through zero. Since

ȧ > 0 today it follows that ȧ > 0 for all time. Thus open and flat Universes expand

forever-they are temporally and spatially open. It is however important to keep in

mind that this works on the presumption of nonzero positive energy density. Negative

energy density Universes do not have to expand forever, even if they are open.

The question is how fast these Universes keep expanding? Let us now consider

the quantity ρa3 (recall that this is constant in matter dominated Universe). Using

the conservation of energy (2.84) we get

d

dt
(a3ρ) = a3(3

ȧ

a
ρ+ ρ̇) = −3pa2ȧ

(2.107)
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that implies that
d

dt
(a3ρ) < 0 . (2.108)

This result implies that a2ρ must go to zero in an ever-expanding Universe where

a→∞ 2 Then (2.106) implies that

ȧ2 → |k| . (2.109)

(We must stress that it holds for k = −1, 0. Thus for k = −1 an expanding ap-

proaches the limiting value ȧ→ 1 while for k = 0 the Universe keeps expanding but

more and more slowly.

For the closed Universe (k = 1) (2.99) implies

ȧ2 =
8πG

3
ρa2 − 1 . (2.110)

It is clear that the argument that ρa2 → 0 as a → ∞ still holds. In this case the

right hand side of the upper equation becomes negative which clearly cannot happen.

Therefore the Universe does not expand indefinitely, a posses an upper bound amax.

As a approaches amax the equation (2.97) implies

ä = −4πG

3
(ρ+ 3p)amax < 0 (2.111)

and hence ä is finite and negative at this point, so a reaches amax and starts de-

creasing. Since ä < 0 it will inevitably continue to contract to zero- the Big Crunch.

Thus, the closed Universe (on presumption of positive ρ and non negative p) is closed

in time as well as space.

We will now list some of the exact solutions corresponding to only one type of

energy density. For dust-only Universe (p = 0) it is convenient to define a devel-

opment angle φ(t), rather than using t as a parameter directly. The solutions are

then, for open Universes;

a =
C

2
(coshφ− 1) , t =

C

2
(sinhφ− φ) , k = −1 , (2.112)

for flat Universes

a =
(

9C

4

)1/3

t2/3 , k = 0 , (2.113)

and for closed Universes

a =
C

2
(1− cosφ) , t =

C

2
(φ− sinφ) , k = +1 , (2.114)

2For example, when a(t) ∼ t we should have ρ ∼ t−4 at least and hence a2ρ ∼ t−2 → 0 for

t→∞.
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where we have defined

C =
8πG

3
ρa3 = constant . (2.115)

For Universes filled with nothing but radiation, p = 1
3
ρ, we have once again open

Universes,

a =
√
C ′

(1 +
t√
C ′

)2

− 1

1/2

, k = −1 (2.116)

flat Universes,

a = (4C ′)1/4t1/2 , k = 0 (2.117)

and closed Universes,

a =
√
C ′

1−
(

1− t√
C ′

)2
1/2

, k = +1 (2.118)

where we have defined

C ′ =
8πG

3
ρa4 = constant . (2.119)

Let us now consider the case of nonzero cosmological constant. We start with

Λ < 0. In this case Ω is negative and we get that k = −1. The solution in this case

is

a =

√
−3

Λ
sin

√−Λ

3
t

 . (2.120)

There is also an open (k = −1) solution for Λ > 0 given by

a =

√
3

Λ
sinh

√Λ

3
t

 . (2.121)

A flat vacuum-dominated Universe must have Λ > 0 and the solution is

a ∼ exp

±
√

Λ

3
t

 (2.122)

while the closed Universe must also have Λ > 0 and satisfies

a =

√
3

Λ
cosh

√Λ

3
t

 . (2.123)

These solutions are a little misleading. In fact the three solutions for Λ > 0 -

(2.121),(2.122),(2.123)-all represent the same space-time, just in different coordi-

nates. This space-time, known as de Sitter space is maximally symmetric as a

space-time. The Λ < 0 solution is also maximally symmetric and is known as anti-

de Sitter space
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Before we conclude this section we spend some time with the discussion of the

situation when the matter sector in Universe constitutes more general form of matter.

For example, we can presume that all components of the matter are present. Then

the total density parameter takes the form

Ω =
∑
i

Ωi (2.124)

and the Friedman equation can be written as

Ω− 1 =
k

H2a2
. (2.125)

As in the particular previous example we obtain that the sign of k is determined

whether Ω is greater than, equal to, or less than one. Explicitly, we have

ρ < ρcrit ⇒ Ω < 1→ k = −1 , open ,

ρ = ρcrit ⇒ Ω = 1→ k = 0 , flat ,

ρ > ρcrit ⇒ Ω > 1→ k = 1 , closed .

(2.126)

Since ρi ∼ a−ni we have
ρi
ρj

=
Ωi

Ωj

= a−(ni−nj) (2.127)

so that relative amount of energy in different components changes as the Universe

evolves.

2.4 Motion of the probe in the FRW Universe

In order to understand properties of given background it is common strategy to study

the dynamics of the probe in given background. Let us then consider the motion of

particle in the FRW Universe.

Let us consider the action for the massive particle

S = −
∫
dλ
√
−ĝµνuµuν , uµ =

dxµ

dλ
. (2.128)

where λ is parameter that labels the world-line. We introduce einbain e(λ) so that

the action takes the form

S =
1

2

∫
dλ[

1

ε
ĝµνu

µuν −m2ε] , (2.129)

To see the equivalence between these two formulations we perform the variation with

respect to ε that gives

− 1

ε2
ĝµνu

µuν −m2 = 0⇒ ε =
1

m

√
−ĝµνuµuν (2.130)
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that inserting back to the action we obtain the original action. Further, the equation

of motion with respect to xµ gives

−2
d

dλ
(
1

ε
ĝµνu

ν) +
1

ε
∂µĝρσu

ρuσ = 0 (2.131)

It is important to stress that the action is invariant under λ′ = f(λ) so that dλ′ =
df
dλ
dλ. We can fix the gauge by imposing ε = 1

m
so that we obtain on-shell condition

ĝµνu
µuν = −1 (2.132)

Note that this relation allows us to write (when ĝ0u = 0)

−1 = (−ĝ00 + ĝij
dxi

dt

dxj

dt
)(
dt

dλ
)2 ⇒ dt

dλ
=

1√
ĝ00 − ĝijvivj

, vi ≡ dxi

dt

(2.133)

Then the equation of motion for xµ takes the form

duµ

dλ
+ ĝµν∂ρĝνσu

σuρ − 1

2
ĝµν∂ν ĝρσu

ρuσ =⇒

duµ

dλ
+

1

2
ĝµν(∂ρĝνσ + ∂σĝνρ −

1

2
∂ν ĝρσ)uρuσ = 0⇒

d2xµ

d2λ
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0 .

(2.134)

It is also interesting to insert the solution of the equation of motion ε into the action

so that it takes the form

S =
1

2

∫
dλ[

1

ε
ĝµνu

µuν −m2ε] =

=
m

2

∫
dt
√
ĝ00 − ĝijvivj[−(ĝ00 − ĝijvivj)(

dt

dλ
)2 − 1] =

= −m
∫
dt
√
ĝ00 − ĝijvivj .

(2.135)

It is also interesting to analyse the equation of motion that follows from the original

action

S = −m
∫
dλ
√
−gMN∂λXM∂λXN (2.136)

The equations of motion have the form

− ∂KgMNẊ
MẊN

2
√
−gMNẊMẊN

+ ∂λ

 gKNẊ
N√

−gMNẊMẊN

 = 0 . (2.137)
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This is equation of motion for X. Let us denote the variation of the action with

respect to X as δS
δX

. If we multiply given expression with ẊK we obtain

δS

δXK
ẊK = − ∂λgMNẊ

MẊN

2
√
−gMNẊMẊN

+ ∂λ(
1√

−gMNẊMẊN
)ẊKgKMẊ

N +

+
1√

−gMNẊMẊN
ẊK∂λgKMẊ

N +
1√

−gMNẊMẊN
ẊKgKMẌ

N = 0

(2.138)

Note that it holds as identity and not as a consequence of the equations of motion.

Let us now consider the flat FRW background

ds2 = −dt2 + a2(t)δijdx
idxj . (2.139)

so that the action takes the form

S = −m
∫
dt
√

1− a2δijẋiẋj .

(2.140)

It is interesting to determine the Hamiltonian formulation of this system

pi =
δL

δẋi
= a2m

δijẋ
j√

1− a2δijẋiẋj
. (2.141)

Then we find

H = piẋ
i − L =

ma2√
1− a2δijẋiẋj

= a2

√
1

a2
piδijpj +m2

(2.142)

using

a2ẋiδijẋ
j =

piδ
ijpj

m2a2 + piδijpj
(2.143)

Now the equation of motion takes the form

ẋi =
{
xi, H

}
=

δijpj√
a−2piδijpj +m2

,

ṗi = {pi, H} = 0⇒ pi = ki .

(2.144)

We see that the momentum pi is constant. On the other hand the norm of state

slows since the norm is given as pig
ijpj = 1

a2kiδ
ijkj.
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On the other hand let us introduce following variable

X i = axi , ẋi =
1

a
(Ẋ i −HX i) (2.145)

Using these variables we find the action in the form

S = −m
∫
dt
√

1− (Ẋ i −HX i)δij(Ẋj −HXj) . (2.146)

The meaning of the variables X i can be found when we take the non-relativistic limit

where we replace
√

1− A = 1− 1
2
A2 so that the action

Snonrel = −m
∫
dt+

∫
dt
m

2
(Ẋ i −HX i)δij(Ẋ

j −HXj) =

=
∫
dt
m

2
Ẋ iẊi + . . . ,

(2.147)

where we neglected the remaining terms. Comparing this expression with the stan-

dard form of the non-relativistic Lagrangian we can interpret X i = a(t)xi as the

physical variable even if we mean that both variables are physical.

Now from (2.146) we determine the momenta conjugate to X i

Pi =
δL

δẊ i
= m

δij(Ẋ
j −HXj)√
(. . .)

(2.148)

and hence the Hamiltonian takes the form

H = Ẋ iPi − L =
m√
(. . .)

+ PiX
iH =

√
m2 + PiP i + PiX

iH

(2.149)

Using this Hamiltonian we derive the equation of motion

Ẋ i =
{
X i, H

}
=

P i

√
m2 + PiP i

+X iH ,

Ṗi = {Pi, H} = −PiH
(2.150)

The last equation can be integrated as

dPi = −Pi
da

a
⇒ lnPi = − ln a+ lnKi ⇒ Pi =

Ki

a
. (2.151)

We see that the ”physical” momentum Pi is red shifted as the universe expands. Note

that we can also find the time dependence of X i by integrating the first equation

since it takes generally the dorm

Ẋ i = F i(t) +G(t)X i (2.152)
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so that we search the solution of the homogeneous equation

Ẋ i = G(t)X i ⇒ X i = Ci exp(
∫
dtG(t)) (2.153)

Note that we have∫
dtG(t) =

∫ da

dt

1

a
dt =

∫ da

a
= ln a⇒ e

∫
dtG(t) = eln a = a . (2.154)

Then we say that Ci depends on time so we obtain that it has to obey the equation

dCi

dt
= e−

∫
dt′G(t′)F (t)⇒ dCi

dt
=

Ki

a
√
m2a2 +KiKi

(2.155)

that can be in principle integrated if we know the time dependence of a. There is a

particulary simple solution corresponding to the particle with zero physical momen-

tum when Ki = 0. From upper equation we immediately find that Ci = Ci = const

and hence

X i = Cia (2.156)

that is an expected result. The physical interpretation of this result is that particle

slows down with respect to comoving coordinates as the Universe expands (since

a → ∞). In fact this is an actual slowing down, in the sense that a gas of particles

with initially high relative velocities will cool down as the Universe expands.

Very interesting is the case of the particle with null mass which is photon. In

principle we could use the the action for the massive particle written without the

square root and then take the limit m→ 0 however we will be more conservative and

consider the standard treatment of the electromagnetic wave in curved background.

We consider the action of free electromagnetic field

S = −1

4

∫
d4x
√
−ggµρgνσFµνFνσ , Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ (2.157)

Consider now the propagation of a photon in the homogeneous isotropic Universe.

Since the photon wavelength is small compared to the spatial curvature radius even

if the Universe is open or closed. Then we can consider the metric that is spatially

flat

ds2 = −dt2 + a2(t)δijdx
idxj . (2.158)

Let us introduce conformal time η instead of t that is defined as

dt = adη (2.159)

or equivalently

η =
∫ dt

a(t)
. (2.160)
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This result can be generally integrated so that we have η = η(t) and we presume

that this relation can be inverted so that t = t(η) and consequently a = a(η). Now

the metric has the form

ds2 = a2(η)[−dη2 + δijdx
idxj] (2.161)

and we see that the metric element in FRW spacetime is conformally flat in the sense

that

gµν = a2(η)ηµν , (2.162)

where the Minkowski metric is spanned by coordinates (η, xi). Then we clearly have

gµν = a−2ηµν ,
√
g = a4 (2.163)

and we find that in η, xi coordinates the action of the electromagnetic field has the

form

S = −1

4

∫
d4xηµρηνσFµρFνσ . (2.164)

Now it is clear that the solution of the equation of motion for the free electromagnetic

field in the Universe is given as the superposition of the plane waves

A(α)
µ = e(α)

µ eikη−ikx (2.165)

where k is constant vector, |k| = k and e(α)
µ is the standard polarization vector of

photons with α = 1, 2. Note that k is not the physical frequency as follows from

following arguments. The quantity4x = 2π
k

is the coordinate wavelength of a photon

while the physical wavelength at time t is

λ(t) = a(t)4x = 2π
a(t)

k
. (2.166)

In the same way we define period 4η = 2π
k

of electromagnetic wave in conformal

time while the period of the physical time is

T = a(t)4η = 2π
a(t)

k
. (2.167)

Then we see that the frequency is equal to

ω(t) =
2π

T
=

k

a(t)
(2.168)

and since we know that the frequency is equal to the magnitude of the physical

momentum of photon we obtain that the physical momentum depends on time as in

case of the massive particle namely

p =
k

a(t)
(2.169)
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We see that in the expanding universe the scale factor a(t) is growing and hence

the physical wavelength grows. On the other hand the physical momentum is de-

creasing function of time. The phenomena when the wavelength is growing during

the expansion of the Universe is named as the redshift. Explicitly, if the photon was

emitted at time ti with physical wave length λi in the physical process as for example

when the electron in the excited state in the atom drops to the ground state which

is certainly physical process. Now we know that the state propagates freely as in

(2.165) and then it is again detected in time t0 where t0 we means the present time

in the reversed physical process when its physical wave length now is

λ(t0) = a(t0)
2π

k
(2.170)

Now expressing 2π
k

using the physical wave length at time of emission we find the

famous relation

λ(t0) =
a(t0)

a(ti)
λi ≡ λi(1 + z(ti)) . (2.171)

The quantity

z(ti) =
a(t0)

a(ti)
− 1 (2.172)

is called redshift. The earlier the object emits the photon then this photon has to

travel longer and consequently a(ti) is smaller and hence object at larger distances

have the larger redshifts.

Note that these formulas are valid in general for all z. Let us now consider

objects that are not in large distance. Then the difference t − t0 is not very large

and we can expand

a(ti) = a(t0)− ȧ(t0)(t0 − ti) (2.173)

Using the present value of the Hubble parameter H0 = ȧ(t0)
a(t0)
≡ ȧ0

a0
we can write

a(ti) = a0[1−H0(t0 − ti)] (2.174)

so that to the linear order we find following expression for the redshift

z(ti) =
1

1−H0(t0 − ti)
− 1 ' H0(t0 − ti) . (2.175)

Finally the travel time is equal to

0 = −dt2 + a(t)2dr2 = −dt2 + (a0 − ȧ0(t0 − t))2dr2 ≈
−dt2 + a2

0dr
2 ⇒ (t0 − t) = a0(ri − r0) ≡ R

(2.176)

where R is the physical distance of the object from the our observer. Inserting this

expression into (2.175) we derive famous Hubble law

z = H0R , z � 1 . (2.177)
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The redshift is something that can be measured, we know the rest-frame wavelengths

of various spectral lines in the radiation of distant galaxies, so that we can determine

how much their wavelengths have changed along the path from time ti when they

were emitted to time t0 when they were observed. We therefore know the ratio of

the scale factors at these two times however we do not know the times themselves.

2.5 Horizons

One of the most crucial concepts of the FRW Universe is the existence of horizons.

Suppose a emitter, e sends a light signal to an observer o, who is at r = 0.

Restricting to the radial geodetic (that means that dφ = dθ = 0 we obtain from the

vanishing of the metric elements the equation for null geodetics in the form

ds2 = 0 = a2(η)(−dη2 + dr2)⇒ η = ±r + r0 , (2.178)

where η is conformal time. Let us presume that the light hits the observer at time η0

that is larger that ηe where ηe is time when this signal was emitted. Since for η = ηo
we have r = 0 we get ηo = r0 and consequently η − ηo = ±r. Since also for ηe this

equation implies

ηo − ηe = ∓re
and we obtain that we should choose the positive sign in front of r since ηo − ηe > 0

and r is positive. Finally we get the relation

ηo − ηe = re . (2.179)

Let us now presume that ηe is bounded from below by η̃e; for example η̃e might

represent the Big Bang singularity. Then there exist a maximum distance to which

the observer can see, known as a particle horizon distance given by

rph(ηo) = ηo − η̃e (2.180)

Similarly, suppose that ηo is bounded from above by η̃o. Then there exists a limit

to space-time events which can be influenced by the emitter. This limit is known as

the event horizon distance given by

reh(ηo) = η̃o − ηe (2.181)

This horizon distance may be converted to proper horizon distances at cosmic time

t. For example, we have an emitter at time η̃e at re = 0. Since dη = dt
a(t)

we obtain

η − η̃e =
∫ t

te

dt′

a(t′)
(2.182)

using also the fact that the proper distance at time t is given by multiplication with

a(t) we get the proper horizon distance as

Dh = a(t)
∫ t

te

dt′

a(t′)
. (2.183)
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2.6 More about Proper and Comoving Distances

In this section we discuss in more details two important definitions in cosmology,

which are comoving and proper distances.

Let us start with the definition of comoving coordinates. As we defined previ-

ously comoving coordinated are very natural in cosmology and simply corresponds

to coordinate system where observers, that are static, see Universe as isotropic. It

is important to stress that this isotropy, particularly isotropy of CMB, defines spe-

cial local frame of reference known as comoving frame. On the other hand any

observer, that moves with relative velocity with respect to comoving frame see dif-

ferent regions of the sky either blue or red shifted. Finally velocity of observer with

respect to local comoving frame is known as peculiar velocity. In fact, galaxies

and other clusters of matter generally move with respect to comoving frame however

their peculiar velocities are very small so that they are nearly comoving.

Another important notion is comoving time coordinate is the elapsed time

since the Big Bang and it is proper time of comoving observer. This is the measure of

cosmological time. In summary for two comoving galaxies their comoving distance

remain constant for all times.

Proper distance To begin with let us again write FRW metric when we restrict

ourselves to the radial coordinate only,

ds2 = −dt2 + a2(t)dr2 . (2.184)

Then we define Proper distance D, at time t between an observer at the origin and a

distant galaxy as the distance along the surface of constant t, so that dt = 0. Then,

using (2.184) can be easily integrated and we get

D(t) = a(t)R , (2.185)

where we again stress that this is calculated at the constant time t. Performing

derivative of this distance with respect to t we get recession velocity

vrec(t, z) ≡ Ḋ(t) = ȧ(t)R(z) =
ȧ(t)

a(t)
a(t)R = H(t)D(t) . (2.186)

where R(z) is fixed comoving distance of galaxy observed at redshift z. In more

details, we define Comoving distance with the help of traveling photons that obey

ds = 0. Then the comoving distance between observer at the origin and the galaxy

at the redshift at z(t) we set ds = 0 and integrate to get

dr =
dt

a
⇒ R(tem) =

∫ tob

tem

dt′

a(t′)
(2.187)

However we can parametrize this distance using observable quantity which is red-

shifht that is defined as the ration of the scale factor at the time of observation tobs
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to the scale factor at the time of emision t

a(tobs)

a(t)
= 1 + z (2.188)

Diferenting this relation with respect to t we get

dz

dt
= −a(tobs)

a2(t)
ȧ(t)⇒ dz

a(tobs)H(z)
= − dt

a(t)
, (2.189)

where we parameterize H using z instead of t. Once again, H(z) is the Hubble

constant at the time of the object with redshifht z. Using this relation we finally get

comoving distance of the object at the redshift z in the form

R(z) = −
∫ 0

z

dz′

a(tobr)H(z′)
=
∫ z

0

dz′

a(tobs)H(z′)
. (2.190)

In other words we see direct relation between comoving distance and redshifht.

Let us return to the expression D(t) = a(t)R and presume that now R depends

on time. Then performing derivation with respect to t we get

Ḋ = ȧR + aṘ = H(t)D(t) + a(t)Ṙ (2.191)

that can be interpreted as

vtot = vrec + vpec , (2.192)

where vpec is pecular velocity defined above.

3. Our Universe Today

In this section we will discuss the remarkable properties that have been discovered

in past few years. Most remarkable among them is the fact that the universe is dom-

inated by a uniformly- distributed and slowly varying source of ”dark energy” which

may be a vacuum energy (cosmological constant), a dynamical field or something

completely different.

3.1 Matter

The inventory of constituencies comprising actual Universe is complicated by the fact

that they are not at all equally visible. In the years before we knew the dark energy

was an important constituent of the Universe and before observations of galaxy and

distributions and CMB anisotrophies observational cosmology measured two num-

bers: The Hubble constant H0 and the matter density parameter ΩM . Measuring the

extragalactic distances is very difficult, but most current measurement of the Hubble

constant performed Planck experiment in 2013 gives the value of the cosmological

constant to be equal to

H0 = 67.80± 0.77 km/sec/Mpc , (3.1)
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where

1Mpc = 106 parsec = 3× 1024cm . (3.2)

We see that the Hubble parameter in fact has the dimension [t−1] so that it has the

value

H−1
0 = h−1 · 3 · 107s = h−1 · 1010yrs ≈ 1.4 · 1010yrs , (3.3)

where h is a dimensionless parameter

h = 0.678 . (3.4)

In particle physics units (h̄ = c = 1) this is equal to

H0 ∼ 10−33eV . (3.5)

It is convenient to express the Hubble constant as

H0 = 100 h km/sec/Mpc . (3.6)

It turns out that the scale H−1
0 gives order of magnitude of the age of the Universe

and the distance scale H−1
0 is roughly the size of the observable part equal to

H−1
0 ≈ h−1 · 3000Mpc ≈ 4.3 · 103Mpc . (3.7)

Note that since ρi = 3H2
0 Ωi/8πG measurement of ρi is often expressed as mea-

surement of Ωih
2. The Hubble constant provides the rough measure of the scale of

the Universe since in the matter or radiation dominated Universe is t0 ∼ H−1
0 .

3.1.1 Hubble Tension

As we know, Universe is expanding and in fact, its expansion is accelerating. Gener-

ally the rate of expansion is given by function H(z) where the Hubble factor H0 gives

the rate at which the scale factor a(z) in a Friedmann equation is changing today, cor-

responding to z = 0. There are several methods how we can find value of H0 but we

are not going into details. The determination of H0 from the cosmic microwave back-

ground corresponds to the early time z = 1000 yields H0 = 67.36±0.54 kms−1Mpc−1

. On the other hand measurements based on late-time observables z ≤ 10, for exam-

ple, on type Ia supernovova, give the value H0 = 73, 3± 0.8 kms−1Mpc−1. This dis-

agreement between high-redshift and low-redshift measurements is known as Hubble

tension which was discovered rather recently. Indeed, this tension has existed since

the

first release of results from Planck in 2013 and has grown in significance with

the improvement of the data. The resolution of this tension is not known and it is

remarkable that there are about 102 theories that want to explain Hubble tension

that however require untested modifications of the standard model of particle physics
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or general relativity. On the other hand there is more conservative possibility that

is based on the idea that the treatment of systematic errors is inadequate.

For years, determinations of ΩM based on dynamics of galaxies and clusters have

leaded to values of ΩM between 0.1 and 0.4. Alteratively, the determination of ΩM is

the same as the determination of the baryons. Recent measurements suggest that

baryons contribute to Ω as

ΩB = 0.05 . (3.8)

In other words baryons constitute rather small fraction of the present energy density

in the Universe. It is also important to stress that the most of the baryons in our

Universe are dark: direct measurements of th mass density of stars give an estimate

Ωstars ∼ 0.005 (3.9)

that is about an order of magnitude smaller than ΩB. The fact that most of the

baryons are dark follows from the dynamics of individual galaxies implies that there

is even matter there. The implied existence this celebrated dark matter is confirmed

by applying the viral theorem to clusters of galaxies, by looking at the temperature

profiles of clusters, by ”weighing” clusters by gravitational lensing and by large-scale

motions of clusters between galaxies. On the other hand there is nothing dramatic

about this observation: baryons may hide in dust and neutral gas clouds, brown

dwarfs etc.

The next form of matter are Photons. They however contribute even smaller

fraction

Ωγ ≈ 6 · 10−4 . (3.10)

From electric neutrality the number density of electrons is about the same 3 as that

of baryons, but then due to their very small mass their contribution to the total mass

fraction is negligible.

The remaining known stable particles are neutrinos. As we will sketch bellow

their number density is calculable in Hot Big Ban theory and these calculations

are confirmed by Big Bang Nucleosynthesis. The number density of each type of

neutrinos is

nνa = 115
1

cm3
, (3.11)

where νa = νe, νµ, ντ . Direct limit on the mass of electron neutrino mνe < 2.6 eV

together with the observations of neutrino oscillations suggests that every type of

neutrino has mass smaller than 2.6 eV . Then the estimation of the energy density

of neutrinos is

ρν,total =
∑
α

mναnνα < 8 · 10−7GeV

cm3
(3.12)

3There are also neutrons whose number is somewhat smaller than the number of protons.

37



that implies

Ων,total < 0.16 . (3.13)

However this estimate does not make use any cosmological date. In fact cosmological

observations give stronger bound

Ων,total < 0.01 . (3.14)

In terms of the neutrino masses this bound reads∑
mνa < 0.42eV (3.15)

so that every neutrino has to be lighter than 0.14eV . On the other hand atmospheric

neutrino data and further experiments tell that the mass of at least one neutrino must

be larger than 0.02eV . These results suggest that there is window for measuring

neutrino masses by cosmological observations.

We see that most of the energy density in the present Universe is not in the

form of known particles, most energy in the present Universe has to be in something

“unknown”. In fact essentially every known particle in he Standard Model of particle

physics has been ruled out as a candidate for this “unknown” matter. Moreover, there

is a strong evidence that this “something unknown” has two components: clustered

dark energy and unclustered dark energy.

It is believed that Clustered dark matter consists of new stable massive par-

ticles. These make clumps of energy density that encounter for much of the mass

of galaxies and most of the mass of galactic clusters. There are number of ways of

estimating the contribution of non-baryonic dark matter into the total density of the

Universe:

• Composition of the Universe affects the angular anisotropy of cosmic microwave

background (CMB). The present measurements of the CMB anisotropy enable

to estimate the total mass density of dark matter.

• The density of non-baryonic dark matter is crucial for structure formation of

the Universe. If we compare the results of numerical simulations of structure

formation with observational data gives reliable estimate of the mass density

of non-baryonic clustered dark matter.

One of the few things we know about the dark matter is that it must be “cold”-

not only is it non-relativistic today, but it must have been that way for a very long

time. The other thing we know about cold dark matter (CDM) is that it should

interact very weakly with ordinary matter, so as to have escaped detection thus far.

In summary the non-baryonic cold dark matter has

ΩCDM ≈ 0.25 . (3.16)
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There is a direct evidence that dark matter exists in the largest gravitationally bound

objects-clusters of galaxies. There are various methods to determine the gravitating

mass of a cluster and even mass distribution in a cluster, which give consistent results,

for example:

• We measure velocities of galaxies in galactic clusters and make use of the grav-

itational virial theorem

Kinetic energy of a gravity= 1
2

Potential energy .

In this way we obtain the gravitational potential and thus the distribution of

the total mass in a cluster.

• The second example of the measurement of masses of clusters use the notion

of intra-cluster gas. Its temperature that is determined from X−ray measure-

ments is also related to the gravitational potential through the virial theorem.

• The third example of measurement is based on observation of gravitational

lensing of background galaxies by clusters.

Finally, dark matter exists also in galaxies. Its distribution is measured by the

observations of rotation velocities of distant stars and gas clouds around a galaxy.

At present there are many hypotheses considering candidates for this form of

dark matter. One such an idea is that the natural candidates are particles which

participate in weak interactions that of course needs more detailed justification.

Unclustered dark energy

Non-baryonic clustered dark matter is not the whole story. If we use the above

estimates we obtain an estimate for the energy density of all particles

Ωγ + ΩB + Ωµtotal + ΩCDM ≈ 0.3 . (3.17)

Since the observation that ΩT ≈ 1 implies that 70 percent of the energy density is

unclustered.

In fact this result nicely fits recent observations. Indeed, it can be shown that

neither relativistic nor non-relativistic matter can lead to the accelerated expansion

of the Universe 4. In other words the accelerated expansion requires energy stored

in something dramatically different from conventional particles and it has to have

negative pressure. In fact the analysis of the entire set of cosmological date in terms

of dark energy with phenomenological equation of state

p = wρ ,w = const (3.18)

4We will discuss this problem in the next subsection.
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gives

ΩΛ = 0.72± 0.02 (3.19)

(here subscript Λ refers to dark energy) and

−1.2 < w < −0.8 . (3.20)

It is worth noting that the vacuum value, w = −1 is right in the middle of the allowed

region that corresponds to a vacuum energy density

ρΛ ∼ (10−3eV )4 . (3.21)

Given the significance of these results it is natural to ask what level of confidence we

should have in them. There are potential sources of systematic error and these were

discussed in the original papers [1, 2]. On the other hand the recent measurements

of the cosmic microwave background confirmed the picture outlined above with the

matter density and nonzero cosmological constant.

In summary, the composition of the present Universe is fairly complex. It is chal-

lenging for future physics that most of the energy density comes from species which

particle physicists are unfamiliar with: vacuum or vacuum-like dark energy and non-

baryonic clumped dark matter. This poses serious problems for both fundamental

physics and cosmology:

• What are the particles of non-baryonic dark matter?

Currently popular option is the lightest supersymmetric particle that is stable

in many supersymmetric extensions of the Standard model. Of course there

are many other options, such as axions, gravitinos and so on. In any case

experimental discovery of the dark matter particle would be great achievement

of both particle physics and cosmology.

• Why there are baryons and no anti-baryons in our Universe?

Alliteratively,what is the origin of matter-antimatter asymmetry of the Uni-

verse? We will discuss this issue later and here we notice only that the solution

of this problem is based on extension of the Standard Model.

• Why the mass density of the non-baryonic dark matter is so similar

to the mass density of baryons?

Both these densities scale as a−3(t) so their ratio stays constant during most

of the evolution of the Universe. Then it is possible that mechanism which

create baryons and dark matter particles in the early Universe are related to

each other so that the approximate equality of the mass densities is not a

mere coincidence. On the other hand it is difficult to construct corresponding

particle model.
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• What is the origin of dark energy? If this is vacuum,why vacuum

has non-zero energy density, which, however, is very small by particle

physics standard?

This is one of the most fundamental problems of the microscopic physics. In

natural units the vacuum density is about

ρc ∼ 10−46GeV 4 . (3.22)

On the other hand we would expect on the basis of the dimensional grounds that

the vacuum energy takes value 1GeV 4 (QCD-scale) or 108GeV 4 (electroweak

scale). It is great challenge to explain this enormous discrepancy but despite

numerous attempts it remains an open problem.

• Why now?

The energy density of non-relativistic dark matter and dark energy scales dif-

ferently: The non-relativistic dark matter scales as a−3(t) while the latter stays

approximately constant. Hence at early times (small a(t)) the energy density

of non-relativistic matter exceeded by far the dark energy density. Conversely,

future expansion of the Universe will be dominated by dark energy. On the

other hand these energy densities are of the same order of magnitude today.

The question is why is this the case? What is special about the present epoch

of the evolution of the Universe?

3.2 Supernovae and the Accelerating Universe

The first hint that the matter does not dominate the Universe came from the studies

of the Type Ia supernovae that are commonly recognized as ”standard candles”.

The special property of Supernovae Type Ia is that it has nearly uniform intrinsic

luminosity (absolute magnitude M ∼ −19.5). It turns out that they can be detected

at high redshifts (z ∼ 1) that allows in principle a good handle on cosmological

effects.

The importance of the supernovae measurements began to be clear from the

works of two independent groups that observed distant supernovae in order to mea-

sure cosmological parameters: the High-Z Supernova Team and the Supernova Cos-

mology Project. These groups obtained the dependence of the redshift on apparent

magnitude. These dates are much better fit by a universe dominated by a cosmolog-

ical constant than by a flat matter-dominated model. In fact, the supernova results

alone allow huge range of possible values of ΩM and ΩΛ. On the other hand if we

presume that we know something about one of these parameters the second one will

be tightly constrained and in particular they imply (3.19).

Since these observations are very fundamental one has to ask the question about

the level of confidence of them. In fact there are number of potential sources of
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systematic error that have been considered by these two research teams. In summary

these results are commonly accepted with their significant predictions considering the

vacuum energy of the Universe.

3.3 Dark Energy

It appears that the most difficult problem to solve is the origin of the dark energy. The

most disappointing possibility would be that the carrier of dark energy is vacuum:

The difficulties with this option will be discussed below.

Another option, more promising from the observational viewpoint is that dark

energy is due to some light field. In fact, there are good reasons to consider the this

dynamical dark matter as an alternative to cosmological constant. Firstly, the dy-

namical energy density can evolve slowly to zero so that we can solve the cosmological

constant problem .

The simplest possibility how to describe dark matter is the same kind of source

that is involved in models of inflation in the very early Universe; a scalar field φ

rolling slowly in a potential, something known as quintessence.

As an example, consider a homogeneous scalar field φ(t) in an expanding Uni-

verse. The action of the scalar field is

S = −
∫
d4x
√
−g

(
1

2
gµν∂µφ∂νφ+ V (φ)

)
, (3.23)

where V (φ) is potential. The equations of motions that follow from the action above

have the form

∂µ[
√
−ggµν∂νφ]−

√
−g δV

δφ
= 0 (3.24)

that for homogeneous field in an expanding Universe takes the form

φ̈+ 3Hφ̇+
dV

dφ
= 0 . (3.25)

In order to take the back-reaction of this scalar field on the Einstein equations into

account we have to determine the components of the stress energy tensor. In field

theory the stress energy tensor is defined as

Tµν = − 2√
−g

δSmatter
δgµν

(3.26)

that for the action of the form S = −
∫
d4x
√
−gL takes the form

Tµν = −gµνL+ 2
δL
δgµν

, (3.27)

where we have used
δ
√
−g

δgµν
= −1

2

√
−ggµν . (3.28)
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More precisely, for the action (3.23) the stress energy tensor takes the form

Tµν = ∂µφ∂νφ− gµν
[
1

2
gαβ(∇αφ)(∇βφ) + V (φ)

]
. (3.29)

Let us now restrict to the homogeneous case in which all quantities depend only on

cosmological time t and we also set k = 0. A homogeneous real scalar field behaves

as a perfect fluid with

ρ = T00 =
φ̇2

2
+ V (φ) . (3.30)

The other components of the stress energy tensor take the form

Tij = −gij(
1

2
gµν∂µφ∂νφ+ V ) + ∂iφ∂jφ . (3.31)

If we define pressure as

p =
1

3

3∑
i=1

Tii (3.32)

we get

p =
φ̇2

2
− V (φ) . (3.33)

Thus any state which is dominated by the potential energy of a scalar field will have

negative pressure.

If the slope of the potential V is quite flat we will have solutions for which φ is

nearly constant and only evolving very gradually with time, the energy density in

such a configuration is

ρφ ≈ V (φ) ≈ const. (3.34)

Thus we see that slowly-rolling scalar field is an appropriate candidate for dark energy

with the vacuum equation of state

pφ = −ρφ (3.35)

but the energy density ρφ slowly decreases in time. But this proposal raises several

questions: why the genuine vacuum energy density is zero (constant part of the

potential V0) so that it does not contribute to dark energy density? What is the

physics behind the field φ? Where does the small energy scale, V (φ) ∼ 10−46GeV

today, come from? All these questions remain unanswered 5.

In fact, it is important to stress that introducing dynamics opens up the possi-

bility to bring new problems that depend on form and specific kind of model being

considered. Most quintessence models feature scalar fields φ with masses of order

the current Hubble scale

mφ ∼ H0 ∼ 10−33eV . (3.36)

5For certain scalar potentials the fourth question can be explained.
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In quantum field theory the light scalar fields are unnatural, renormalization

effects tend to drive scalar masses up to the scale of new physics. It is then very

difficult to understand the origin of masses of such a small value when we know

that the scale of new physics is approximately 1011eV . Moreover, light scalar fields

give rise to long-range forces and time-dependent coupling constant that should be

observable. Therefore we have to invoke additional fine-tunings to explain why the

quintessence field has not already been experimentally detected.

Another possibility, how to explain today acceleration of Universe, is that there

is nothing special about the present era; rather acceleration is just something that

happens from time to time. This can be enforced by oscillating dark energy. In these

models the potential takes the form of a decaying exponential with small perturba-

tions

V (φ) = e−φ[1 + α cosφ] . (3.37)

Another models of quintessence are k-essence models that are based on presumption

that the scalar field φ has the form

K = f(φ)g(φ̇2) , (3.38)

where f, g are functions specified by the model. Unfortunately, in neither the k-

essence models nor the oscillating models do we have a compelling particle-physics

motivation for the chosen dynamics and in both cases the behavior still depends

sensitively on the precise form of parameters and interactions chosen.

Given the challenge of the problem it is worthwhile considering the possibility

that cosmic acceleration is not due to some kind of stuff but rather arise from new

gravitational physics.

As a first attempt, consider the simplest correction to the Einstein-Hilbert action,

S =
M2

p

2

∫
d4x
√
−g

(
R− µ4

R

)
+
∫
d4x
√
−gLM , (3.39)

where µ is a new parameter with units of [mass] and LM is the Lagrangian density

for matter. The equations arising from this action are complicated and it is difficult

to solve them. It is convenient to transform from the action used in (3.39) which

we call the matter frame to the Einstein frame where the gravitational Lagrangian

takes the Einstein-Hilbert form and the additional degrees of freedom (Ḧ and Ḣ) are

represented by a fictitious scalar field φ. In terms of the new metric gµν the theory is

that of a scalar field φ(x) minimally coupled to Einstein gravity and non-minimally

coupled to matter with the potential

V (φ) = µ2M2
p exp

−2

√
2

3

φ

Mp


√√√√√exp

√2

3

φ

Mp

− 1 . (3.40)
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Yet another option for the explaining the accelerated expansion of our Universe is

that gravity deviates from General Relativity at cosmological distances and time

scales so that the Friedmann equation is not valid at present epoch. Finally, any

modification of the Einstein-Hilbert action must, of course, be consistent with the

classic solar system tests of gravity theory as well as numerous other astrophysical

dynamical tests. In known Lorentz-Invariant examples of such a theory there either

exist ghosts (fields with negative energy unbounded from below) or gravity becomes

strongly coupled at quantum level. A consistent theory of this sort would probably

require “gravitational Higgs mechanism” and violation of Lorentz-invariance but even

this-rather exotic idea- has not yet lead to a consistent model that would be able to

explain the accelerated expansion of the Universe.

In summary, there are many models whose aim is to explain current acceleration

area. All of these models have many problems however it is certainly very important

to study them.

3.4 Observational Evidence for Dark Energy

In this section we briefly review facts considering observational evidence for dark

energy. The first one is based on so named Luminosity distance

3.4.1 Luminosity distance

In 1998 the accelerated expansion of the Universe was reported on the observations of

Type Ia Supernova (SN Ia).This observations are based on the existence of redshift in

the expanding Universe that is related to the fact that the light emitted by a stellar

object becomes red-shifted due the expanding of the Universe. The wavelength λ

increases proportionality to the scale factor a according to the formula

1 + z =
λ0

λ
=
a0

a
, (3.41)

where z is named as redshift and where the subscript zero denotes the quantities

given at present epoch.

Another important concept that is related to the observational tools in an ex-

panding background is the definition of the distance. In fact there are many ways

how to define distance in expanding Universe. For example, we can consider comov-

ing distance as a distance measured in comoving variables. It turns out that this

distance does not change during the evolution of the Universe. On the other hand

we can define physical distance that scales proportionally to the scale factor. An

alternative way of defining of distance is through the luminosity distance that plays

a very important role in astronomy, including supernova observations.

Let us consider for a moment Minkowski space-time and define an absolute lu-

minosity Ls of source that is related to the energy flux F at the distance d from the
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source by the formula

F =
Ls

4πd2
. (3.42)

We can generalize this relation to the expanding Universe and define the luminosity

distance dL as

d2
L ≡

Ls
4πF

. (3.43)

Let us consider an object with an absolute luminosity Ls located at coordinate dis-

tance χ 6 from an observer located at χ = 0. The energy of object that is emitted

in time interval 4t1 let is denoted as 4E1 while the energy that reaches the sphere

at radius χ is written as 4E0. From the basic principles it is clear that 4E1 and

4E0 are proportional to the frequencies of light at χ = χs and χ = 0 respectively.

In other words, 4E1 ∼ ν1 ,4E0 ∼ ν0. We also define the luminosity Ls and L0

through the relations

Ls =
4E1

4t1
, L0 =

4E0

4t0
. (3.46)

The speed of light is given by c = ν1λ1 = ν0λ0 where λ1, λ0 are wavelengths at χ = χs
and χ = 0. Then (3.41) implies

λ0

λ1

=
ν1

ν0

=
4E1

4E0

=
4t0
4t1

= 1 + z , (3.47)

using also the fact that ν04t0 = ν14t1. If we now combine (3.47) and (3.46) we

obtain
Ls
L0

=
4E1

4E0

4t0
4t1

= (1 + z)2 . (3.48)

The light travailing along χ direction satisfies the geodetic motion ds2 = −dt2 +

a2(t)dχ2 = 0 that implies

χs =
∫ χs

0
dξ =

∫ t0

t1

dt

a(t)
=

1

a0H0

∫ z

0

dz′

h(z′)
, h(z) =

H(z)

H0

, (3.49)

6Recall that the metric has following form:

ds2 = −dt2 + a2(t)[dχ2 + f2K(χ)(dθ2 + sin2 θdφ2)] , (3.44)

where

fK = sinχ , k = 1 ,

fK = χ , k = 0 ,

fK = sinhχ , k = −1 .

(3.45)

.
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where we have take t0 as the time at present epoch and consequently χ0 = 0. We

have also used the fact that

1 + z =
a0

a
⇒ dz

dt
= −a0

ȧ
⇒ dt = −dzȧ

a0

. (3.50)

Now the form of the metric (3.44) implies that the area of two sphere at t = t0 is

given by S = 4π(a0fK(χs))
2, where χs corresponds to the fact that we observe signal

from the distance χs. Hence the observed energy flux is

F =
L0

4π(a0fK(χs))2
. (3.51)

Using these results we obtain

d2
Ls =

Ls
4πF

=
Ls4π(a0fK(χs))

2

4πL0

= a2
0fK(χs)

2(1 + z)2 . (3.52)

If we combine (3.49) with (3.52) and use the fact that in FRW background fK(χ) = χ

we obtain

dL =
1 + z

H0

∫ z

0

dz′

h(z′)
. (3.53)

We can invert this result and express H(z) as function of dL(z) and z

H(z) =

(
d

dz

[
dL(z)

1 + z

])−1

. (3.54)

If we measure the luminosity distance observationally we can determine the expand-

ing rate of the Universe.

As we know the energy density on the right hand side of the Friedmann equa-

tions includes all components that are presented in Universe, namely non-relativistic

particles, relativistic particles, cosmological constant:

ρ =
∑
i

ρ
(0)
i (a/a0)−3(1+wi) =

∑
i

(1 + z)3(1+wi) , (3.55)

where we have used (3.41). Here wi and ρ
(0)
i correspond to the equation of state and

the present energy density of each component.

Then the Friedmann equation takes standard form

H2 = H2
0

∑
i

Ω
(0)
i (1 + z)3(1+wi) , Ω

(0)
i =

8πGρ
(0)
i

3H2
0

=
ρ

(0)
i

ρ
(0)
c

. (3.56)

Hence the luminosity distance in a flat geometry is given by

dL =
(1 + z)

H0

∫ z

0

dz′√∑
i Ω

(0)
i (1 + z′)3(1+wi)

. (3.57)
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The formula above is the basic theoretical ingredient for the direct evidence of the

current acceleration of the Universe that is related to the observation of luminosity

distances of high redshift supernovae.

The Type Ia supernova (SN Ia) can be observed when the white dwarf starts

exceed the mass of the Chandrasekhar limit and explode. The common belief is that

SN Ia are formed in the same way irrespective of where they are in the Universe that

means that they have a common absolute magnitude M independent of the redshift

z. This implies that they can be treated as an ideal standard candle. We do not go

to these details but it is important that using these methods the luminosity distance

of the SN Ia supernovae that was observed is

H0dL ' 1.16 , for z = 0.83 . (3.58)

On the other hand the theoretical estimate that follows from (3.57) is

H0dL ' 0, 95 , Ω(0)
m ' 1 ,

H0dL ' 1.23 , Ω(0)
m ' 0.3 , Ω

(0)
Λ ' 0.7 .

(3.59)

for two-component form of matter. There are of course lot of literature considering

the fitting the estimate date and the form of the matter that is present in Universe.

The conclusion is that the present experimental date suggests the form of the matter

given above.

3.5 The age of the Universe and the cosmological constant

Another important evidence for the existence of the cosmological constant emerges

when we compare the age of the Universe t0 to the age of the oldest stellar populations

ts. It is clear that the consistency demands that t0 > ts. On the other hand it is

difficult to satisfy this condition for a flat cosmological model with normal form of

matter. On the other hand the presence of cosmological constant can resolve this

problem.

To begin with we review the estimates of the oldest stellar objects. It was

estimated that the age of the oldest objects lay in the interval 11 − 13 Gyr. Such

objects are coolest white dwarfs that gradually cool as the age grows. more precisely,

a white dwarf is very hot when it forms. Further, due to the fact that it has no source

of energy it will gradually cool so that it has so low temperature that means it will

no longer emit heat and it will become a cold black dwarf. In fact, the oldest known

white dwarfs still radiate at temperatures of a few thousand kelvins and these objects

put limit on the maximum possible age of the universe.

Consequently the age of the Universe needs to satisfy the lower bound t0 >

11− 12 Gyr. Let us calculate the age of the Universe from the Friedmann equations
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where we consider three contributions to the matter: radiation (wr = 1/3), pressure-

less dust (wm = 0) and cosmological constant wΛ = −1.

H2 =
8πG

3
ρ− k

a2
= H2

0 [Ω0
r

(
a

a0

)−4

+ Ω(0)
m

(
a

a0

)−3

+

+Ω
(0)
Λ − k0

(
a

a0

)−2

] , k0 =
k

a2
0H

2
0

.

(3.60)

Then using the fact that 1 + z = a0

a
we can determine the age of the Universe as

t0 =
∫ t0

0
dt′ =

∫ a0

0

da

Ha
= (−dz =

a0da

a2
) =

=
∫ ∞

0

dz

H(1 + z)
=
∫ ∞

0

dz

H0x[Ω0
rx

4 + Ω
(0)
m x3 + Ω

(0)
Λ − k0x2]1/2

,

(3.61)

where x = 1 + z. Since the radiation dominated period is much shorter than the

total age of the Universe it is a natural to neglect its contribution to the formula

above. In other words the integral coming from the region z ≥ 1000 does not affect

too strongly the integral (3.61). Hence we set Ω(0)
r = 0 when we evaluate t0.

Let us start with the case when the cosmological constant is absent (Ω
(0)
Λ = 0).

Since k0 = Ω(0)
m − 1 the integral (3.61) is equal to

t0 =
∫ ∞

0

dz

H0x
√

Ω
(0)
m x3 − k0x2

=
∫ ∞

0

dz

H0(1 + z)2

√
1 + Ω

(0)
m z

. (3.62)

For a flat Universe that is characterized with k0 = 0 and Ω0
m = 1 we obtain

t0 =
2

3H0

. (3.63)

As we know the present Hubble parameter is constrained to be

H−1
0 = 9.776h−1 Gyr , 0.64 < h < 0.8 . (3.64)

Then (3.63) gives

t0 = 8− 10 Gyr . (3.65)

However this does not satisfy the stellar age bound

t0 > 11− 12 Gyr .

In other words the flat Universe without a cosmological constant suffers from a serious

age problem.
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For arbitrary Ω(0)
m the equation (3.61) can be integrated and we obtain

H0t0 =
1

1− Ω
(0)
m

− Ω(0)
m

2(1− Ω
(0)
m )3/2

ln

1−
√

1− Ω
(0)
m

1 +
√

1− Ω
(0)
m

 (3.66)

that is of course valid for Ω(0)
m < 1 only. Let us consider various limits of the equation

above. For Ω(0)
m → 0 we obtain H0t0 → 1 while for Ω(0)

m → 1 we obtain t0H0 → 2/3.

As we know the observation of the CMB constraints the curvature of the Universe

to be close to be flat |k0| = |Ω(0)
m − 1| � 1. However since then Ω(0)

m ≈ 1 in this case

we again obtain

t0 =
2

3H0

' 8− 10 Gyr (3.67)

that is again consistent with the time of the stellar age bound.

On the other hand the age problem can be easily solved in a flat Universe (k0 = 0)

with a cosmological constant ΩΛ 6= 0). In this case the equation (3.61) gives

H0t0 =
∫ ∞

0

dz

(1 + z)
√

Ω
(0)
m (1 + z)3 + Ω

(0)
Λ

=

=
2

3
√

Ω
(0)
Λ

ln

1 +
√

Ω
(0)
Λ√

Ω
(0)
m

 ,

(3.68)

where Ω(0)
m + Ω

(0)
Λ = 1. We see that H0t0 → ∞ for Ω(0)

m → 0 and H0t0 → 2/3 for

Ω(0)
m → 1. When Ω(0)

m = 0.3 and Ω
(0)
Λ = 0.7 one has

t0 = 0.964 H−1
0 = 13.1 Gyr , for h = 0.72 . (3.69)

Hence this easily satisfies the constraint t0 > 11 − 12 Gyr that arises from the

observation the oldest stellar populations. Thus the presence of Λ solves the age-

crisis problem.

3.6 The Cosmological Constant Problem

In classical general relativity the cosmological constant Λ is a completely free pa-

rameter. Let us determine corresponding dimension of given constant. Note that it

appears in the action in the form

1

8πG

∫
d4x
√
−gΛ . (3.70)

Since the dimension of G is [G] = M−2 where M is mass scale and since [d4x] = M−4

we find from the requirement that the action is dimensionless that the dimension of

Λ is given by the equation

[Λ] = M2 (3.71)
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while

ρΛ =
1

8πG
Λ (3.72)

has dimension [ρΛ] = M4 as it is expected for the energy density. In fact, Λ is

completely free and its value should be determined by experiment.

The introduction of quantum mechanics changes the situation in some way.

Firstly, the Planck’s constant allows us to define the reduced Planck mass MP ∼
1018GeV , as well as reduced Planck length

LP = (8πG)1/2 ∼ 10−32cm . (3.73)

Hence the natural guess for the value of the cosmological constant is

Λguess
P ∼ L−2

P , (3.74)

or as an energy density

ρgusssvac ∼M4
P = (1018GeV )4 . (3.75)

We can find support for this guess by thinking about the quantum fluctuation of

vacuum. As we know any quantum field can be considered as collection of infinite

number of harmonic oscillators. From quantum mechanics we know that harmonic

oscillator with frequency ω has the vacuum energy 1
2
h̄ω. Since each mode of the

quantum field contributes to the vacuum energy and the net result should be an

integral over all of these modes. Usually we perform an integration over infinite

interval and hence this integral diverges so that the vacuum energy appears to be

infinite. However, the infinity arises from contribution of modes with very small

wavelengths, it is possible to be mistake to include such a modes since we do not

know what happens at these scales. In other words we do not have any justification

whether the quantum field theory approach can be applied in these small scales as

well. To account for our ignorance we should include the cut-off energy above which

we ignore any potential contributions and hope that some more complete theory

could justify this approach. If the cut-off is at the Planck scale we get the value

given above.

However, we claim to have measured the vacuum energy. The observed value is

different from the theoretical estimate:

ρobservac ∼ 10−120ρguessvac . (3.76)

In other words, we can express the vacuum energy in terms of the mass scale

ρvac = M4
vac (3.77)

so that the observed result is

M obs
vac ∼ 10−3eV. (3.78)
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The discrepancy is thus

M obs
vac ∼ 10−30M guess

vac . (3.79)

In addition to the fact that it is very small to its natural value the vacuum energy

at present posses an additional puzzle. The coincidence between observed vacuum

energy and current matter density. It can be shown that the ratio of vacuum energy

to matter density depends on time as follows from

ΩΛ

ΩM

=
ρΛ

ρM
∼ a3 . (3.80)

As a consequence, at early times the vacuum energy was negligible with respect in

comparison to matter and radiation while at late times matter and radiation are

negligible.

To date the value of the cosmological constant is one of the most mysterious

problems in current physics, perhaps it could be compared with the mysterious radi-

ation of the black body at the end of 19’ century. On the other hand it is instructive

to consider an example of supersymmetry which relates to the cosmological con-

stant problem in interesting way. The main idea of supersymmetry is that for each

fermionic degree of freedom there is corresponding bosonic degree of freedom and

vice-versa. For example, for spin 1/2 electron there should be spin 0 electron of the

same mass and charge. The good news is that while bosons contribute positively to

the vacuum energy the fermion contributions is negative. Hence, if the degrees of

freedom exactly match the vacuum energy is zero.

We do not, however, live in supersymmetric state. If supersymmetry exists, then

it must be broken at some scale Msusy. In other words, for physical processes where

the characteristic energy is much smaller than Msusy we do not see any supersym-

metry and this is the case how our word looks like. On the other hand when we

probe physics with energy scale higher with Msusy we can expect that supersymme-

try is restored. More precisely, we can explain this situation as follows. We expect

that SUSY is broken in nature, for example spontaneously broken which means that

there is one ground state. The fluctuation above states gain masses and one expect

that super-partners of known particles, get masses of order Msusy. Then for ener-

gies much smaller than Msusy these particles are not visible, on the other hand for

energies larger than Msusy we can neglect their masses and these particles look like

massless again. Then we say that supersymmetry is restored at higher energies. This

has an consequence for the vacuum energy. Recall that the vacuum energy was de-

fined as sum over infinite number of oscillators. For modes with energy much larger

that Msusy these modes find their super-partners and hence their contribution to the

vacuum energy vanishes. This is of course does not happen for modes with energy

smaller than Msusy. In other words we can expect that the vacuum energy will be

equal to

ρvac ∼M4
susy . (3.81)
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The question is how high Msusy should be. Nice property of SUSY is that it helps

us to understand hierarchy problem- why scale of electroweak symmetry breaking is

much smaller than the scales of quantum gravity or grand unification. For SUSY to

be relevant to the hierarchy problem we need the SUSY breaking scale to be just

above the electroweak breaking scale

Msusy ∼ 103 GeV . (3.82)

Since this is very close to the experimental bound it is now common belief that SUSY

should be discovered soon at Fermilab or CERN, if it is connected to electroweak

physics. However considering relation between SUSY and cosmological constant we

again see that we are in discrepancy with observation:

M (obs)
vac ∼ 10−15 Msusy (Experiment). (3.83)

Of course there exists a possibility that our estimate Mvac ∼ Msusy is incorrect.

For example let us guess following formula

Mvac ∼
(
Msusy

MP

)
Msusy . (3.84)

Interestingly, since MP is fifteen orders of magnitude larger than Msusy and Msusy is

fifteen orders of magnitude larger than Mvac this guess gives up the correct answer.

Unfortunately this is simple numerology, we do not know how this formula should

come from.

Another possibility how to explain the value of the cosmological constant is the

presumption that it is simply feature of our local environment. This is the idea

commonly known as anthropic principle.

In order to give this idea concrete meaning let us presume that there are many

different regions of the Universe in which the vacuum energy takes different values.

Then we can expect that we find ourselves in a region which was suitable for our

own existence. Larger value of cosmological constant than we presently observe

would either have led to a rapid re collapse of the universe (if ρvac were negative) or

an inability to form galaxies (if ρvac were positive).

The idea environmental selection is based on certain special conditions and we

do not understand whether these conditions hold in our Universe. In particular we

have to show that there can be a huge number of different domains with slightly

different values of the vacuum energy and that these domains are big enough that

our entire observable Universe is in a single domain. Further we also have to show

that the possible variation of other physical quantities from domain to domain is

consistent with observations.

Recent work in string theory whose pure essence is the currently very popular

idea of String Landscape supports the idea that there are huge number of possible
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vacuum states rather than a unique one. Unfortunately the detailed discussion of

this idea is beyond the scope of this introduction review.

To conclude, at present, unfortunately,t here is not any theory that could explain

the mysterious facts considering cosmological constant. To find such a theory is one

of the most prominent goals of physical community.

3.7 The Cosmic Microwave Background

Most of the radiation we observe in Universe today is in the form of the almost

isotropic black body spectrum with temperature approximately 2.7K known as Cos-

mic Microwave Background (CMB). The small angular fluctuations in temperature

of the CMB reveal a great deal about the constituents of the Universe.

We have seen previously that the radiation gas evolves and sources the evolution

of the expanding Universe. Since the radiation and dusts have different evolution

laws that as we approach earlier and earlier times in the Universe with smaller and

smaller scale factors the ratio of the energy density in radiation to that in matter

grows proportionally to 1/a(t). Furthermore, even particles which are now massive

and contribute to matter used to be hotter, at sufficiently early times were relativistic

and thus contributed to radiation. In summary, we say that the early Universe was

dominated by radiation. More precisely, at early times the CMB photons were easily

energetic enough to ionize hydrogen atoms and therefore the Universe was filled with

a charged plasma. This phase lasted until the photons red shifted enough to allow

protons and electrons to combine during the era of recombination. Shortly after this

time the photons decoupled from the now neutral plasma and free streamed through

the Universe.

More precisely, the concept of an expanding Universe provides us with a clear

explanation of the origin of the CMB. Black body radiation is emitted by bodies

in thermal equilibrium. The present Universe is certainly not in this state, and

so without an evolving space-time we should have no explanation for the origin of

this radiation. However, at early times, the density and energy densities in the

Universe were high enough that matter was in approximate thermal equilibrium at

each point in space, yielding a blackbody spectrum at early times. Then there is

crucial thermodynamic fact about the CMB. A blackbody distribution, such as that

generated at early Universe, is such that at temperature T , the energy flux in the

frequency range [ν, ν + dν] is given by Planck distribution

P (ν, T )dν = 8πh
(
ν

c

)3 1

ehν/kT − 1
dν , (3.85)

where h is Planck’s constant and k is the Boltzmann constant. Under recalling

ν → λν , with λ = constant the shape of the spectrum is unaltered if T → T/λ. We

know that the wave length are stretched with the cosmic expansion and therefore the

frequencies will scale inversely due to the same effect. We then see that the effect of
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cosmic expanding on an initial blackbody spectrum is to retain its blackbody nature,

but just at lower and lower temperatures

T ∼ 1

a
. (3.86)

This is what we mean when we say that the Universe is cooling as it expands.

It is also well known that CMB is not a perfectly isotropic radiation bath. De-

viations from isotropy at the level of one part in 105 have developed over the last

decade into one of our most precise observation tool in cosmology.

It is important to stress that this anisotropy of CMB is divided into two classes.

The first one, known as primary anisotropy, has its origin at the effects on the

surface of the last scattering and before, and secondary anisotropy that is a result

of the interaction between CMB and intervening hot gas or gravitational potentials

that occurs between the last scattering surface and the observer.

The small temperature anisotrophies on the sky are usually analyzed by decom-

posing the signal into spherical harmonics via

4T
T

=
∞∑
l=0

l∑
m=−l

almYlm(φ, θ) , (3.87)

where alm are expansion coefficients and θ and φ are spherical polar angles on the

sky. In other words, we introduced polac coordinates on the last-scattering surface

S2 and spherical harmonics Ylm(φ, θ) are defined as

Ylm(θ, φ) = (−1)
m+|m|

2

√√√√2l + 1

4π

(l − |m|)!
(l + |m|)!

Pl|m|(cos θ)eimφ , (3.88)

where Pl|m|(y) are associated Legendre polynomials of degree l and where l is called

multipole moment of the expansion and m is the azimuthal number. Since 4T
T

is

real quantity and since Yl0 is real we have that al0 is real. Now we presume that

anisotropies have their origin from the random process with a Gaussian distribution

so that real and imaginary parts of alm are independent. Let us now consider for

each l the (2l + 1) dimensional set

(αl,m̄|m̄ = 1, 2 . . . , 2l + 1) = (al0,
√

2Re(alm),
√

2Im(alm)|1 ≤ m ≤ l) . (3.89)

Then we define for each l the temperature angular spectrum CTT
l as the square of

the half width of the Gaussian distribution that has the form

fl[αl,m̄] =
1√

2πσ2
l

e
−
α2
l,m̄

2σ2
l , (3.90)

where σ2
l is defined as

σ2
l = CTT

l =
1

2l + 1

〈
a2
l

〉
, a2

l =
l∑

m=−l
|alm|2 , (3.91)
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where 〈a2
l 〉 is the average over an ensemble of skies which is a collection of skies

observed at different points in the universe for a given l. In other words 〈. . .〉 means

the average with respect to all observers in the universe. As we argued before the

main presumption of cosmology is that the universe is homogenous and isotropic. As

a result there is no preferred observing direction.

However it is important to stress that we can only observe the Universe from

one point so that we cannot perform average over all skies. Then however we assume

ergodic hypothesis that says that the average over the ensemble of all possible skies

is equivalent to the spatial averages over one sky

〈O〉 = 〈O〉sky =
1

4π

∫
S2
dΩ2O . (3.92)

The fluctuations in the CMB spectrum are useful for the study of cosmology from

many reasons. To understand why, we should show at the first place why they arise.

Matter today in the Universe exists in the form of clusters of starts, galaxies, and

clusters and super-clusters of galaxies. Our understanding how large scale structures

developed is that initially small density perturbations in the otherwise homogeneous

Universe grew through the gravitational instability to the objects we observe today.

Such picture requires that from place to place there were small variations in the

density of matter at the time when CMB firstly decoupled from the photon-baryon

plasma. Then CMB photons propagated freely through the Universe nearly unaf-

fected by anything except the cosmic expanding itself. However at the time of their

decoupling different photons were released from regions of space with slightly dif-

ferent gravitational potentials. Since the gravitational potential affects the photon

redshift, photons from some regions redshift slightly more than those from other re-

gions , giving rise to a small temperature anisotropy in the CMB observed today. In

this sense CMB reflects the initial conditions that ultimately gave rise to structure

in the Universe.

It is important that CMB fluctuations give us the value of Ωtotal. In fact, careful

analysis of all of the features of the CMB power spectrum provide constraints on

essentially all of the cosmological parameters. For example, let us consider recent

result from WMAP . For total density of the Universe they find

0.98 ≤ Ωtotal ≤ 1.08 (3.93)

at 0.95 confidence which is a strong evidence for a flat Universe. Nevertheless, much

tighter constraints on the remaining values can be derived by assuming either an

exactly a flat Universe or a reasonable value of Hubble constant. When for example

we presume a flat Universe, we can derive values for the Hubble constant, matter

density (which then implies the vacuum density from Ωtotal = 1) and baryon density:

h = 0.72± 0.05 ,
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ΩM = 1− ΩΛ = 0.29± 0.07 ,

ΩB = 0.047± 0.006 .

(3.94)

If we instead assume that the Hubble constant is given by the value determined by

HST project

H0 = 100 h km sec−1 Mpc−1 , h = 0.71± 0.06 (3.95)

we can derive separate tight constraints on ΩM and ΩΛ.

In summary, taking all of the data together we obtain a remarkably consistent

picture of the current constituents of our Universe:

ΩB = 0.04 ,

ΩDM = 0.26 ,

ΩΛ = 0.7 .

(3.96)

There are many mysterious things considering these values. Firstly, the baryon den-

sity is mysterious due to the asymmetry between baryons and antibaryons. Secondly,

the problem with dark matter is that we have never detected it directly and only have

promising ideas as to what it might be. However the biggest mystery is the vacuum

energy, we now try to explain why it is mysterious and what kinds of mechanism

might be responsible for its value.

4. Early Times in the Standard Cosmology

Early times at the in the Standard Cosmology are characterized by very high tem-

peratures and densities with many particle species kept in (approximate) thermal

equilibrium by rapid interactions. Our goal is then to develop some tools of the

thermodynamics in expanding Universe. In fact, up the mild-1960 it was not clear

whether the early Universe had been hot or cold. This situation changed with the

Pensias and Wilson’s 1964-1965 discovery of 2.7 K microwave background radiation

arriving from the farthest reaches of the Universe since the existence of the microwave

background has been predicted by the hot Universe theory.

4.1 Review of the building blocks of the standard cosmology and matter

For reader’s convenience we review some basics facts considering the standard models

of cosmology.

• The Classical general relativity:

The classical general relativity provides good description of the geometry of

space-time for scales l � lP = M−1
P = 10−33cm or equivalently for energy

scales below the Planck scale MP .
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• Physical scales are stretched by the scale factor a(t) with respect to the comov-

ing scales

lphys(t) = a(t)lcom . (4.1)

A physical wavelength redshifts proportional to the scale factor where its time

derivative obeys the Hubble law

dlphys(t)

dt
=
ȧ

a
alcom = H(t)lphys(t) =

lphys
dH(t)

. (4.2)

• The equilibrium temperature decreases as the Universe expands as

T (t) =
T0

a(t)
. (4.3)

• The Standard Model of Particle Physics:

The current standard model of particle physics that is experientially tested

with remarkable precision describes the theory of strong (QCD), weak and

electroweak interactions (EW) as a gauge theory based on the gauge group

SU(3)c ⊗ SU(2)⊗ U(1)Y . (4.4)

The particle content is: three generations of quarks and leptons:(
u

d

) (
c

s

) (
t

b

)
;

(
νe
e

) (
νµ
µ

) (
ντ
τ

)
(4.5)

vector Bosons: 8 gluons (massless) that mediate the strong interactions in

QCD, Z0,W± that are massive with masses MZ = 91.18 ± 0.02 GeV and

MW = 80.4± 0.06 GeV that mediate the electroweak interactions, the photon

(massless)-the mediator of electromagnetic interaction and the scalar Higgs

that was discovered in 2011 at LHC with the mass MH = 125.09 GeV .

• It is known that the couplings associated with strong, weak and electrodynam-

ics interactions depend on the mass scale that characterize given process. The

current theoretical ideas propose that these couplings are unified in a grand

unified theory (GUT) at the scale

MGUT ∼ 1016 GeV .

Further, the UV scale where the Gravity is eventually unified with the rest of

particle physics is the Planck scale

MP ∼ 1019 GeV .

On the other hand the physics of the Standard Model describes phenomena at

energy scales below MS where

MS ∼ 100 GeV .

58



• The connection between the Standard model of particle physics and early Uni-

verse cosmology is through Einstein’s equations that couple the space-time

geometry to the matter-energy content. We study gravity semi-classically at

energy scales well below the Planck scale. The Standard model of particle

physics is a quantum field theory (QFT) thus the space-time is classical but

with sources that are quantum fields. Semi classical gravity is defined by the

Einstein equations with the expectation value of the energy-momentum tensor

T̂ µν as sources

Rµν − 1

2
gµνR =

〈
T̂ µν

〉
M2

P

, (4.6)

where the expectation value
〈
T̂ µν

〉
is taken in given quantum state or density

matrix that is compatible with homogeneity and isotropy so that it has to be

translational and rotational invariant. The ground state of the quantum field

theory is usually the state that solves the classical equations of motion or the

equations of motion with the quantum correction. In this case the vacuum

expectation value of the stress energy tensor corresponds to the classical one.

The general formula above has important in case we study the properties of

the fluctuations above given classical solutions.

As the next step we review basic facts about the Energy scales, time scales and

phase transitions

Energy scales,time scales and phase transitions

In this section we give a brief overview of the main cosmological epochs by focusing

on the energy scales of particle, nuclear and atomic physics.

Energy scales:

• Total Unification

It is expected that Gravitational, strong and electroweak interactions become

unified and described by a single quantum theory at the Planck scale MP ∼
1019 GeV . The most promising approach to this unification is in terms of string

theory however their theoretical consistency is still studied and experimental

confirmation is not available.

• Grand Unification:

Strong and electroweak interactions are expected to become unified at an en-

ergy scale

MGUT ∼ 1016 GeV , TGUT ∼ 1029K

under large gauge group G, for example SU(5), SO(10) that breaks sponta-

neously

G→ SU(3)c ⊗ SU(2)⊗ U(1)Y
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at scale below unification. Main arguments for the existence of GUT theories

follow from merging of the running coupling constants of the strong, electro-

magnetic and weak interactions for the minimal supersymmetric model and

also the explanation of the small neutrino masses via see-saw mechanism.

• Electroweak:

Weak and electromagnetic interactions are unified in the electroweak theory

based on the gauge group

SU(2)⊗ U(1)Y .

The weak interactions become short ranged after symmetry breaking phase

transition

SU(2)⊗ U(1)Y → U(1)em

at the energy scale of the order of the mass of the Z0,W± vector bosons cor-

responding to temperature

TEW ∼ 100 GeV ∼ 1015 K .

More precisely, at temperature T > TEW the symmetry is restored as a con-

sequence of the fact that the effective potential of the theory depends on the

temperature as well. For temperature T > TEW the stable minimum of the po-

tential corresponds to the symmetric phase where all vector bosons are massless

and hence the symmetry is restored. On the other hand for T < TEW the sta-

ble minimum of the potential corresponds to the situation when the vector

bosons W±, Z0 become massive through Higgs mechanism while photon re-

mains massless corresponding unbroken U(1) abelian symmetry of quantum

electrodynamics. The temperature TEW determines the temperature scale of

the electroweak phase transition in the early Universe.

• QCD

The strong interaction has a typical energy scale

ΛQCD ∼ 200 MeV .

At this coupling the coupling constant becomes strong αs ∼ O(1) that corre-

sponds to the temperature scale

TQCD ∼ 1012 K

QCD is asymptomatically free theory that means that the coupling between

quarks and gluons becomes smaller at large energies but diverges at the scale

ΛQCD. For energies below ΛQCD the quantum chromodynamics is strongly

interacting theory and quarks and gluons are bound into mesons and baryons.
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This phenomenon is interpreted in terms of a phase transition at an energy

scale ΛQCD or TQCD. For T > TQCD the relevant degrees of freedom are weakly

interacting quarks and gluons, while below are hadrons. In the limit when

we can presume that up and down quarks are massless, QCD possesses new

SU(2)L ⊗ SU(2)R chiral symmetry that is spontaneously broken at about the

same temperature scale as the scale of QCD transition. Pions are the Goldstone

bosons that emerge in the breakdown of the chiral symmetry

SU(2)L ⊗ SU(2)R → SU(2)R+L .

The high temperature phase above TQCD where the quarks and gluons are

almost free (because the coupling is small by asymptotic freedom) is a quark-

gluon plasma.

• Nuclear Physics

The low energy scales that are relevant in cosmology are determined by the

binding energy of light elements. For example, the binding energy of deuterium

is ∼ 2 MeV that corresponds to the temperature T ∼ 1010 K. This is the

energy scale that determines the origin of the primordial nucleosynthesis. The

first step in the system of the nuclear reactions that yields the primordial

elements is the formation of deuteron in the reaction

n+ p↔ d+ γ .

These nuclear reactions continue and all neutrons end up in nuclei, mainly

helium.

• Atomic physics

A further important low energy scale relevant for cosmology is the binding

energy of hydrogen ∼ 10 eV . This is the energy scale at which free protons

and electrons combine into neutral hydrogen. The large number of photons per

baryons implies that recombination actually takes place at an energy scale of

order 0.3 eV , at about 400000 years after the beginning of the Universe. At this

time when the neutral hydrogen is formed the Universe becomes transparent

since then photons no longer scatter and travel freely. These are the photons

measured by CMB experiments today.

Time Scales:

——————

• Inflation epoch
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This is (according to current cosmological scenario) the earliest period in the

life of Universe where the scale factor grows exponentially as

a(t) = eHt .

Current experiments put upper bound on the energy scale of inflation as

H ≤ 1013 GeV .

In order to solve the entropy and horizon problems the inflationary stage hast

to last a time interval δt so that

δtH ∼ 60⇒ δt ∼ 10−34 sec .

• Radiation dominated era

The inflationary stage is followed by a radiation dominated era after a short

period of reheating during which the energy stored in the field that drives

inflation decays into quanta of many other fields. These fields reach the state

of thermal equilibrium through the scattering processes.

After the thermal equilibrium is reached we obtain a detailed picture of the

thermal history of the Universe. This description is based on the combination

of the statistical mechanics with the basic principles of QFT: During the first

1000 years of the Universe and after the inflation stage that lasted ∼ 10−34

sec the Universe was radiation dominated. Universe also expands and cools

almost adiabatically. The electroweak transition occurred at the energy scale

T ∼ 100 GeV that corresponds to the time

tEW ∼ 10−12 sec .

The QCD transition occurs at

tQCD ∼ 10−5 sec .

Local Thermal Equilibrium (LTE) and Non equilibrium

Weather some process occurs in or out of a local thermodynamics equilibrium

depends on the comparison of two time scales-the expanding rate and the reac-

tion rate. To have a contact with standard thermodynamics note that we can

formulate the same problem as the problem of comparing of the cooling rate

(the rate how temperature decreases) and the rate of reaction. In fact the rate

of cooling is related to the rate of the expanding through the formula

Ṫ

T
= − 1

Ta2
ȧ = −H(t) (4.7)
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as follows from the fact that T ∼ 1
a
. On the other hand collisions as well as

non-collisional processes contribute to establish the equilibrium with a rate Γ.

The local thermodynamic equilibrium is established when

Γ > H(t) (4.8)

In this case the evolution is adiabatic in the sense that the thermodynamics

functions depend slowly on time through the temperature. On the other hand

when the expanding is too fast

H(t)� Γ

local thermodynamics equilibrium cannot be established, the temperature drops

too fast for the system to have time to relax.

While a detailed understanding of the relaxation dynamics requires an analysis

of the quantum Boltzmann equations a simple order of magnitude estimate for

a collision rate is given as follows.

The collision rate can be calculated in the standard statistical physics as

Γ ∼< σnv > , (4.9)

where < . . . > means statistical ensemble average and where σ is a scattering

cross section, n is the density of particles that scatter and v is velocity of given

particles. For electromagnetic scattering a typical cross section is of order

σem ∼
α2

Q2
,

where Q2 is transferred momentum and α is the electromagnetic coupling con-

stant. At high temperature single photon exchange implies the estimate (the

transferred momentum is proportional to the momenta of one photon that is

proportional to the temperature)

σem ∼
α2

T 2
.

The density of relativistic degrees of freedom is n ∼ T 3 and for v ∼ 1 (This

estimate follows from the fact that particles are ultra-relativistic) we obtain

Γem ∼ α2T .

In QCD that in the high temperature regime can be treated perturbatively the

estimate of the single gluon exchange can be performed in the similar way and

we get

ΓQCD ∼ α2
sT ,
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where αs is corresponding coupling constant. We have to compare these esti-

mates with H. However H2 ∼ ρ that in the case of the radiation dominated

era we show that ρ ∼ T 4.Then in this case we find that H ∼ T 2/Mpl so that

ΓQCD
H

=
α2
sMpl

T
> 1 (4.10)

and we obtain that the strong interactions are in LTE for

T ≤ 1016 GeV

In the same way we obtain that electromagnetic interactions are in LTE for

T ≤ 1014 GeV .

It is important to stress for T ≥ α2Mpl ∼ 1016GeV all perturbative interac-

tions should be frozen out and are not effective in maintaining thermal equilib-

rium. In other words all known interactions together with any new interactions

that arise from grand unification are not sufficient for maintaining the thermal

equilibrium in the Universe at temperatures greater than 1016 GeV that cor-

responds to the time earlier than 10−38s. In other words Universe is not in

thermal equilibrium at its earliest epoch.

The estimate in case of weak interaction is slightly more involved: a typical

scattering process with an energy transfer E � MW has a scattering cross

section

σ ∼ G2
FE

2 , E �MW

whereas if E �MW we have

σ ∼ g4

E2
, E �MW .

Then in thermal medium with E ∼ T and with a density of relativistic particles

n ∼ T 3 a typical weak reaction rate is

ΓEW ∼ g4T , T �MW

and

ΓEW ∼ G2
FT

5

for T �MW . In this latter temperature regime the ratio

ΓE
H
∼
(

T

MeV

)3

and hence the weak interactions fall out of LTE for T ≤ 1 MeV .

64



Even if this analysis provides an intuitive estimate for the relaxation time

scales this analysis neglected several important aspects that however have to

be studied on a case-by-case basis. One such an example of subtle effects are

Screening and infrared phenomena: The relaxation rates Γ were calculated on

presumption of an exchange of a vector boson of relativistic degrees of freedom.

In a medium at a high temperature and a density there are important screening

effects that can change these estimates.

4.2 Hot Big Bang

We begin this section with the description of the evolution of the Universe in its hot

stage.

The basic presumption is that it is plausible to extrapolate the evolution of

the Universe back in time using the known microscopic physics (electrodynamics,

nuclear physics, QCD and electroweak theory) and General Relativity. This theory

is called as Hot Big Bang Theory. According to this theory the Universe was

hotter at earlier stages (equivalently, at smaller values of a(t)) and the temperature

scales as a(t)−3 both for non-relativistic and relativistic particles. At high enough

temperatures the Universe was in the phase that is completely different from what

we observe today. Instead of the almost empty space with galaxies here and there

was dense, hot and almost homogeneous plasma that fills the whole Universe. This is

the area whose physical laws are governed by microscopic physics. Note that gravity

plays the role of the spectators of the theory and it is considered as classical. Of

course we consider back-reaction of this matter on the time evolution of the Universe

using the Friedmann equations.

More precisely, the hot Universe theory is based on the phenomena of the phase

transitions and the symmetry breaking. Let us consider for example the simplest

GUT model based on the gauge group SU(5). For temperature T ≥ 1015GeV there

was no difference between weak, strong and electroweak interactions. The matter in

the Universe was in the form of the dense plasma containing quarks, photons, gluons

etc. Then there was no problem in the transformation of quarks to leptons. In other

words it does not make sense to speak about baryon conservation. At t1 ∼ 10−35sec

when the temperature has dropped to T ∼ Tc1 ∼ 1014 − 1015GeV the fist symmetry

breaking phase transition takes place: SU(5) breaks to SU(3)×SU(2)×U(1) where

SU(3) is gauge symmetry of the QCD, theory of the strong interactions. In other

words string interactions were separated from electroweak and leptons. Then at t2 ∼
10−10 sec when the temperature dropped to Tc2 ∼ 102 GeV there was a second phase

transition that broke the symmetry between weak and electromagnetic interactions

SU(3) × SU(2) × U(1) → SU(3) × U(1). As the temperature reduces further to

Tc3 ∼ 102 MeV there was another phase transition with the formation of baryons

and mesons from quarks.
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4.3 Review of the study of the expansion of the Universe

Let us again analyze the evolution of the Universe. As we have argued before at early

times the Universe was radiation dominated, then matter dominated and presently

dark energy dominated while the curvature term k
a2 was never important.

Deceleration to Acceleration

Since the dark energy dominates at present the Universe accelerates. On the

other hand when matter was dominating the Universe was decelerating. In order to

see when the change in regime occurred we write the Friedmann equations as

ȧ2 =
8πG

3
ρa2 =

8πG

3
a2(ρM + ρΛ) , (4.11)

where we have neglected spatial curvature and also ultra-relativistic matter for the

moment. The reason for this simplification is that the relativistic matter dominates

an expanding of the Universe at much earlier stage. The time derivative of the

equation above implies

2ȧä =
8πG

3

(
ρ̇Ma

2 + 2(ρM + ρΛ)ȧa
)

=

=
8πGa

3
(−ȧaρM + 2ȧaρΛ)

(4.12)

where we used ρ̇M = −3 ȧ
a
ρM . The expression above is zero when (This event defines

the turning point between decelerating and accelerating phase)

2ρΛ

ρM
= 1 (4.13)

or equivalently
a3

0

a3
≡ (1 + z)3 =

2ΩΛ

ΩM

, (4.14)

where or course ΩM is time-dependent. For expected values ΩΛ = 0.7,ΩM = 0.3 we

have

deceleration → acceleration: z ≈ 0.7

In other words, the Universe was decelerating until fairly recently. Before z ≈ 0.7

the expansion was dominated by the non-relativistic matter.

Radiation domination to matter domination
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As we know the energy density of ultra-relativistic matter (radiation) scales as a−4

while the energy density of non-relativistic matter scales as a−3. Then it follows that

the dominant contribution to the energy density of the Universe at very small a (small

t) came from ultra-relativistic matter. Now we estimate zeq at which the equilibrium

between matter and radiation occurred. In other words we would like estimate zeq
when the expansion regime changed from the dominance of ultra-relativistic particles

to the dominance of non-relativistic matter, we write

ρM(t)

ρrad(t)
=

ρM0a
3
0a
−3(t)

ρrad0a4
0a
−4(t)

=

(
ρM
ρrad

)
0

a(t)

a0

, (4.15)

where again the subscript 0 refers to present values. Equilibrium occurs at

ρM(teq)

ρrad(teq)
≈ 1 (4.16)

that gives
a0

a(teq)
≡ 1 + zeq ≈

(
ρM
ρrad

)
0

=
ΩM

Ωrad

. (4.17)

Since Ωrad ≈ 10−4 ,ΩM ≈ 0.3 we obtain

radiation domination → matter domination : zeq ≈ 3000 .

The corresponding temperature is

Teq = T0(1 + zeq) ≈ 104K ≈ 1eV . (4.18)

At higher temperatures the expansion of the Universe was dominated by ultra-

relativistic matter. We must to stress that it is important for structure formation that

the most of the part of the lifetime of the Universe is dominated by non-relativistic

matter. This follows from the fact that the expanding rate at both radiation dom-

inated and vacuum dominated eras is such that gravitational perturbations grow

slowly and only during the matter dominated stage their growth is fast enough so

that the existing structures of the Universe can arise.

4.4 Epochs of the early Universe

There are two important epochs in the evolution of the Universe:Recombination

epoch that is the transition from plasma to neutral gas. This occurs at temperature

T ∼ 3000K, t ∼ 3 · 105years and nucleosynthesis epoch that occurs at tempera-

tures T = 1MeV to a few ·10keV . Another event is neutrino decoupling. Briefly,

at high temperatures the neutrino was in thermal equilibrium with the rest of cosmic

plasma. The plasma became transparent for neutrinos at temperature about 1MeV .

This decoupling of neutrinos is very important for nucleosynthesis since it affects the
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neutron-proton ratio just before nucleosynthesis (Since neutrinos decouples the reac-

tion that transfers proton into neutrons simply cannot occur) and hence it leads to

the abundances of light elements that need neutrinos for their formations. Further,

the fact that neutrinos decoupled much earlier than photons implies that the present

neutrino-to-photon ration is less than one. This is consequence of the fact that pho-

tons are additionally heated, after neutrino decoupling, due to the annihilations of

e+ with e−.

If we move further back in time we obtain that the cosmic plasma has more

and more components. At temperatures roughly 0.5MeV there are many electrons

and positrons that are frequently pair created and annihilate: at T > 100MeV

the plasma contains muons and pions. This plasma remains in thermal equilibrium

except possibly for phase transitions

• QCD phase transition

At temperatures above 100MeV (QCD scale) strongly interacting particles

are dissolved into quarks and gluons. This quark-gluon plasma converts into

hadronic matter (mostly pions) during the quark-hadron phase transitions.

Theoretical estimates suggest that the temperature of this phase transition is

about 170MeV .

• Electroweak transition

Briefly, at temperatures well above 100GeV electroweak symmetry is unbroken.

The consequence of this fact is that W and Z bosons are massless. At T ∼
100GeV the phase transition of the electroweak symmetry breaking takes place.

• GUT transition

It is slightly uncertain when we extrapolate back further (equivalently, we go

to higher temperatures), but if we do so we come to the Grand Unification

epoch. The temperature of this epoch is set by GUT scale, TGUT ∼ 1016GeV .

We expect that at this temperature the Grand Unified phase transition occurs.

On the other hand many models of inflation suggest that the Universe never

had such a high temperature after inflation.

Expansion rate and life-time at radiation domination

Now we will discuss in more details the expansion of the Universe in radiation domi-

nated stage where we will presume thermal equilibrium of all ultra-relativistic species
7. In the very early stages of its evolution was filled with an ultra-relativistic gas of

photons, electrons, positrons, etc. At that time the excess of baryons over antibaryons

small fraction (at most 10−19) of the total number of particles. The matter could be

7This presumption is not however valid for neutrinos at temperatures below 1MeV .
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considered as a gas of free particles where their rest masses are small compared to

temperature. In other words the energy density and entropy density corresponds to

the massless species

ρ = 3p =
π2

30
g∗(T )T 4 , s =

2π2

45
g∗(T )T 3 . (4.19)

where the effective number of particle species g∗(T ) is g∗(T ) = gB(T )+ 7
8
gF (T ) where

gB and gF are the number of boson and fermions species degrees of freedom with

masses m � T . For example, for photons gB = 2, gF = 2 for neutrinos and gF = 4

for electrons (Let us sketch the way how to derive the dependence of ρ on T . By

definition

ρ =
∫
d3ke(k)f(

e

T
)

where f( e
T

) is distribution functions and e(k) is an energy. For particles with m� T

we can neglect their rest masses so that e = k. After substitution k
T

= m we obtain

ρ = T 4
∫
d3me(m)f(m) ∼ T 4.)

Generally g∗(T ) increases with increasing T but rather slowly. This follows from

the fact that at higher temperatures more species are ultra-relativistic (say, electrons

contribute at T > 0.5MeV and do not contribute at lower temperatures.)

Let us now list some time scales that are relevant for the early stage of the

evolution of the Universe:

• Nucleosynthesis

The temperature relevant for nucleosynthesis rages from a few MeV to about

70keV . This era begins at

t ∼ 1 s . (4.20)

and ends at

t ∼ 200 s ∼ 3 min . (4.21)

After this brief introduction we will discuss the properties of the early Universe in

brief details.

4.5 Describing Matter

We try to describe matter a perfect fluid described by an energy-momentum tensor

Tµν = (ρ+ p)UµUν + pgµν , (4.22)

where Uµ is the fluid four-velocity, ρ is the energy density at rest frame of the fluid

and p is the pressure in that same frame. By definition the stress energy tensor is

covariantly conserved

∇µT
µν = 0 . (4.23)
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In more complicated examples a fluid will be characterized by quantities in addition

to the energy and pressure. Many fluids have a conserved quantity associated with

them and so we will also introduce a number flux density Nµ which is also conserved

∇µN
µ = 0 . (4.24)

For non-tachyonic matter Nµ is a time-like 4-vector and therefore we can write

Nµ = nUµ . (4.25)

In the same way we can introduce an entropy flux density Sµ. This quantity is not

conserved but rather obeys a covariant version of the second law of thermodynamics

∇µS
µ ≥ 0 . (4.26)

It is useful to resolve Sµ into components parallel and perpendicular to the fluid

4-velocity

Sµ = sUµ + sµ , (4.27)

where sµU
µ = 0. The scalar s is the rest-frame entropy density that can be written

as

s =
ρ+ p

T
. (4.28)

We must also specify an equation of state. Typically we do this in such a way as to

treat n and s as independent variables.

For adiabatic expanding Universe sa3 ≈ const eq. (4.19) implies

T (t) ∼ 1

a(t)
. (4.29)

We see that the temperature cools during the expansion of the Universe. The back-

ground radiation is a result of the cooling of the hot photon gas during the expansion

of the Universe.

4.6 Particles in Equilibrium

The various particles inhabiting the early Universe can be characterized according to

three criteria: in equilibrium vs. out of equilibrium (decoupled), bosonic vs fermionic

and relativistic (velocities near 1) vs. non-relativistic. In this subsection we will

consider species which are in equilibrium with surrounding thermal bath.

Now we must discuss the conditions under which a particle is in equilibrium

with the surrounding thermal plasma. The particles will be in thermal equilibrium

as long as its interaction rate is larger then the expansion rate of the Universe. In

other words, particles have enough time to share the energy among themselves or

equivalently, equilibrium requires that it should be possible for the products of a given

reaction have the opportunity to recombine in the reverse reaction. If the expanding
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of the Universe is rapid enough this will not happen. A particle species for which the

interaction rates have fallen below the expanding rate of the Universe is said to have

frozen out or decoupled. The interaction rate of some particle with the background

plasma is Γ where Γ is inverse of the mean time between the reaction of given particle

species with the thermal background. Now the particle will be decoupled from the

thermal bath when the particle has not time enough to react with thermal bath if

Γ� H , (4.30)

where the Hubble constant H sets the cosmological timescale.

At the early Universe the particles are in thermal equilibrium (unless they are

very weakly coupled). This can be seen from Friedmann equation when the energy

density is dominated by plasma with ρ ∼ T 4 and we have

H2 ∼ ρ⇒ H ∼ √ρ ∼
(
T

MP

)
T (4.31)

so that the Hubble parameter is suppressed with respect to the temperature by a

factor of T/MP . At extremely early times (near the Planck era) the Universe may

be expanding so quickly so that no species are in equilibrium but as the expansion

rate slows the equilibrium becomes possible.

At extremely early times near the Planck era, the Universe may be expanding so

quickly that no species are in equilibrium; as the expansion rate slows, equilibrium

becomes possible. On the other hand the interaction rate Γ for a particle with cross

section σ is typically of the form

Γ = n 〈σv〉 , (4.32)

where n is the number density and v is typical particle velocity. Since n ∼ a−3 the

density of particles will reduce so that the equilibrium can once again no longer be

maintained. In our current Universe no species are in equilibrium with the back-

ground plasma (represented by CMB photons).

Now we review some facts about particles at equilibrium. For a gas of weakly-

interacting particles we can describe the state in terms of a distribution function

f(p) where the three momentum p satisfies

E(p)2 = m2 + |p|2 . (4.33)

The distribution function characterizes the density of particles of given momentum.

The number density, energy density and pressure of some species labeled i are given

by

neqi (T ) =
gi

(2π)3

∫
fi(p)d3p =

gi
2π2

T 3I11
i (∓) ,
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ρeqi (T ) =
gi

(2π)3

∫
E(p)fi(p)d3p =

gi
2π2

T 4I21
i (∓) ,

peqi (T ) =
gi

(2π)3

∫ |p|2

3E(p)
fi(p)d3p =

gi
6π2

T 4I03
i (∓) ,

(4.34)

where

Imni (∓) =
∫ ∞
xi

ym(y2 − x2
i )
n/2(ey ∓ 1)−1dy , xi =

mi

T
, (4.35)

and where gi is number of spin states of the particles (massless photons, gγ = 2,

massive vector bosons Z , gZ = 3.) Further, −/+ refers as before to bosons/fermions.

As usual, particles and antiparticles are treated as separate, for spin 1/2 electrons

and positrons we have ge− = ge+ = 2. In thermal equilibrium at a temperature T

the particles will be in either Fermi-Dirac or Bose-Einstein distributions

f(p) =
1

eE(p)/T ± 1
, (4.36)

where the plus sign is for fermions while the minus sign for bosons.

We can do the integrals over the distribution functions in two opposite limits,

particles which are relativistic T � m and highly non-relativistic T � m. For

relativistic (R) particles that are characterized by condition xi = mi
T
� 1 the integrals

in (4.35) are

bosons : I11
R (−) = 2ζ(3) , I21

R (−) = I03
R (−) =

π4

15
,

fermions : I11
R (+) =

3ζ(3)

2
, I21

R (+) = I03
R (+) =

7π4

120
,

(4.37)

where ζ is Riemann Zeta function and ζ(3) = 1.202. Then we obtain, for relativistic

bosons, following results:

neqi =
ζ(3)

π2
giT

3 ,

ρeqi =
π2

30
giT

4 ,

peqi =
1

3
ρi

(4.38)

and for relativistic fermions

neqi =
(

3

4

)
ζ(3)

π2
giT

3 ,

ρeqi =
(

7

8

)
π2

30
giT

4 ,
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peqi =
1

3
ρi .

(4.39)

On the other hand non-relativistic (NR) limit, where we have x� 1 is the same for

bosons and fermions and we recover the Boltzmann distribution

neqi = gi

(
miT

2π

)3/2

e−mi/T

ρeqi = mini ,

peqi = neqi T � ρeqi .

(4.40)

independently of whether the particle is bosons or fermions. The results given above

imply several interesting facts. For example, since the densities of relativistic parti-

cles are roughly the same, the relativistic particles remain approximately equal abun-

dances in equilibrium. We also see that once the particles become non-relativistic,

they become exponentially suppressed with respect to the relativistic species. This

is a result of the fact that it becomes harder for massive particle-antiparticle pairs

to be produced in a plasma with T � m.

We would like also mention that although matter is much more dominant than

radiation in the Universe today, since their energy densities scale differently, the early

Universe was radiation dominated. We can write the ratio of the density parameters

in matter and radiation as

ΩM

ΩR

=
ΩM0

ΩR0

a

a0

=
ΩM0

ΩR0

(1 + z)−1 . (4.41)

In the same way as we did above we can determine the redshift of the matter-radiation

equality as

1 + zeq =
ΩM0

ΩR0

≈ 3× 103 . (4.42)

From the form of the expression above where we compare the densities that scale as

a−3 for matter and a−4 for radiation it is clear that we have made an assumption

that particles that are non-relativistic today were also non-relativistic at zeq. It can

be shown that this presumption is safe.

At any given time not all particles will, be in fact in equilibrium at a common

temperature T . A particle will be in kinetic equilibrium with the background thermal

plasma, i.e when Ti = T only while it is interacting. In other words as long as the

scattering rate

Γ = n < σv > > H . (4.43)

Here < σv > is the velocity averaged cross-section for 2→ 2 processes such as

iγ → iγ , il± → il± (4.44)
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that maintain good thermal contact between i-particles and the particles (that has

the particle density n) that constitute the background plasma (γ-fotons, l±-refers

to electrons which are abundant down to T ∼ me and remain strongly coupled to

photons through the Compton scattering through the entire Radiation dominate era

so that Te = T always.) We say that i-particle decouple at the temperature Ti when

the condition

Γ(Ti) ≈ H(Ti) (4.45)

is satisfied. Of course no particle is ever truly decoupled since there are always

some residual interactions. On the other hand it can be shown that their effects are

generally negligible.

If the particle is relativistic at this time (mi < Ti) then it will also be in the

chemical equilibrium with the thermal plasma that is characteristic with the con-

dition for chemical potentials of the particles i µi , their anti-particles µi and the

chemical potential of photons µγ

µi + µi = µl+ + µl− = µγ = 0 (4.46)

through processes such as

ii↔ γγ , ii↔ l+l− (4.47)

Then its abundance at decoupling will be just the equilibrium value at the temper-

ature of decoupling

neqi (Ti) =
(
gi
2

)
nγ(Ti)fB.F , (4.48)

where fB = 1 if i is boson and fF = 3
4

if i is fermion.

Then the decoupled particles i will expand freely without interactions so that

their number in a comoving volume is conserved as nia
3 = const and their pressure

and energy density are functions of the scale factor a alone. Even if these particles do

not interact their phase space distribution will retain their equilibrium form (4.36)

with Ti. As long as the particles remain relativistic, Ei and Ti scale as a−1. Initially

the temperature Ti will track the photon temperature T . However as the Universe

cools below to some mass thresholds (in other words temperature is less than some

mass of particles), these massive particles will become non-relativistic and annihilate.

The annihilation will produce additional photons and other interacting particles that

has an effect of the heating of them. On the other hand Ti is not affected and hence

Ti will drop below T and consequently the faction ni/nγ will decrease below its value

at decoupling.

It can be shown that decoupled photons maintain a thermal distribution even if

they are not in thermal equilibrium. This follows from the fact that the thermal dis-

tribution function redshifts into similar distribution function with lower temperature

proportional 1/a. Then we can speak about an effective temperature of relativistic
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species that freezes out at a temperature Tf and a scale factor af so that

afTf = aT (a)⇒ T rel(a) = Tf

(
af
a

)
. (4.49)

For example, neutrinos decouple at T ≈ 1MeV , shortly thereafter electrons and

positrons annihilate into photons and hence transfer energy and entropy into plasma

leaving neutrinos decoupled. Consequently we expect a neutrino background and

current Universe with a temperature of approximately 2K while the photon temper-

ature (that arise from the annihilation of electrons and positrons after decoupling of

neutrinos) is about 3K.

Similar effect occurs for particles which are non-relativistic at decoupling however

there is one important difference. For non-relativistic particles the temperature is

proportional to 1
2
mv2 that has the redshift as 1/a2 and we therefore have

T non−reli (a) = Tf

(
af
a

)2

. (4.50)

The whole picture is as follows: We imagine that the species freeze out while rela-

tivistic or non-relativistic and stay this way afterwards.

Now the notion of the effective temperature allows us to define a corresponding

notion of an effective number of relativistic degrees of freedom that can be defined

as

g∗ =
∑
bosons

gi

(
Ti
T

)4

+
7

8

∑
fermions

gi

(
Ti
T

)4

, (4.51)

where the temperature T is actual temperature of the background plasma assumed

to be in equilibrium while we have taken into account that different species i could

have a thermal distribution with a different temperature that of the photons. Then

the total energy density in all relativistic species comes from adding the contribution

of each species and we obtain a simple formula

ρ =
π2

30
g∗T

4 . (4.52)

We can do the same thing for the entropy density. Since the entropy density of

relativistic particles goes as T 3 rather T 4, we define the effective number of relativistic

degrees of freedom for entropy as

g∗S =
∑
bosons

gi

(
Ti
T

)3

+
7

8

∑
fermions

gi

(
Ti
T

)3

(4.53)

so that the entropy density of relativistic species is then

s =
2π

45
g∗ST

3 . (4.54)

75



For example, in Standard model, we have

g∗ ≈ g∗S


100 for T > 300 MeV

10 for 300 MeV > T > 1 eV

3 for T < 1 MeV

(4.55)

The events that change the effective number of relativistic degrees of freedom are

the QCD phase transition at 300 MeV where quarks and gluons start to form bound

states, and the annihilation of electron-positron pairs at T ≈ 1 MeV .

Thanks to the release of the energy into the background plasma when species

annihilate it is only approximation that the temperature goes as 1/a. It is better to

say that comoving entropy density is conserved so that

s ≈ a−3 (4.56)

which holds in all forms of adiabatic evolutions, entropy is only produced at a process

like a first-order phase transition or out-equilibrium decay. It is expected that the

entropy production from such processes is very small compared to the total entropy

and the adiabatic presumption is excellent approximation for almost the entire early

Universe. If we now combine (4.56) with (4.54) we obtain a better expression for the

evolution of the temperature

T ≈ g
−1/3
∗S a−1 . (4.57)

We see the difference with the naive time dependence T ∼ 1/a. In fact, the temper-

ature will consistently decrease under adiabatic evolution in an expanding Universe

but it decreases more slowly when the effective number of relativistic degrees of

freedom is diminished.

4.7 Thermal relics

As we know particles typically do not stay in equilibrium forever, they density can

be so low that the interactions become infrequent and the particle freeze out. Since

essentially all of the particles in our current universe belong to this category it is

important to study the relic abundance of decoupled species.

We have seen that relativistic or hot particles have a number density that is

proportional to T 3 in equilibrium. Thus a species X that freezes out while still

relativistic will have number density at freeze-out Tf given by

nX(Tf ) ∼ T 3
f . (4.58)

Since this is comparable to the number density of photons at that time and since

after this freeze-out both photons and species X have densities that dilute by a

factor a(t)−3 as the Universe expands, we see that the abundance of X particles

today should be comparable to the abundance of CMB photons

nX0 ∼ nγ0 ∼ 102cm−3 . (4.59)
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We express this estimate as 102 rather as the precise number since the roughness

of this estimate does not warrant such misleading precision. For example, neutrinos

that are light (mν < MeV ) have a number density of nν = 115cm−3 for each species.

Then a corresponding contribution to the density parameter (if they are heavy enough

to be non-relativistic today)

Ω0,ν =
(

mν

92 eV

)
h−2 . (4.60)

Thus, a neutrino with mν ∼ 10−2 eV would contribute Ων ∼ 2× 10−4. We see that

this is not large enough to make neutrinos to be dark matter.

Let us now consider species X that is non-relativistic or cold at the time of

decoupling. In this case it is much harder to calculate the relic abundance of a cold

relic than a hot one simply because the equilibrium abundance of non-relativistic

species is changing rapidly with respect to the background plasma. Then we have

to be quite precise following the freeze-out process to obtain a reliable answer. The

direct calculation typically involves very complicated procedure. We rather give here

reasonable approximate expression. If σ0 is annihilation cross-section of the species

X at temperatures T = mX , then the final number density in terms o the photon

density can be determined to be equal to

nX(T < Tf ) ∼
1

σ0mXMP

nγ . (4.61)

Since the particles are non-relativistic at the time of decoupling, they are certainly

non-relativistic today and their energy density is

ρX = mXnX . (4.62)

Then finally we obtain the density parameter

ΩX =
ρX
ρcr
∼ nγ
σ0M3

PH
2
0

. (4.63)

Numerically, when h̄ = c = 1 we have 1 cm ∼ 2× 10−14 GeV so the photon density

today is

nγ ∼ 100 cm−3 ∼ 10−39 GeV −3 . (4.64)

The present value of the Hubble constant is

H0 ∼ 10−42 GeV (4.65)

and the Planck mass is

MP ∼ 1018 GeV . (4.66)

Then finally (4.63) gives

ΩX ∼
1

σ0(109 GeV 2)
. (4.67)
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We see an interesting fact that ΩX does not depend on mX but it depends on the

annihilation cross-section. Let us elaborate more about this result and consider some

weakly interacting massive particle. The annihilation cross-section of these particles,

since they are weakly interacting, should be σ0 ∼ α2
WGF , where αW is weak coupling

constant and GF is the Fermi constant. Using

GF ∼ (3000 GeV )2 , αW ∼ 10−2 (4.68)

and we obtain

σ0 ∼ 10−9 GeV −2 . (4.69)

Then the density parameter of such particles would be

ΩX ∼ 1 . (4.70)

In other words, a stable particle with weak interaction cross section produces relic

density of order of the critical density today and hence provides a perfect candidate

for cold dark matter.

After this introduction let us present the simplest possible scenario, that, of

course, can be refined by more careful calculations.

Let us again assume that there exists a heavy stable particle X and its anti-

particle X. Let us also presume that the dominant process in which these particles

can be destroyed or created is their pair-annihilation or creation with annihilation

products being the particles of the Standard Model. Let us also presume that there

is no asymmetry between X and X in the early Universe, in other words the densities

X and X are equal to each other. However we have to mention that this is actually

a strong assumption that is valid in many, but not all, realistic extensions of the

Standard Model 8.

Let us outline the overall cosmological behavior of these particles. At hight

temperatures, T � MX , the X- particles are in thermal equilibrium with the rest

of cosmic plasma. There are many X −X pairs in the plasma that are continuously

created and annihilate. As the temperature drops below MX , the equilibrium number

density decreases. At some “freeze-out” temperature Tf the number density becomes

so small so that X and X can no longer meet each other during the Hubble time

and their annihilation terminates. After that the number densities of survived X

and X decreases as a−3(t) and these relic particles contribute to the mass density of

the present Universe. The purpose of the following analysis is to estimate the range

of properties of X particles in which their present mass density is of the order of the

critical density ρc so that X may serve as dark matter candidates.

Let us again assume thermal equilibrium. It is well known that the mean free

path < l > of a particle in a gas depends on the lifetime τann of a non-relativistic

8In fact, the alternative scenario with the generation of X asymmetry is also interesting since it

might be related to baryon asymmetric the density of dark matter.
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X-particle as

σann · v · τann · nX =< l > , (4.71)

where v is mean velocity of X particle, σann is the annihilation cross section at

velocity ν and nX = nX is equilibrium number density

nX = gX

(
mXT

2π

)3/2

e−
mX
T . (4.72)

In order to find the life-time of the non-relativistic particle X we have to take some

reasonable value of < l >. It is natural to presume that it is of order 1 in the natural

units < l >∼ 1. Further, it can be also shown that for non-relativistic velocities the

annihilation cross section takes the form

σann =
σ0

ν
, (4.73)

where σ0 is constant. We will discuss its value later. We should now compare the

life-time with the Hubble time, or annihilation rate Γann = τ−1
ann with the expansion

rate H. At T ∼ mX the equilibrium density is of order nX ∼ T 3 and Γann �
H for not too small σ0. Conversely, the life-time is much smaller than Hubble

time and consequently the annihilation and creation of X − X pairs is rapid and

hence X-particles are in equilibrium with plasma. On the other hand for very small

temperatures T � mX the number density nX is exponentially small and Γann � H

(τann � H−1). Than it is clear that the thermal equilibrium between X-particles

and background plasma is not maintained. In other words the number density nX
gets diluted only because of cosmological expansion.

The freeze-out temperature Tf is determined by the relation

τ−1
ann ≡ Γann ∼ H , (4.74)

where we can still use the equilibrium formula as X particles are in thermal equi-

librium (with respect to annihilation and creation) just before freeze-out. Then we

find

σ0nX(Tf ) ∼ H ∼
T 2
f

M∗
P

, (4.75)

where we have introduced the effective Planck mass

M∗
P =

MP

1.66
√
g∗(t)

, (4.76)

and hence the expansion rate is equal to

H(t) =
T 2(t)

M∗
P

. (4.77)
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The solution of the equation (4.75) gives the freeze-out temperature, up to log terms

Tf ≈
mX

ln(m∗PmXσ0)
. (4.78)

This temperature is quite bit smaller than mX which means that X-particles freeze

out when they are indeed non-relativistic and hence it is natural to call them as cold

dark matter.

At the freeze-out temperature we use (4.75) to get

nX(Tf ) =
T 2
f

M∗
Pσ0

. (4.79)

It is interesting to note that this density is inversely proportional to the annihilation

cross section. The explanation of this fact is that for higher annihilation cross section

the creation-annihilation processes are longer in equilibrium and less X particles

survive.

In order to estimate eh present density X-particles, it is convenient to consider

ratio nX/s where s is the entropy density

s =
2π2

45
g∗T

3 . (4.80)

The point is that during the adiabatic expansion after freeze-out, the entropy density

scales as s ∼ a−3 since in the adiabatic process sa3 = const. In the same way since

we are in the freeze-out regime we have that nXa
3 = const we obtain that nX scales

in the same way nX ∼ a−3. Then, up to a factor of order 1, this ratio at freeze-out is

nX
s
∼ 1

g∗(Tf )M∗
PTfσ0

. (4.81)

At late times, the entropy density, again up to actor of order 1, is equal to the number

density of photons, so the present number density of particles is of order

nX,0
s0

=
(
nX
s

)
freeze−out

⇒

⇒ nX,0 = s0

(
nX
s

)
freeze−out

∼ sγ,0

(
nX
s

)
freeze−out

(4.82)

and the present mass density is

ρX,0 = mXnX,0 =∼ nγ,0
ln(M∗

PmXσ0)

g∗(Tf )M∗
Pσ0

, (4.83)

where we have also used (4.78). The formula above is very interesting since we see

that the present mass density depends mostly on one parameter, the annihilation
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cross section σ0. The dependence on the mass of X-particle is through the logarithm

and g∗(Tf ) is very mild. From this formula we derive the condition that ensure that

X-particles are dark energy candidates, i.e. their present mass density is of order ρc

σ0 ∼
nγ,0

g∗(Tf )M∗
Pρc

ln(M∗
PmXσ0) (4.84)

that leads to the estimate

10−11σ0 < 10−9 GeV −2 , (4.85)

where the uncertainty in the estimate is a consequence of the way we deal with

various numerical factors. In any case the estimate given above tells us what the

relevant range of mass scales is. To see this note that the annihilation cross section

may be parameterized as

σ0 =
α2

M2
, (4.86)

where α is some coupling constant andM is the mass scale (In the calculation above

M2 = GF .). With α ∼ 10−2 the estimate of the mass scale for σ0 ∼ 10−11 is roughly

M∼ 1 TeV . (4.87)

In other words, we very mild assumptions we find that the non-baryonic dark en-

ergy matter may naturally originate from the TeV -scale physics. Then it follows

that one natural candidate for the cold dark matter is neutralino. More precisely,

in supersymmetric extensions of the Standard Model the neutralino-that is mixture

of super-partners of photon, Z-boson and neutral Higgs bosons- is the lightest su-

persymmetric particle that is often stable with the suitable value of the annihilation

cross section. In fact, the search for both direct and indirect signals from neutralino

dark matter is an active area of experimental research.

The mechanism discussed here is of course not the only one mechanism that is

able to model cold dark matter. Other dark matter candidates include very heavy

relics produced toward the end of inflation, axions, gravitinos, massive gravitons and

so on.

4.8 Status of experimental Search for Dark Matter at the Year 2017

As we argued above, the most compelling dark matter candidate is WIMP. On the

other hand the viable parameter space has recently become smaller with the an-

nouncement in September 2016 by PandaX-II Collaboration and Large Underground

Xenon (LUX) Collaboration. In fact, the search for WIMP particles leads to zero

result.

As we know, physicists don’t know what dark matter is. For that reason we have

to have different experiments to detect it. Natural possibility is to try to produce
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dark matter in an accelerator, as for example LHC at CERN and then to analyze

its decay product using particle detectors. Second technique is to use instruments

such as the Fermi-Gamma ray Space Telescope to observe dark matter interaction in

and beyond our Galaxy. This is again indirect detection since the telescope observes

particles that are produced by a collision between dark matter particles.

The third techniques that is used in both the LUX and PandaX-II experiments

is known as ”direct detection”. In this case the detector is constructed on Earth with

massive targets. In the case of LUX and PandaX-II the dark matter particles leave

behind trace of light that can be detected with sensors. The basic principle of these

detectors are following. First of all, LUX is located in South Dakota in the US while

PandaX-II is located in Sichuan, China. The basic block of these two experiments

is a time-projection chamber which is a large tank of ultrapure liquid xenon that

is topped with xenon gas. A particle (dark matter or ordinary matter) that enters

the chamber and interacts with a xenon atom in the liquid generates photons and

electrons. The photons produce signal S1 that is detected by photomultiplier at

the top and bottom of the tank. On the other hand electrons are conducted by an

electric field to the gaseous portion of the detector where they induce a second round

of scintillation (the first round of scintillation was performed by external particles

and leaded to the signal S1) and a signal S2. The pattern of S1 and S2 signals

is different when they interact with a dark matter particle than with an ordnary

particle and exactly this difference allows us to distinguish between these particles.

As we know, WIMP particles weigh many times the mass of the proton with

masses between 10 and 1000 GeV and they interact with matter via a weak force

where the strength of this interaction is quantified by its cross section. The LUX and

PandaX-II experiments are sensitive to a wide range of WIMP candidates. However

in their papers from 2016 both LUX and PandaX-II report no WIMP candidates. As

follows from the experiments sensitivities, these null results tell us that if the WIMP

exists and its mass lies between 10 and 1000 GeV its cross section for interacting with

normal matter is less than an extremely small value. These results say us that dark

matter interactions are much rarer than suggested by many popular hypotheses. In

fact, this no result and lack of evidence for supersymmetry at the LHC forces us to

start to doubt about WIMP hypothesis at least in its simplest form.

4.9 Baryongenesis

The symmetry between particles and antiparticles is firmly established in collider

physics. However then we lead to the following question; why the observed Universe

is composed almost entirely of matter with little or no primordial antimatter.

Outside the particle accelerators the antimatter can be seen in cosmic rays in

the form of a anti protons where the ratio of these andirons to protons is

np
np
∼ 10−4 . (4.88)
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However this ratio is consistent with secondary anti proton productions through

accelerator-like processes

p+ p→ 3p+ p (4.89)

as the cosmic rays stream toward us. In other words there is no evidence for primor-

dial antimatter in our galaxy. Also let us imagine that we have clusters of matter

and antimatter galaxies. Then we could expect that we could detect background of

γ-radiation from nucleon anti nucleon annihilations with clusters. This background

is not observed and so we conclude that there is negligible antimatter on the scale

of clusters.

All these considerations put an experimental upper bound on the amount of

antimatter in the Universe.

In order to study this problem in more details let us introduce the baryon to

entropy ratio

η ≡ nB
s

=
nb − nb

s
, (4.90)

where nB is the difference between the number of baryons and anti-baryons per unit

volume. The range of η was determined recently as is equal to

η = 6.1× 10−10 ± 0.210−10 . (4.91)

At early times, at temperatures well above 100 MeV ,cosmic plasma contained many

quark-anti quark pairs whose number density was of the order of the entropy density

nq + nq ∼ s , (4.92)

while baryon number density was related to densities of quarks and antiquarks as

follows (baryon number of quarks equals 1/3)

4nb =
1

3
(nq − nq) . (4.93)

Hence in terms of quantities characterize the very early epoch, the baryon asymmetry

may be expressed as

η ∼ nq − nq
nq + nq

. (4.94)

We see that there was one extra one extra quark per about 10 billion quark-antiquark

pairs. It is this thiny excess that is responsible for entire baryonic matter in the

present Universe. Thus the natural question arises, as the Universe coolled from early

times to today, what processes, both particle and cosmological, were responsible for

the generation of this very specific baryon assymmetry?

Of course there is no logical contradiction to suppose that this thiny excess of

quarks to antiquarks was built in as an initial condition. Of course, this is not very

satisfactory for physics. Furthermore, inflationary scenario does not provide such an
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initial condition for Hot Big Bang, rather, inflation theory predicts that the Universe

was baryon-symmetric just after inflation. In other words we would like to explain

the baryon asymmetry dynamically.

As pointed by Sakharov, a small baryon asymmetry may have been produced

in the early Universe from initially symmetric state if three necessary conditions are

satisfied:

• Baryon number (B) violation,

• Violation of C (charge conjugation symmetry) and CP (the composition of

parity and C)

• Departure from thermal equilibrium.

The first condition is clear since when we start from a baryon symmetric Universe,

baryon number violation must take case in order the Universe to evolve into the state

with baryon number violation. In other words, if the baryon number were conserved

that this charge would remain constant during time evolution and hence w we would

not observe the baryon number asymmetry.

The second Sakharov criterion is required since, when C and CP are exact

symmetries it can be shown that the total rate for any processes that produces an

excess of baryons is equal to the rate of the complementary process which produces

an excess of antibaryons and so no net baryon number can be created. CP violation

is present either if there are complex phases in the Lagrangian which cannot be

reabsorbed by field redefinition (explicit symmetry breaking) or if some High scalar

field acquires an VEV which is not real (spontaneous symmetry breaking).

Finally, in order to explain the third equilibrium let us calculate the thermal

equilibrium average of the baryon number operator B at temperature T = 1/β

〈B〉T = Tr(e−βHB) = Tr
(
(CPT )(CPT )−1e−βHB

)
=

Tr
(
e−βH(CPT )−1B(CPT )

)
= −Tr(e−βHB) ,

(4.95)

using the fact that (CPT ) commutes with H and cyclicity of the trace. Finally, we

have used the fact that B is odd under (PC). Then from the equation above we see

that in the thermal equilibrium the baryon number is equal to zero and there is not

any generation of baryon number.

The first two Sakharov’s conditions may be investigated only within a given

particle model, while the third condition the departure from thermal equilibrium

may be discussed in a more general way.
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4.10 Baryon Number Violation

At present there are two well understood mechanisms of baryon number non-conservation.

One emerges in Grand-Unified Theories (GUT). Briefly, these GUT describe the

fundamental interactions by means of the unique gauge group G that contains the

Standard Model group

SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

The fundamental idea of GUT is that at energies higher than a certain energy MGUT

the group symmetry is G and that, at lower energies, the symmetry is broken down

to the SM gauge symmetry, possibly through the chain of symmetry breaking. The

motivation for this scenario, whose explanation, however, is beyond the scope of this

review, it the fact that in some models, the (running) gauge couplings of the SM

unify at the scale MGUT ' 2× 1016 GeV .

The interesting fact considering GUT is that the baryon number violation emerges

very naturally in it. Briefly, the mechanisms of the baryon number violation is due

to the exchange of super-massive particles. The scale of these new, baryon number

violating interacting is of order 1016 GeV .

Another mechanism of the baryon number violation is related to the triangle

anomaly in the baryonic current. It exists already in the Standard Model and possibly

it operates in all its extensions. The main feature of this mechanism, as applied to

the early Universe, is that it is effective over a wide range of temperatures

100 GeV < T < 1011 GeV .

In summary, realistic mechanism of baryon number non-conservation are rare, but

there are several ways the baryon asymmetry could have been generated. They differ

by the characteristic temperature at which the asymmetry is produced.

The GUT mechanisms operates at extremely high temperatures

T ∼ 1015 − 1016 GeV

The most well developed source of the baryon asymmetry in this context are B- and

CP - violating decays of ultra-heavy particles. At late times the baryon number is

violated by anomalous electroweak processes.

Electroweak baryogenesis is scenario in which the baryon asymmetry is generated

entirely due to the anomalous electroweak processes. Its generation would occur

at temperature of order 100 GeV which is the energy at which these anomalous

processes are switched off. On the other hand the electroweak baryogenesis is still

under development.

In summary, the observed asymmetry may be explained by a number of mech-

anisms all of which, however, exist in extensions of the Standard Model only. The

problem is that direct proof that any given mechanism is indeed responsible for the

baryon asymmetry.
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4.11 Departure from the Thermal Equilibrium

In some scenarios, such as GUT baryogenesis, the third Sakharov condition is satisfied

due to the presence of superheavy decaying particles in a rapidly expanding Universe.

These processes are called as out-of-equilibrium decay mechanisms.

The underlying idea is simple.If the decay rate ΓX of the superheavy particles

X at the time they become non-relativistic (at the temperature T ∼ MX) is much

smaller than the expansion rate of the Universe, then the X particles cannot decay

on the time scale of the expansion and so they remain as abundant as photons for

T ≤MX . In other words at some temperature T > MX the superheavy particles X

are so weakly interacting so the they decouple from the thermal bath while they are

still relativistic, so that

nX ∼ nγ ∼ T 3 (4.96)

at the time of decoupling.

Then we obtain that at temperature T ' MX they populate the Universe with

an abundance which is much larger than the equilibrium one. This abundance is

precisely the departure from thermal equilibrium needed to produce a final non-

vanishing baryon asymmetry when heavy states X decay in B and CP violating

decays.

It can be shown that the out-of-equilibrium condition requires very heavy states

MX ≤ (1010 − 1016) GeV , (4.97)

if these heavy particles decay through renormalizable operators.

A different mechanism of the departure from the thermal equilibrium can be

found in the electroweak theory.

A further natural way to depart from equilibrium is provided by the dynamics

of the topological defects.

4.12 Neutrino background

As an example of the previous discussion let us consider the fate of neutrinos in

the expanding Universe. The dynamics of the neutrinos and their reactions with

other components of the matter are governed by the Standard model. Then using

the rules of standard quantum field theory one can calculate the reaction rate Γ of

the neutrinos with the rest of the matter (Roughly speaking the inverse Γ−1 is the

average time between collision of the neutrinos with all form of the matter). When

Γ−1 is larger than H−1 (conversely, when Γ is less than H) there cannot occur the

reactions between the neutrinos and the rest of the matter. We say that in this case

neutrinos effectively decouple from the rest of matter. It can be shown that the

relevant ration is given by

Γ

H
≈
(

T

1.4MeV

)3

=
(

T

1.6× 1010K

)3

. (4.98)
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This formula implies that for T ≤ 1.6× 1010 the neutrinos decouple from the rest of

the matter. On the other hand electrons and positrons can still annihilate at slightly

lower temperature. This process increases the number of the photons. As a result

the photon temperature goes up with respect to neutrino temperature (Remember

that it is natural to speak about two different temperatures for two different species

of particles since they have already decoupled.). We can calculate this increase of

temperature as follows. The increase of T is due to the change of degree of freedom

g and is given by

(aTγ)
3
after

(aTγ)3
before

=
gbefore
gafter

=
7
8
(2 + 2) + 2

2
=

11

4
. (4.99)

Let us explain factors given above. In the numerator, one 2 is for electron, one 2

is for positron and the factor 7/8 arises because of fermions. The remaining 2 in

numerator is for photon. In denominator 2 is for photon since they remain after the

annihilation of positrons with electrons. Using the relation above we obtain

(aTγ)after =
(

11

4

)1/3

(aTγ)before =
(

11

4

)1/3

(aTν)before =

=
(

11

4

)1/3

(aTν)after = 1.4(aTν)after .

(4.100)

The first equality is from (4.100), the second follows from the fact that the photons

and neutrinos had the same temperature originally. The third equality follows from

the fact that for decoupled neutrinos aTν are constant. The final result leads to the

prediction that at present the Universe will contain a bath of neutrinos that has

temperature that is lower than of CMBR.

4.13 Primordial Nucleosynthesis

Theory of Big Bang Nucleosynthesis and observations of primordial abundances of

light elements probe the earliest epoch of the evolution of the Universe that is ac-

cessible to observation today. This epoch corresponds to temperatures ranging from

1 MeV to a few 10 keV and age of the Universe from 1 s to 200 s.

Let us briefly review the properties of the matter at this early epoch of the

Universe.

At temperatures above 1 MeV there is a thermal equilibrium with respect to

reactions

p+ e↔ n+ νe . (4.101)

As the Universe cools down below T ≈ 1 MeV neutrons are no longer produced

or destroyed, they concentration (relative to protons) ”freezes out”. Alternatively
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saying, the weak interactions are frozen out and neutrons and protons cannot inter-

convert. The equilibrium abundance of neutrinos at this temperature is about 1/6

the abundance of neutrons due to the slightly larger neutron mass.

When we reach a temperature somewhat below 100 keV the Bing-Bang Nucle-

osynthesis (BBN) begins 9. At that point the neutron/proton ration is about 1/7.

Since it is energetically favorable for nucleons to form He the most part of the free

neutrinos are converted into He. For every two neutrons and fourteen protons we

end up with one helium nucleus and twelve protons. In other words 25 % of the

baryons are converted to helium. There are also trace amounts of deuterium and

lithium. Heavier elements are not synthesized in the Big Bang but require super-

nova explosions in the later universe. These elements remain in the Universe so their

primordial abundance is measurable today.

It is important to stress that Big Bang Nucleosynthesis serves also as a source

of constraints on particle physics. The fact that the temperature of the Universe

reached at least 1 MeV or so and that the expansion was described by know physics

at this stage constrain significantly some extensions of the Standard models.

The most amazing fact about nucleosynthesis is that, given the Universe is ra-

diation dominated during the relevant epoch, the relative abundances of the light

elements depend essentially on one parameter, the baryon to entropy ratio

η ≡ nB
s

=
nb − nb

s
, (4.102)

where nB is the difference between the number of baryons and anti-baryons per unit

volume. The range of η was determined recently as is equal to

η = 6.1× 10−10 ± 0.210−10 . (4.103)

Let us be now more specific. We know that at present the Universe is expanding and

filled with radiation that is very cold today (T0 = 2.73K). If we trace the evolution

of the Universe back in time to earlier epochs that were hotter and denser, the

early Universe is a Primordial Nuclear Reactor during its first 20 minutes (≈ 1000).

In fact,when the temperature of the Universe is higher than the binding energy

of nuclei (∼ MeV ) none of the heavy elements (helium and metals) could have

existed in the Universe. The binding energy of the first four light nuclei, H2, H3, He3

and He4 are 2.22MeV, 6.92MeV, 7.72MeV and 28.3MeV respectively. Since the

average energy in the thermal ansamble is proportional to the temperature we obtain

that these nuclei could be formed when the temperature of the Universe is in the

range (1 − 30)MeV . Surprisingly, the actual synthesis takes place at much lower

temperature Tnuc = Tn ≈ 0.1MeV . The reason for this delay is the high entropy

9Note that the nuclear binding energy per nucleon is typically of order 1 MeV so that one could

expect that BBN would occur earlier. However the large number of photons per nucleons at that

time prevent BBG to occur until the temperature drops below 100 keV .
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of the Universe that implies that the ration of photons to baryons, η−1 is high.

Numerically

η =
nB
nγ

= 5.5× 10−10

(
ΩBh

2

0.02

)
, Ωh2 = 3.65× 10−3

(
T0

2.73K

)3

η10 . (4.104)

Thus, even if the thermal equilibrium is maintained the significant synthesis of nuclei

can occur only at T ≤ 0.3MeV . Then we can expect significant production XA ∼ 1

of nuclear species A at temperature T ≤ TA. However it turns out that the rate of the

nuclear reaction is not high enough to maintain thermal equilibrium between various

species. In order to study non equilibrium abundances in an expanding Universe is

based on rate equations. Let us now review its general concepts.

4.13.1 Rate equations

Consider a reaction in which two particles 1 and 2 interact to form two other par-

ticles 3 and 4. For example, let us consider reaction n + νe = p + e that converts

neutrons into protons in the forward direction and proton into neutrinos in the re-

verse direction. Another example is the reaction p + e = H + γ where the forward

reaction describes recombination of electron and proton forming a neutral hydrogen

atom with the emission of photon. In general we are interested in how the number

density n1 of particle species 1 changes due to the reaction of the form 1+2⇔ 3+4.

Remember that even in case where there is no reaction the number density changes

as n1 ∝ a−3 due to the expansion of the Universe. In other words the quantity that

changes due to the reaction is n1a
3. Further, the forward reaction will be clearly

proportional to the product of the number densities n1n2 while the reverse reaction

will be proportional to n3n4. Hence we can write the equation for the rate of the

change of particle species n1 in the form

1

a3

d(n1a
3)

dt
= µ(An3n4 − n1n2) (4.105)

The left hand side is the relevant rate of change over and above that due to the

expansion of the Universe. On the right hand side the two proportionality constants

have been written as µ and Aµ that generally are functions of time. Usually µ ' σv

where σ is the cross section for the relevant process and v is relative velocity. The

left hand side has to vanish for system in thermal equilibrium with ni = neqi where

the superscript eq denotes the equilibrium densities of the different species labeled

with i = 1 . . . 4. If we insert in the above equation the condition ni = neqi we can

express A as

Aneq3 n
eq
4 − n

eq
1 n

eq
2 = 0⇒ A =

neq1 n
eq
2

neq3 n
eq
4

(4.106)

and than the rate equation becomes

1

a3

d(n1a
3)

dt
= µneq1 n

eq
2 (

n3n4

neq3 n
eq
4

− n1n2

neq1 n
eq
2

) . (4.107)
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On the left hand side we can write d
dt

= aH d
da

that shows that the relevant scale for

this processes is H−1. Clearly when H
µni
� 1 the right hand side becomes ineffective

because the factor µ
H

factor. Then we see that the number of particles of species 1

does not change. In other words when the expansion rate of the Universe is large

compared to the reaction rate ( µ
H
� 1) the given reaction is ineffective in changing

the number of particles. However this result does not mean that the reactions have

reached thermal equilibrium and ni = neqi . In fact, the opposite situation occurs:

The reactions are not fast enough to drive the number densities towards equilibrium

densities and the number densities ”freeze out” at non-equilibrium values. Of course

the right hand side in (4.107) will also vanish when ni = neqi that is the extreme limit

of thermal equilibrium.

Using this general formalism we will now apply it to the process of nucleosynthe-

sis which requires protons and neutrons that combine together to form bound nuclei

of heavier elements like deuterium, helium... The abundance of these elements are

going to be determined by the relative abundance of neutrons and protons in the

Universe. For that reason we should start the discussion with the problem of the

thermal equilibrium between protons and the neutrons in the early Universe. As

long as the inter-conversion between n and p through the weak interaction processes

ν + n↔ p+ e , e+ n↔ p+ ν (4.108)

or their decay

n↔ p+ e+ ν (4.109)

is rapid with respect to the expansion rate of the Universe thermal equilibrium can

be maintained. Then the equilibrium static physics implies that the equilibrium n/p

ration is equal to (
nn
np

)
=
Xn

Xp

= exp(−Q/T ) , (4.110)

where Q = mn − mp = 1.293MeV . For T � Q the factor in the exponent is

approaching zero and we obtain Xn ≈ Xp. However when T drops below about

1.3MeV the neutron fraction will drop exponentially on condition that the thermal

equilibrium is still maintained. However to check weather the thermal equilibrium

is maintained we have to compare the expansion rate with the reaction rate. The

expansion rate is

H =

√
8πGρ

3
, (4.111)

where

ρ =
π2

30
gT 4 , (4.112)

where g ≈ 10.75 represents the relativistic degrees of freedom present at these tem-

peratures. At T = Q this gives H ≈ 1.1s−1. The reaction rate needs to be computed
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from weak interaction theory. The neutron to proton conversion rate is approximated

by

λnp ≈ 0.29s−1

(
T

Q

)5 [(
Q

T

)2

+ 6
(
Q

T

)
+ 12

]
. (4.113)

At Q = T this gives λ ≈ 5s−1 that is more rapid than the expansion rate. But as

T drops below Q this decreases rapidly and the reaction ceases to be fast enough

to maintain thermal equilibrium. Then we have to work out the neutron abundance

using the equation (4.107).

If we denote n1 = nn, n3 = np and n2, n4 = nl where the subscript l stands for

leptons then the equation (4.107) becomes

1

a3

d(nna
3)

dt
= µneql

(
npn

eq
n

neqp
− nn

)
. (4.114)

To proceed we use the fact that µneql is equal to the rate of the neutron to proton

conversion λnp. We also use the relation

neqn
neqp

= exp(−Q/T ) (4.115)

Let us now introduce the fractional abundance

Xn =
nn

(nn + np)
(4.116)

Then the equation (4.114) takes the form

dXn

dt
= λnp((1−Xn)e−Q/T −Xn) , (4.117)

where we have used

Xn +Xp = 1 , Xp =
np

nn + np
(4.118)

and also the fact
1

a3

d(nna
3)

dt
=
a3(nn + np)

a3

dXn

dt
(4.119)

since (nn + np)a
3 is constant. This equation can be integrated numerically and

determine how the neutron abundance changes with time. The neutron fraction falls

out of equilibrium when temperature drop below 1MeV and it freezes to about 0.15

at temperature below 0.5MeV . As the temperature decreases further the neutron

decays with a half life of τn ≈ 886.7sec becomes important and starts to reduce

the neutron number density. Then the only way how the neutrons can survive is

through the synthesis of light elements. As the temperature falls further to T =

THe ≈ 0.28MeV significant amount of He could have been produced if the nuclear

reaction rates were high enough. These reactions are all based on D,He and H
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and do not occur rapidly enough because the mass fraction of D,He and H are still

quite small [10−12, 10−19, 5 × 10−19] at T ' 0.3MeV . The equilibrium deuterium

abundance passes through unity at temperature of about 0.07MeV which is when

nucleosynthesis can really begin.

The production of still heavier elements-even those like C,O which have higher

binding energies than He is suppressed in the early Universe.

4.14 Decoupling of matter and radiation

In the early hot phase the radiation will be in thermal equilibrium with matter. As

the Universe cools below kBT ' (εa/10) is the binding energy of atoms the electrons

and ions will combine to form neutral atoms and radiation will decouple from matter.

This occurs at T ' 3 × 103K. As the Universe expands further these photons will

continue to exist without any further interaction. We shall now discuss some details

related to the formation of neutral atoms and decoupling of photons.

The relevant reaction is

e+ p = H + γ . (4.120)

If the rate of this reaction is faster than the expansion rate then one can calculate

the neutral fraction as follows. Introducing the fractional ionization Xi for each of

the particle species and using the facts that np = ne and np + nH = nB. We also

have Xp = Xe and XH = nH
nB

= 1 − np
nB

= 1 − Xe. The equation that governs the

time evolution of Xe that expresses the equilibrium situation now takes the form

1−Xe

X2
e

≈ 3.84η
(
T

me

)3/2

exp(B/T ) , (4.121)

where η = 2.68 × 10−8(ΩBh
2) is the baryon-to-photon ratio.We define Te as the

temperature at which 90 percent of the electrons have combined with protons. This

implies np = 0.1nB and hence Xe = Xp = 0.1. This leads to the condition

(ΩBh
2)−1τ 3/2 exp[−13.6τ−1] = 3.13× 10−18 , (4.122)

where τ = (T/1eV ). The solution of this equation can be given by iterative proce-

dure. For ΩBh
2 = 1, 0.1, 0.01 we then obtain Tatom = 0.324eV, 0.307eV, 0.292eV .

These results were based on the equilibrium densities. Then it is important

to check that the rate of the reaction p + e ↔ H + γ is fast enough to maintain

equilibrium. It turns out however that this is not fully satisfied and hence we have to

again use the rate equation. The rate equation (4.107) for n1 = ne, n2 = np, n3 = nH
and n4 = nγ and for Xe = ne

ne+nH
takes the form

dXe

dt
= α

(
β

α
(1−Xe)− nbX2

e

)
, (4.123)
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where the recombination rate α is the rate is given by

α = 9.78r2
0c
(
B

T

)1/2

ln
(
B

T

)
, (4.124)

where r0 = e2

m2
ec

2 is classical electron radius. In (4.123) the ration β/α is given as

β

α
=
(
meT

2π

)3/2

exp[−B/T ] (4.125)

Using this result we obtain that the value of Tatom does not change significantly.

4.15 Structure formation and linear perturbation theory

The structure formation is based on the key idea that if there exist small fluctuations

in the energy density in the early Universe, then gravitational instability then leads

in a well understood manner leading to structures like galaxies today. The most

popular model for generating these fluctuations is based on the idea that if the very

early Universe went through the inflation phase then the quantum fluctuations of

the field driving the inflation can lead to energy density fluctuations.

Let us illustrate this idea on the example of the massless scalar field φ minimally

coupled to gravity. The action of the scalar field is

Sφ = −1

2

∫
d4x
√
−ggµν∂µφ∂νφ (4.126)

In spatial flat FRW background this action has the form

Sφ = −1

2

∫
dxdta3(t)[−(∂tφ)2 +

1

a2
(∂iφ)2] (4.127)

so that the equation of motion takes the form

∂t(a
3∂tφ)− a∂i∂iφ = 0 (4.128)

or equivalently

φ̈+ 3H(t)φ̇− 1

a2
∂i∂

iφ = 0 , (4.129)

where ẋ = ∂tx , ẍ = ∂2
t x. Thanks to the homogeneity and isotropy of space it is

natural to work in the momentum representation where we search for the solutions

in the form

eixkφk(t) . (4.130)

If we insert (4.130) into (4.129) we obtain ordinary differential equation for φk in the

form

φ̈k + 3H(t)φ̇k +
k2

a2
φ = 0 . (4.131)
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Note that k is a coordinate momentum. The physical momentum at time t is

p =
k

a
(4.132)

and it depends on time.

Looking on (4.131) we see that the second term in it acts as a friction term.

Then we can consider two regimes with the qualitatively different behavior of the

modes φk: Subhorizion modes:

These modes are characterized condition

p =
k

a
� H . (4.133)

Modes obeying this property are subhorizon modes since their physical length λ ∼
p−1 is much shorter than the Hubble distance H−1 that is a horizon size in matter

and radion dominated Universe. More precisely, for modes obeying the condition

(4.133) we can neglect the friction term in (4.131) and hence we get

φ̈+ ω2
k(t)φ = 0 , ωk(t) =

k

a
(4.134)

This equation has the general solution

φk =
1

a
e
±i
∫ t
t0
dt′ωk(t′)

(4.135)

since

φ̇k = −Hφk + iωkφk ≈ iωkφk ,

φ̈k = iω̇kφk − ω2
kφk = −iHωkφk − ω2

kφk ≈ −ω2
kφk .

(4.136)

This solution (modulo slowly varying prefactor) describes oscillations with the fre-

quently experiencing redshift (The frequency is lowered with time).

Superhorizon modes:

These modes are characterized by condition

p =
k

a
� H . (4.137)

In this case the last term in (4.131) are negligible and the solutions are

constant mode : φk = const ,

growing mode : φk(t) = K
∫ t

t0

dt′

a3(t′)
.

(4.138)
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It is clear that the constant mode is solution of (4.131). The growing mode is solution

as well since

φ̇k =
K

a3
, φ̈k = −3Hφk . (4.139)

The gravitational waves obey precisely the same equations as (4.131) so that they

have exactly the same behavior, in particular, for given k one of the superhorizon

modes blows up at small t. It follows that the whole picture of the FRW Universe

with small perturbations is thus self-consistent only if this modes vanishes at finite

times.

Now recall that for radiation dominated and matter dominated Universe H ∼ t−1

while the scale factor behaves as a ∼ t1/2 for radion dominated Universe and a ∼ t2/3

for matter dominated Universe. Then the ratio of physical momentum to H behaves

as
p(t)

H(t)
∝ t1/2 (4.140)

for radiation dominated Universe and

p(t)

H(t)
∝ t1/3 (4.141)

for matter dominated Universe. These results mean that all modes start as super-

horizon and then enter the horizon. In the scalar mode example the requirement

that the growing mode vanishes determines the initial date for each k up to overall

amplitude. Then we have

φk = ck ,
k

a
� H , (4.142)

and

φk = ck cos
(∫ t

0
dt′ωk(t′)

)
,
k

a
� H . (4.143)

For density perturbations the oscillating behavior means that at late enough times

there are sound waves in the primordial plasma with the wave-lengths that are shorter

than the horizon size at each moment of time. Briefly speaking the fate of the

primordial density perturbations is as follows. They stay constant until they enter

the horizon at radiation or matter dominate stage. After that they start to oscillate

and make the sound waves. The amplitudes of these waves grow during the matter

dominated stage due to the gravitational instability. The regions with higher density

tend to gravitationally attract matter and become even more overdense. The dense

regions collapse and form gravitationally bound structures.

Let us now discuss in more details how the simple description given above is

related to the more realistic situation. As long as the fluctuations are small one

can study their evolution by linear perturbation theory. The basic idea of linear

perturbation theory is well defined and simple. We write the metric as

gµν = gFRWµν + hµν , (4.144)
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where gFRWµν is background FRW metric and hµν is small perturbations that propagate

on the background characterized with gFRWµν . In the same way we perturb the source

energy momentum tensor by

Tµν = T FRWµν + δTµν , (4.145)

where again T FRWµν is the stress energy tensor for the background matter that solves

the FRW equations and δTµν are perturbations. If we linearize the Einstein’s equa-

tions one can relate the perturbed quantities by a relation of the form

L(gFRWµν )hµν = δTµν , (4.146)

where L is second order linear differential operator depending on the background

metric gFRWµν . As wa argued above due to the fact that the background is maximally

symmetric one can separate out time and space and we can write down the equation

for any given mode labeled with the wave vector k as

L(a(t),k)hµν(t,k) = δTµν(t,k) . (4.147)

Then carefull analysis performed in case of metric perturbations implies that the

linearized equations of motion for gravity perturbations take the forms given in the

toy example of the massless scalar fields studied above. More precisely, it can be

shown,after some simplifications and presumption, that are all well justified, that

perturbed metric can be written in the form

ds2 = a2(η)[(1 + 2Φ)dη2 − (1− 2Φ)δabdx
adxb] . (4.148)

In other words we obtain one perturbed scalar degree of freedom Φ. Then it can be

shown that the dynamics of the mode Φ is governed by the equations that has the

same form as (4.131).

5. Inflation cosmology

5.1 Problems of the standard Big-Bang model

The standard Big-Bang model suffers from number of problems. Before we enter

in their discussion we review some properties of the Friedmann models at the early

stage of the Universe.

The question is what can we say about the Hubble parameter H = ȧ
a
, the density

ρ and the quantity k?

At the earliest stages of the evolution of the Universe H and ρ could be arbitrarily

large. On the other hand it is believed that for ρ ≥ M4
P effects of quantum gravity

are significant and the quantum fluctuations of metric exceed the classical value of
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gµν . The standard cosmology where the metric is treated in the classical manner

restricts to the region of phenomena where

ρ ≤M4
P , T ≤MP ∼ 1019GeV, H < MP . (5.1)

We also have to stress that in the expanding Universe thermodynamics equilib-

rium cannot be established immediately but only when the temperature T is suffi-

ciently low. The behavior of the non-equilibrium Universe at densities of order of

the Planck density is very important problem.

Now we come to the list of problems of the standard hot Universe theory

5.2 Problems of the standard scenario

The singularity problem

The Friedmann equations imply that the density of matter in the Universe goes to

infinity as t → 0 and the corresponding solutions cannot be formally continued to

the domain t < 0.

One of the most exciting questions of cosmology is whether anything existed

before t = 0. If there is nothing before t < 0 the question is: where did the Universe

come from?

Studies of the general structure of space-time near a singularity suggest that it is

highly unlikely that this problem could be solved with the framework of the classical

gravitation theory. One hope that these questions could be answered in the context

of string theory. We will review some string theory inspired models in next sections.

However these models are faced with many important and conceptional problems so

that the problem of the birth of the Universe is the most challenging un answered

question in physics.

Flatness Problem

The flatness problem concerns with the observation that the real density of the

Universe, ρ, is known to be very close to the critical density ρc. Recall, that in the

previous section we have studied the Friedmann equation

H2 =
1

3M2
P

ρ− k

a2
, (5.2)

where now MP ≡ 1√
8πG
∼ 2 · 1018GeV is the four dimensional Planck mass. Recall

also that H = ȧ
a

where a(t) is the scale factor with the spacetime metric on the form

ds2 = −dt2 + a2dΣ , (5.3)

97



where dΣ is comoving volume element of space with k = 0,+1,−1 corresponding to

flat, positively curved and negatively curved spaces respectively. As we known we

can rewrite the Friedmann equation in the form

Ω− 1 =
k

a2H2
, (5.4)

where Ω means the sum of particular Ω’s. Note that for ordinary type of matter,
1

a2H2 will increase with time. To see this we use the continuum equation given by

ρ̇+ 3H(ρ+ p) = 0 . (5.5)

If we assume an equation of state of the form

p = wρ , (5.6)

for w = const then the continuity equation can be written as

dρ

da

da

dt
+ 3

ȧ

a
(1 + w)ρ =

dρ

da
+ 3(1 + w)

ρ

a
= 0 , (5.7)

that implies

ρ ∼ a−3(1+w) . (5.8)

If we start with Ω ∼ 1 we obtain that k ∼ 0. Then the Friedman equation is

H2 ∼ ρ⇒ ȧ

a
∼ a−3(1+w)/2 (5.9)

that implies

daa(1+3w)/2 = t⇒ a ∼ t
2

3(1+w) . (5.10)

As a consequence we get that

1

a2H2
∼ t2−

4
3(1+w) . (5.11)

This expression grows with time for any w > −1/3-examples include pressureless

dust with w = 0 and radiation with w = 1/3. Looking on the form of the Friedman

equation (5.4) we see that, unless the Universe is exactly flat (k = 0) and, as a

consequence Ω = 1, Ω will rapidly evolve away from Ω = 1. In order to have a value

of Ω close to 1 today, one would therefore expect to need a value of Ω even closer to

1 in the early Universe. This is the famous Flatness problem. That is, how can Ω be

so close to one?

We can argue alternatively as follows. Looking on the form of Friedmann equa-

tion we see that the curvature contribution is

|Ωcurv| ≡
ρcurv
ρc

=
3MP

a2H2
, (5.12)
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where we have defined the curvature contribution to the Friedmann equation as

|ρcurv| =
3MP

a2
. (5.13)

The present value of the equation (5.12) is

|Ωcurv| < 0.02 . (5.14)

We see that |ρcurv| scales as 1/a2 while the radiation matter and radiation scales

as 1/a3 and 1/a4 respectively. This implies that the curvature contribution to the

Friedman equations was even smaller in the past, for example

nucleosynthesis : |Ωcurv| < 10−16 ,

electroweak epoch , |Ωcurv| < 10−26 .

(5.15)

In other words the spatial curvature of the Universe was tiny at the beginning. The

question is, why the initial conditions were so flat? This flatness problem cannot be

solved within Hot Big Bang theory.

The total entropy and total mass problem

The question is why the total entropy S and total mass M of matter in the

observable part of the Universe with Rp is so large. The total entropy S of the

present Universe can be estimate as follows. The size of the observable part of the

Universe is

lH,0 ∼ 2H−1
0 ∼ 1026 m . (5.16)

The entropy inside a sphere of the size lH,0 is roughly of the order of the number of

photons

S ∼ Nγ ∼ nγl
3
H,0 . (5.17)

Since the number density of photon is equal to

nγ ∼ T 3
γ ∼ (2.7 K)3 , (5.18)

where Tγ is the temperature of the primordial background radiation. Then we finally

obtain

S = 1088 . (5.19)

On the other hand the estimate of the total mass in the observable Universe is

M ∼ l3H,0ρc ∼ 1055g . (5.20)

In the Hot Big Bang theory the expansion of the Universe is almost adiabatic so this

huge entropy should be built in as an initial condition. Certainly this initial condition

is very special. Moreover, the condition of naturality, which is the statement that all

dimensionless quantities should be of order 1 implies that such a initial conditions

with huge entropy are rather un-natural.

99



Horizon problem

We known that the region of the Universe look very similar even though, assuming

normal radiation dominated expansion of the early Universe, thay can not have been

in causal contact. In fact, the horizon problem steams from the existence of particle

horizons in FRW cosmologies. Horizons exist because there is only a finite amount

of time since the Big Bang singularity and thus only a finite distance that photons

can travel within the age of the Universe. Consider a photon moving along a radial

trajectory in a flat Universe. In a flat, Universe, we can normalize the sale factor to

be a0 = 1. A radial null path obeys

0 = ds2 = −dt2 + a2dr2 (5.21)

so the comoving (coordinate) distance traveled by such a photon between times t1
and t2 is

4r =
∫ t2

t1

dt

a(t)
. (5.22)

To get a physical distance as it would be measured by an observer at any time t

simply multiply by a(t). For simplicity, we are in matter dominated Universe for

which

a =
(
t

t0

)2/3

. (5.23)

The Hubble parameter is therefore given by

H =
ȧ

a
=

2

3t
= a−2/3H0 , (5.24)

where H0 is Hubble parameter of today Universe. Note that for a given above we

have that H = 2
3
t and hence H0 = 2

3t0
. Then the photon travels a comoving distance

4r = 2H−1
0 (
√
a2 −

√
a1) . (5.25)

The comoving horizon size when a = a∗ is the distance a photon travels since the

Big Bang

rh(a∗) = 2H−1
0

√
a∗ , (5.26)

where we used the fact that at the Big bang we have a1 = 0. The physical horizon

size, as measured on the spatial hypersurface at a∗ is therefore simply

dh(a∗) = a∗rh(a∗) = 2H−1
0 a3/2

∗ = 2H−1
0

H0

H∗
= 2H−1

∗ . (5.27)

The horizon problem is simply the fact that CMB is isotropic to high degree of

precision even though widely separated points on the last scattering surface are

completely outside each other’s horizons. When we look at the CMB we see the
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Universe at a scale factor aCMB ≈ 1/200. The comoving distance between a point

on the CMB and an observer on Earth is

4r = 2H−1
0 (1−

√
aCMB) ≈ 2H−1

0 . (5.28)

However, the comoving horizon distance for such a point is

rh(aCMB) = 2H−1
0

√
aCMB = 6× 10−2H−1

0 . (5.29)

Hence if we observe two widely separated parts of the CMB they will have non-

overlapping horizons; different patches of the CMB sky were causally disconnected

at recombination. On the other hand they are observed to be at the same temperature

at high precision. This is the core of the famous horizon problem.

Problem of the large-scale homogeneity and isotropy of the Universe

As we argued in introduction all cosmological models are based on the presumption

of absolutely homogeneous and isotropic Universe. Of course Universe is not abso-

lutely homogeneous and isotropic at now at least on small scale and hence there is

no reason to believe that it was homogeneous at its beginning. The most natural

assumption is that the initial conditions at points that are sufficiently far from one

another were chaotic and uncorrelated. On the other hand it was shown by Collins

and Hawking that class of the initial conditions for which the Universe tends asymp-

totically (at large t) to Friedmann Universe is one of measure zero among all possible

conditions. In other words according to this classical analysis Friedmann model is

very unprobable. This is the problem of large scale homogeneity and isotropy.

The galaxy formation problem

We know that Universe contains many inhomogeneities as stars, galaxies and so on.

In order to explain the origin of galaxies one have to presume an existence of initial

inhomogeneities whose spectrum is usually taken to be almost scale invariant. For a

long time the origin of such density inhomogeneities remained obscure.

The baryon asymmetry problem

This is the problem why the Universe is added almost entirely of matter with almost

no antimatter and why on the other hand the number of baryons is much less than

number of photons nB
nγ
∼ 10−9.

The domain wall problem
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It is natural to presume that the symmetry breaking occurs independently in all

causally unconnected regions of Universe. Then at all these regions that comprise

Universe at the time of symmetry-breaking phase transition, both field φ = +µ/
√
λ

and the field φ = −µ/
√
λ. Domains filled by the field φ = +µ/

√
λ are separated

from those with the field φ = −µ/
√
λ by domain walls. It can be shown that the

energy density of these walls is so high so that their existence is inconsistent with

cosmological consequences. Since the theories based on the spontaneously breaking

of gauge symmetry are very appealing and since in these theories domain walls arise

in natural way we meet Domain wall problem. In other words how to deal with such

theories in cosmology.

The primordial monopole problems

This problem is closely related to the domain wall problems. Many theories based

on symmetry-braking mechanism can produce another nontrivial structures that are

nontrivial configurations of the scalar and gauge fields and that are stable. However

it can be shown that these objects are very massive. Moreover it can be also shown

that the monopole density at present would be comparable with the baryon density.

Thanks to the enormous massivity these objects we obtain that the Universe filled of

monopoles is 1015 higher than the critical density. This implies that Universe filled

with such matter would have collapsed long ago. The explanation of the mechanism

how to deal with monopoles is one of the most important problems in cosmology.

Unwanted Relics

We have argued that for correct description of the early Universe the models of

particle physics should be present. However these models contain monopoles and

other topological defects. However the energy density of these objects can be very

big and hence the monopole abundance in GUT is serious problem for cosmology if

GUT have anything to do with reality.

5.3 Inflation as a solution

5.3.1 The General Idea of Inflation

The horizon problem is an extremely serious problem for the standard cosmology.

Cosmological inflation is mechanism that can solve this problem.

The main idea is that the Universe undergoes a period of accelerated expansion

defined as a period when ä > 0 at early times. The effect of this acceleration is to

quickly expand a small region of space to huge size. At this process the spatial cur-

vature of the Universe is reduced and consequently we make the Universe extremely

close to flat. In addition, the horizon size is greatly increased so that distant points

on the CMB actually are in causal contact and unwanted relics are diluted, solving
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the monopole problem. Finally, quantum fluctuations imply that inflation cannot

smooth out the Universe with perfect precision, so there is a spectrum of remnant

density perturbations.

The general idea of inflation is that before Hot Big Bang (but after Planck

era) the Universe was in vacuum-like state and then it went through the era of the

exponential expansion

a(t) = const · e
∫
Hinfldt , (5.30)

where Hinfl is almost constant in time. Due to the exponential expansion a small

patch of the Universe expands to great size. Let us presume that the duration of

inflation tinfl exceeds 140 Hubble times

tinfl >
140

Hinfl

. (5.31)

Let us also presume that the size of the patch is initially at the order Planck size lP =
1
MP
∼ 10−33cm. Then at the time tinf the size exceeds the present horizon size lH,0 ∼

1028cm. It is also clear the Universe flattens out, any initial inhomogeneities are

diluted out. In the end of inflation, the Universe becomes spatially flat,homogeneous

and isotropic at exponentially large spatial scales. This solves the horizon and flatness

problems.

A natural way to ensure that the Universe expands exponentially is to assume

that the matter at inflationary stage is in the vacuum-like state characterized with

the energy density ρinfl that is almost constant in time. At some point this en-

ergy density should transform into conventional energy density of hot plasma. This

transformation is called reheating and after reheating the Hot Big Bang era begins.

During reheating, huge entropy is released and this solves the entropy problems.

5.4 Many models of inflation

Before we come to the more detailed study of the question how the inflation works

we give summary of some models of the inflation theory. The common property of

these model is that the matter with suitable equation of state is in the form of the

scalar field(s).

The initial model of inflation (“old inflation model”) was based on idea that

the scalar field φ was initially in a false vacuum with large potential energy. To

end of inflation, a quantum tunneling from the false vacuum to the true vacuum

was performed. However this model has the problem that it leads to an initially

microscopical bubble of the true vacuum which cannot grow to contain our present

observed Universe. Hence the attention shifted to models in which the scalar field φ

slowly rolls during the inflation.

Models of scalar field-driven inflation can be divided into three groups:

• Small-field inflation
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• Large-field inflation

• Hybrid inflation

Small field inflationary models are based on ideas from spontaneous symmetry break-

ing in particle physics. For example, let us consider the scalar field with the potential

in the form

V (φ) =
1

4
(φ2 − σ2)2 , (5.32)

where we interpret σ as the symmetry breaking scale and λ as a dimensionless cou-

pling constant. The main idea of the small-field models (”new inflation”) was that

the scalar field starts to roll close to its symmetric point φ = 0. At sufficient high

temperature φ = 0 is a stable ground state of the one-loop finite temperature ef-

fective potential VT (φ). When the temperature drops below to some value that is

smaller than Tc, φ = 0 becomes unstable local minimum of VT (φ) and φ can roll

towards a ground state of the zero temperature potential (5.32) with

φgr = ±σ . (5.33)

The problem of this model is that the slow-roll conditions 10(
V ′

V

)2

M2
P � 1 ,

V ′′

V
M2

P � 1 (5.34)

that for the potential (5.32) take the form

φ2

(φ2 − σ2)2
� 1

M2
P

,
3φ2 − σ2

(φ2 − σ2)2
� 1

M2
P

(5.35)

and that have to be valid for inflation to works imply that

σ ∼MP . (5.36)

However this is in contradiction with the fact that we have to presume that σ is

some symmetry breaking scale of the standard quantum field theory while MP is the

scale of the quantum gravity regime where the approximation of the quantum field

theory in curved space time cannot be valid. The potential (5.32) can be changed

to satisfy the slow-roll conditions however this procedure needs several fine-tuning

of the shape of the potential. A further problem of the slow-roll model is that the

initial field velocity must be constrained to be small which is again fine-tuned initial

condition.

As the alternative to the small-field inflationary models are large-field inflation

models that are also known as chaotic inflation. The simplest example is provided

by a massive scalar field with the potential

V (φ) =
1

2
m2φ2 . (5.37)

10Precise definition of these conditions will be given in next section
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In the chaotic inflation scenario it is presumed that the scalar field rolls towards the

origin from large values of |φ|. The slow roll conditions for the potential (??) takes

the form 11

|φ| �MP . (5.38)

Values of |φ| comparable or larger than MP are also required in other realizations

of large-field inflations. The question is whether such a model can consistently be

embedded in a realistic particle physics model, as for example supergravity. In many

these models V (φ) receives supergravity-induced correction terms that destroys the

flatness of the potential for |φ| > MP . The value m ∼ 1013GeV is required in order

to obtain the observed amplitude of density fluctuations.

With two scalar fields it is possible to construct a class of models which combine

some of the nice features of large-field inflation models which is large set of the initial

conditions that lead to inflation with the small-field inflation where the inflation takes

place at sub-Planckian field values. These models are known as Hybrid inflation. For

example, let us consider two scalar fields φ and ξ with the potential

V (φ, ξ) =
1

4
λξ(ξ

2 − σ2)2 +
1

2
m2φ2 − 1

2
g2φ2ξ2 . (5.39)

In the absence of the thermal equilibrium it is natural to assume that |φ| begins at

large values. For large φ the term

1

2
g2φ2ξ2

that serves as an effective mass term for ξ is positive and hence ξ has stable minimum

at ξ = 0. The parameters in (5.39) are chosen such that φ is slowly rolling for values

of |φ| somewhat smaller than MP but the parameters are chosen in such a way

that the potential energy for these fields values is dominated by the first term in

(5.39). The field φ is slowly rolling whereas the potential energy is determined by

the contribution from ξ. Once φ drops to the value

|φ|c =

√
λξ

g
σ . (5.40)

For this value the effective potential for ξ takes the form

V (φc, ξ) =
λξ
4

(φ2 − 2σ2)2 (5.41)

that has three extrema

ξ0 = 0 , V (0) = λξσ
4 ξ± = ±

√
2σ , V (φ±) = 0 (5.42)

11Note that the dimensional analysis that implies that V has dimension [V ] = 4 in mass unit

implies that [φ] = 1.
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that clearly shows that the configuration with ξ = 0 is unstable and decays to the

one of the states ξ± = ±
√

2σ. Since in this case the ground state is not unique we

have a possibility of the formation of topological defects at the end of the inflations.

After the slow-roll conditions break down the period of inflation ends and the

inflation begins to oscillate around its ground state. Since the inflation field φ couples

to other matter fields the energy of the Universe, that at the end of the period of

inflation is stored completely in φ is transferred to the matter fields of the particle

physics Standard model. The description of this process is very complicated,

5.5 How does the inflation work

The key property of the laws of physics that makes inflation possible is the existence

of states of negative pressure. To recognize the effect negative pressure let us again

consider Friedmann equation

ä = −4πG

3
(ρ+ 3p)a ,

H2 =
ȧ2

a2
=

8πG

3
ρ− k

a2
,

ρ̇ = −3H(ρ+ p) . (5.43)

Once again, the metric is given by Robertson-Walker form

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2

]
, (5.44)

where k = 0, 1,−1. From the first equation in (5.43) we see that positive pressure

(ρ is always positive) contributes to the deceleration of the Universe while the neg-

ative pressure can cause acceleration. In other words, negative pressure produces a

repulsive form of gravity.

The characteristic property of the inflation is that the physical wavelengths grow

faster than the size of the Hubble radius

dH =
a(t)

ȧ(t)
=

1

H

as follows from the fact

λ̇phys
λphys

=
1

a(t)λ0

d(a(t)λ0)

dt
=
ȧ

a
= H =

ḋH
dH

+ dH
ä

a
. (5.45)

This equation shows that during inflation when ä
a
> 0 the physical wavelengths be-

come larger than the Hubble radius. However when the physical wavelength becomes

larger than Hubble radius it is causally disconnected from physical processes. The

inflationary era is followed by the radiation dominated and matter dominated stages

where the Hubble radius grows faster than the scale factor and the wavelengths that
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were outside now re-enter Hubble radius. This is the basic mechanism how the in-

flation explains the generation of temperature fluctuations and also the origin of the

emergence of large scale formation: Briefly, quantum fluctuations generated early in

the inflationary stage exit the Hubble radius during inflation and then eventually

re-enter during the matter dominated era.

Remarkably, we can easily find form of the matter that produces negative pres-

sure.

5.6 Slowly-Rolling Scalar Fields

In order the inflation to solve the problems of the standard cosmology it must be

active at extremely early times. Thus we would like to study the earliest times in

the Universe amenable to classical description. It is expected that this is around the

Planck time tP . For that reason we will retain values of Planck mass in the equation

of this section. As we will see there are many models of inflation. In this section we

will restrict ourselves to the study of the model of chaotic inflation.

Consider matter in the form of the scalar field φ that is described with the action

Smatter = −
∫
d4x
√
−g

[
1

2
gµν∂µφ∂νφ+ V (φ)

]
. (5.46)

In field theory the stress energy tensor is defined as

Tµν = − 2√
−g

δSmatter
δgµν

(5.47)

that for the action of the form S = −
∫
d4x
√
−gL takes the form

Tµν = −gµνL+ 2
δL
δgµν

, (5.48)

where we have used
δ
√
−g

δgµν
= −1

2

√
−ggµν . (5.49)

More precisely, for the action (5.46) the stress energy tensor takes the form

Tµν = (∇µφ)(∇νφ)− gµν
[
1

2
gαβ(∇αφ)(∇βφ) + V (φ)

]
, (5.50)

where for the scalar field φ we have ∇αφ = ∂αφ. Let us now restrict to the homoge-

nous case in which all quantities depend only on cosmological time t and we also set

k = 0. A homogenous real scalar field behaves as a perfect fluid with

ρ = T00 =
φ̇2

2
+ V (φ) . (5.51)

The other components of the stress energy tensor take the form

Tij = −gij(
1

2
gµν∂µφ∂νφ+ V ) + ∂iφ∂jφ . (5.52)
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If we define pressure as

p =
1

3

3∑
i=1

Tii (5.53)

we get

p =
φ̇2

2
− V (φ) . (5.54)

Thus any state which is dominated by the potential energy of a scalar field will have

negative pressure.

Note also that the equation of motion for the scalar field are given by

φ̈+ 3Hφ̇+ V ′(φ) = 0 , (5.55)

that can be thought of as a usual equation of motion for a scalar field in Minkowski

space but with a friction term due to the expansion of the Universe. The Friedmann

equation with such a field as a sole energy source is

H2 =
8πG

3

[
1

2
φ̇2 + V (φ)

]
. (5.56)

The accelerated expanssion occurs if the Universe is dominated by an energy compo-

nent that approximates a cosmological constant. In that case the associated expan-

sion rate will be exponential. From (5.51) we see that for φ̇2 � V (φ) the potential

energy of the scalar field is the dominant contribution to both the energy density

and pressure ant the resulting equation of state is p = −ρ that has the same form as

the state equation for cosmological constant.

More technically, the slow-roll approximation for inflation means that φ̈ term in

(5.55) is neglected with respect to the potential energy. In this case the scalar field

equation of motion and the Friedmann equation become

φ̇ = − V ′

3H
,

H2 =
8πG

3
V (φ) .

(5.57)

The conditions when we can neglect φ̇ with respect to V (φ) are conveniently char-

acterized with so named slow roll parameters

ε =
M2

P

2

(
V ′

V

)2

, η = M2
P

V ′′

V
, (5.58)

where

8πG = M−2
p . (5.59)
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It is easy to see that the slow-roll conditions yield inflation. Recall that inflation is

defined by
ä

a
> 0 (5.60)

that using the fact that

Ḣ =
äa− ȧ2

a2
⇒ ä

a
= Ḣ +

(
ȧ

a

)2

or alternatively
ä

a
= Ḣ +H2 . (5.61)

Then the inflation occurs when
Ḣ

H2
> −1 . (5.62)

But in slow roll

2ḢH =
8πG

3
V ′φ̇ = −8πG

9

V ′2

H
(5.63)

and hence
Ḣ

H2
= −4πG

9

V ′2

H4
= − 1

16πG

(
V ′

V

)2

= −ε (5.64)

which will be small. Smallness of the second parameter η ensures that inflation will

continue for a sufficient period.

It is useful to have a general expression that describes how much inflation occurs

once it has begun. Such a quantity is the number of e-folds defined by

N(t) ≡ ln

(
a(tend)

a(t)

)
. (5.65)

Usually we are interested in how many e-folds occur between a given field value φ

and the field value at the end of inflation φend where ε(φend) = 1. To do this we

express N(t) as

N(t) = ln

(
a(tend)

a(t)

)
=
∫ a(tend)

a(t)

da′

a′
=

=
∫ tend

t

ȧ

a
dt′ =

∫ tend

t
Hdt′ =

∫ φend

φ
H
dφ̃
˙̃φ

=

= −3
∫ φend

φ
H2dφ̃

V ′
= − 1

M2
p

∫ φend

φ

V

V ′
dφ̃ .

(5.66)

The problem of the initial conditions for inflation is very subtle. In case of chaotic

inflation in which we assume that the early Universe emerges from the Planck epoch
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with the scalar field taking different values in different part of the Universe with

typically Planckian energies.

Let us now consider some examples of the potential that could lead to inflation.

We start with the simple monomial

V = λM4−α
P φα . (5.67)

For potential above we obtain following slow roll parameters

ε =
α2M2

P

2φ2
, η = α(α− 1)

M2
P

φ2
. (5.68)

Inflation starts at a large value of φ and the inflaton then rolls slowly towards the

minimum with increasing ε and η. Inflation ends when the slow roll conditions are

saturated,

φ ∼ λMP . (5.69)

The number of e-foldings we obtain before this happens is given by

N = ln
a(te)

a(ti)
=

(
Hdt =

da

a
⇒
∫
Hdt = ln(af )− ln(ai)

)∫ te

ti
Hdt =

=
∫ φe

φi
H
dφ

φ̇
= −

∫ φe

φi

3H2

V ′
dφ = − 1

M2
P

∫ φe

φi

V

V ′
dφ = − 1

M2
Pα

∫ φe

φi
φdφ =

=
φ2
i

2M2
Pα
− 1

4
≈ 1

2αM2
P

φ2
i

(5.70)

that implies

φi =
√

2αNMP �MP . (5.71)

Using this initial value φi we can determine the values of slow roll parameters at ti

εi ∼
α

4N
, η ∼ α− 1

N
. (5.72)

Another example of the inflation potential is

V = V0e
−
√

2
p

φ
MP (5.73)

with the slow roll parameters

ε =
1

p
, η =

2

p
. (5.74)

Recall that for this potential we can combine the equation of motion to get

φ̇ = −MP√
3

V ′√
V

=

√
2

3p

√
V (5.75)
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that has the solution

V ∼ 3M2
4p

2

t2
(5.76)

and hence

H2 ∼ p2

t2
⇒ ln a ∼ p ln t⇒ a ∼ tp . (5.77)

To gain more insight in the idea of inflation note that in most inflation models

the energy density ρ is approximately constant leading to exponential expanssion of

the scale factor. In fact, using p = −ρ in the Friedmann equation we get

ä =
8πG

3
ρa (5.78)

that in the approximation of ρ = const can be solved with the ansatz a = eλt that

inserted in the equation above implies

λ2 − 8πG

3
ρf = 0⇒ λ =

√
8πG

3
ρf , (5.79)

where ρf is constant energy density.

In the original model of inflation the state that drove the inflation involved a

scalar field in a local (but no global) minimum of its potential energy.The scalar

field state employed in the original version of inflation is called a false vacuum since

the state temporally acts as if it were the state of lowest possible energy density.

Classically this state is stable that there is no possibility how the scalar field crosses

a potential energy barrier that separates it from the states of lower energy. However

quantum mechanically this state would decay through tunneling. Initially it was

hoped that this tunneling could successfully ends an inflation but it was soon found

that the randomness of the bubble formation when the false vacuum decayed would

produced large inhomogeneities.

This problem was solved in the new inflation scenario proposed by Linde. In

this theory the inflation is driven by an scalar field with the potential in the form in

the form

V = −A
2
φ2 +

B

4
φ4 (5.80)

that has minima at φ = 0, V (0) = 0 that is a false vacuum and also minima at

φ± = ±
√

A
B

with V (φ±) = −A2

4B
. This scalar field is called inflaton. If this theory

the inflation is driven by the scalar field on the plateau of the potential energy

diagram (region around the point φ = 0). If this plateau is flat enough, such a state

can be stable enough for successful inflation. Soon after the introduction of the new

inflation scenario it was shown that the inflaton potential need not have either a local

minimum or a gentle plateau: This new scenario is known as a chaotic inflation.
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5.7 Solving the problems of standard cosmology

To demonstrate the fact that inflation can solve the problems of the standard cos-

mology let us again consider the potential with the simplest form

V (φ) =
1

2
m2φ2 . (5.81)

With this potential the Friedmann equation takes the form

φ̇ = −m
2φ

3H
,H =

m√
6MP

φ (5.82)

and we find

φ = φ0 −
√

2

3

m

MP

t (5.83)

and

a = C exp[
m√
6MP

(φ0t−
√

2MP

2
√

3
t2)] = a0 exp[

1

4M2
P

(φ2
0 − φ2)] . (5.84)

The period of time during the solution above is valid ends at t ∼ 4t at which

a(4t) ∼ a(0) exp(
1

ε2
) . (5.85)

If we take a typical value for m for which ε < 10−4 we obtain

a(4t) ∼ a(0)× 102.7×108

. (5.86)

This has remarkable consequence. A proper distance LP at t = 0 will inflate to a size

10108
cm after a time 4t ∼ 5× 10−36 s. As we know the size of observable Universe

today is H−1
0 ∼ 1028 cm. Therefore, only a small fraction of the original Planck

length comprises today’s entire observable Universe.

General arguments

Inflation is not really a theory, but instead it is a paradigm, or class of theories.

Each specific model of inflation makes definitive predictions but the class of the

models as a whole can be tested only by looking for generic features that are common

for all models. Nevertheless, there are number of features of the Universe that seem

to be characterize consequences of inflation. The basic arguments for inflation are

as follows:

• The Universe is big

We know that Universe is very large; the visible part of the Universe contains

about 1090 particles. Most of scientists believe that the creation of Universe

can be explained in scientific terms. Thus we think about the theory that could
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explain how the Universe got so be so big. Such a theory has to explain the

number of particles, 1090 or more. Simple way to get such a huge number, with

small number as an input, is for the calculation to involve an exponential. The

exponential expansion of inflation can explain this huge number. Moreover,

inflationary cosmology suggests that, even though the observed Universe is

incredible large, it is only a small fraction of the entire Universe.

• The Hubble Expanssion

In standard FRW cosmology the Hubble expanssion is part of the postulates

that define the initial conditions. But the inflation offers the possibility of

explaining how the Hubble expansion began.

• Homogeneity and Isotropy

As we have shown before the degree of uniformity of Universe is starling. The

intensity of the cosmic microwave background radiation is the same in all di-

rections. The cosmic background radiation was released 400000 years after big

bang after the Universe cooled enough so that the opaque plasma neutralized

into a transparent gas. The cosmic background radiation photons have mostly

been traveling on straight lines since then so they provide an image of what the

Universe looked like at 40000 years after big bang. The observed uniformity of

radiation therefore implies that the observed Universe had become uniform in

temperature by that time. In standard FRW cosmology a simple calculation

shows that the uniformity could be established so quickly if signals could prop-

agate at about 100 times the speed of light a proposition clearly contradicting

the known laws of physics.

In inflationary cosmology the uniformity is easily explained. It is created ini-

tially on microscopic scales by thermal thermal equilibrium processes and then

inflation takes over and stretches the regions of uniformity to become large

enough to encompass the observed Universe and more.

• Flatness problem

The problem concerns the value of the ration

Ωtot ≡
ρtot
ρ0

, (5.87)

where ρtot is total mass density of the Universe and where ρ0 = 3H2

8πG
is the

critical density that would make the Universe spatially flat (In ρtot the vacuum

energy, it is nonzero, is included.)

There is now general agreement that Ωtot lies in the range

0.1 ≤ Ω0 ≤ 2 , (5.88)
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but it was very hard to pinpoint the value with more precision. Despite this

large range the value of Ω at early times is highly constrained, since Ω = 1

is an unstable equilibrium point of the standard model evolutions. Thus, if Ω

was exactly equal to one, it would remain exactly one forever. On the other

hand if Ω differs slightly from one in the early Universe, that difference-whether

positive or negative, would be amplified with time. More generally, it can be

shown that Ω− 1 grows as

Ω− 1

{
t (during the reaiation− dominated era)

t2/3 (during the matter− dominated era)
(5.89)

It was shown that at t = 1s when the processes of big bang nucleosynthesis

were just beginning, Ω must be equal to one to an accuracy of one part of 1015.

Classical cosmology cannot explain this fact. In the context of modern particle

physics cosmology, where we try to push all thinks all the way back to Planck

scale 10−43sec the problem becomes even more severe.

While this extraordinary flatness of the early Universe has o explanation in

classical FRW cosmology, it is a natural prediction for inflation cosmology.

During the inflationary period, we have following relation

Ω− 1 ≈ e−2Hinf t , (5.90)

where Hinf is Hubble parameter during inflation. Thus, as long as there is a

sufficient period of inflation, Ω can start at almost any value and it will be

driven to unity by the exponential expansion. Moreover, recent observation

favored value of Ω0 to be equal to Ω0 = 1.02 ± 0.02 according with recent

WMAP results that is in beautiful agreement with inflation.

• Absence of magnetic monopoles

All grand unified theories predict that there should be, in the spectrum of

possible particles,extremely massive particles carrying a net magnetic charge.

It was shown in the context of the standard cosmology that magnetic monopoles

would be produced so strongly so that they would overweigh everything else

in the Universe by a factor of about 1012. Such a large mass density would

cause that the Universe would come to its big crunch in about 30.000 years.

Inflation is simplest known mechanism to eliminate monopoles from the visible

Universe even though they are still in the spectrum of possible particles. The

monopoles are eliminated simply due to the fact that inflation diluted them to

a completely negligible level.

• Anisotropy of the cosmic microwave background radiation

114



The process of inflation smooths the Universe completely. On the other hand

the density fluctuations are generated as inflation ends by the quantum fluc-

tuations of the inflaton field. The general properties of these fluctuations are

that are adiabatic, Gaussian, and nearly scale-invariant.

5.8 Reheating and Preheating

The great strength of inflation is its ability to redshift away all unwanted relics, such

as topological defects. However during this process radiation and dust-like matter

are similarly redshifted away to nothing so that at the end of inflation the Universe

contains nothing but the inflationary scalar field condensate. The question is how

does the matter arise and how is the Universe reheated?

The problem of reheating is very complicated and complex. In fact, the theory

of reheating of the Universe after inflation is the most important application of the

quantum theory of particle creation since almost all matter constituting the Universe

was created during this process.

Now we sketch the standard picture.

Inflation ends when the slow-roll conditions are violated and the field begins

to fall towards the minimum of the potential. Initially all energy density is in the

inflation however now this energy is damped by two possible terms. Firstly, the ex-

panssion of the Universe naturally damps the energy density. Secondly, the inflation

may decay into other particles, such as radiation or massive particles, both fermionic

or bosonic. To describe this process one introduce a phenomenological decay term

Γφ into the scalar field equation. For example, if we consider the fermions only, then

the rough expression for how the energy density evolves is

ρ̇φ + (3H + Γφ)ρφ = 0 . (5.91)

It can be shown that the inflaton undergoes damped oscilations and decays into

radiation that equilibrates rapidly at a temperature known as the reheat temperature

TRH .

More preciselly, early theory of reheating of Universe after inflation were based

on the idea that the homogeneous inflation field can be represented as a collection

of the particles of the field φ. Put differently, we expect that inflation field has the

same form as the ordinary quantum field in the flat spacetime. Then we can model

reheating as a decay of each particle separately and this process can be studied in

the standard perturbative description of particle decay.Typically, it takes thousands

of oscillations of the inflaton field until it decays into usual elementary particles by

this mechanism.

In case of bosons the situation is more complicated since now inflaton oscilations

may give rise to parametric resonance that is characterised by an extremely rapid

decay that results into distributions of products that are far from equilibrium and
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only much later settles down to an equilibrium distribution at energy TRH . Such

a decay due to the parametric resonance is known as preheating. The parametric

resonance is an example of the coherent field effect that leads to the homogeneous field

decay much faster than would be predicted by perturbative effects. These coherent

effects produce high energy, nonthermal fluctuations that could have significance for

understanding developments at the early Universe, as for example baryogenesis.

5.9 Quantum fluctuations

The key problem is how to test an inflation. The answer is the structure formation.

As we have seen an important reason to involve an inflation is to make the Universe

smooth and flat. However as we observe every day there is a large amount of structure

in Universe. This structure can be traced back to subtle variations in the matter

distribution during the time when the cosmic microwave background was released.

The naive application of inflation in fact excludes such non-uniformity. It is a nice

example of the application of the quantum field theory in curved background that

explains the emergence of non-uniformity.

The main point is that inflation magnifies microscopic quantum fluctuation to

cosmic size and hence provides seeds for structure formations. It is very interesting

that then the details of physics at the highest energy scales is therefore reflected

in the distribution of galaxies and other structures on large scales. More preciselly,

the fluctuations start at their smallest scales and grow larger (in wavelength) as

the Universe expands. Eventually they become larger than the horizon and free.

Intuitively, the different parts of wave can no longer communicate with each other

since light can not keep up with the expanssion of Universe. This is a consequence

of the fact that the scale factor grows faster than the horizon which is a defining

property of an accelerating and inflating Universe. At a later time, when inflation

stops, the scale factor will start to grow slower than the horizon and the fluctuations

will eventually come back within the causal horizon.The fluctuations will then appear

as acoustic waves in the plasma and hence they will affect the CMB.

Let us now study this problem in more details. We assume that metric as well

as the inflaton can be split into a classical background piece and a piece due to

fluctuations according to

gµν = g(0)
µν + hµν(τ,x) ,

φ = φ(0) + δφ(τ,x) ,

(5.92)

where for convenience we have introduced conformal time τ such that the metric is

given by

ds2 = a(τ)2(dτ 2 − dx2) . (5.93)
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Since the background metric is homogenous it is convenient to Fourier transform the

fluctuation mode δφ as

δφ(τ,x) =
1

(2π)3/2

∫
dkδφke

ikx . (5.94)

Since we can presume that fluctuation are small in magnitude we can neglect the

potential term for the fluctuation mode δφ so that its equation of motion takes to

form
1√
−g

∂µ
[√
−ggµν∂νδφ

]
= 0 (5.95)

that using the (5.93) takes the form

1

a2
δφ′′ +

2a′

a
δφ′ − 1

a2
∂i∂

iδφ = 0 , (5.96)

where (. . .)′ = d(...)
dτ

. Finally, using (5.94) we obtain differential equation for mode

δφk

δφ′′k + 2
a′

a
δφ′k + k2δφk = 0 . (5.97)

If we introduce the rescaled mode µk = aδφk so that

δφ′k =
µ′k
a
− µka

′

a2
, δφ′′k =

µ′′k
a2
− 2

µ′ka
′

a2
− µka

′′

a2
+ 2

µk(a′)2

a3
(5.98)

the equation (5.97) can be transformed into

µ′′k +

(
k2 − a′′

a

)
µk = 0 . (5.99)

It can be shown that the metric fluctuations can be reduced to two polarizations

obeying an equation identical to the one for the scalar fluctuations. In what follows

we will consider the scalar fluctuations only.

To proceed let us presume that the conformal factor depend on conformal time

as

a ∼ τ 1/2−ν , (5.100)

where ν is a constant. An important example is a ∼ eHt with H = const. where the

change of coordinates gives

dτ

dt
=

1

a(t)
= e−Ht ⇒ e−Ht = −Hτ ⇒ a(τ) = − 1

Hτ
. (5.101)

Comparing with (5.100) we find that −1 = 1/2 − ν ⇒ ν = 3/2. Note also that the

physical range of τ is −∞ < τ < 0. Using now (5.100) the equation for fluctuation

(5.99) takes the form

µ′′k +
(
k2 − 1

τ 2

(
ν2 − 1

4

))
µk = 0 . (5.102)
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It is nice that the equation given above has solution known as a Hankel function.

The general solution is given by

fk(τ) =

√
−τπ
2

(
C1(k)H(1)

ν (−kτ) + C2(k)H(2)
ν (−kτ)

)
, (5.103)

where C1(k) and C2(k) are to be determined by initial conditions.

When we quantize this system we need to introduce oscillators ak(τ) and a†−k(τ)

such that

µk =
1√
2k

(
ak(τ) + a†−k(τ)

)
,

πk = µ′k(τ) +
1

τ
µk(τ) = −i

√
k

2

(
ak(τ)− a†−k(τ)

)
, (5.104)

obey standard commutation relation. It is important to stress that these operators

are time dependent and can be expressed in terms of oscillators at a specific moment

in time using the Bogolubov transformations

ak(τ) = ukak(τ0) + vk(τ)a†−k(τ0) ,

a†−k(τ) = u∗k(τ)a†−k(τ0) + v∗k(τ)ak(τ0) ,

(5.105)

where

|uk(τ)|2 − |vk(τ)|2 = 1 (5.106)

Then we can write the quantum field µk as

µk(τ) = fk(τ)ak(τ0) + f ∗k(τ)a−k(τ0) , (5.107)

where

fk(τ) =
1√
2k

(uk(τ) + v∗k(τ)) (5.108)

is given in (5.103).

Now we come the key question that is what are the initial conditions? The

ussual choice is to consider the infinite past and choose a state annihilated by the

annihilation operator

ak(τ0) |0, τ0〉 = 0 , (5.109)

for τ0 → −∞. However there is great debate about this choice in the past and

is commonly known as a Problem of transplanckian physics. However we will not

discuss this issue in this section and we will continue according to common practise.

From (5.104) we get that

πk(τ0) |0, τ0〉 = −ı

√
k

2
a†−k |0, τ0〉 = −ikµk(τ0) |0, τ0〉 . (5.110)
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Since the Henkel functions behave as for τ0 → −∞

H(1)
ν (−kτ) ∼

√
− 2

kτπ
e−ikτ ,

H(2)
ν (−kτ) ∼ H(1)∗

ν (−kτ) ,

(5.111)

we find that the vacuum choice corresponds to C2(k) = 0 and |C1(k)| = 1.

In summary we have determined the quantum fluctuation and now we would

like to see how they act on CMB. To do this we compute the size of the fluctuation

according to

P (k) =
4πk3

(2π)3

〈
|δφk|2

〉
=

k3

2π2

1

a2

〈
|µk|2

〉
=

k3

2π2

1

a2
|fk|2 =

k3

2π2

1

a2

| − πτ |
4
|H(1)

ν (−kτ)|2

(5.112)

where 〈(. . .)〉 mean the vacuum expectation value with respect to the sate |0, τ0〉.
Note that we are working in Heisenberg representation where the quantum mechan-

ical operators evolve with time while states not.

Now we should calculate (5.112) at late times, namely τ → 0. In this limit the

Hankel function behaves as

H(1)
ν (−kτ) ∼

√
2

π
(−kτ)−ν (5.113)

and hence (5.112) for τ → 0 takes the form

P ∼ 1

4π2

1

a2
(−τ)1−2νk3−2ν ∼ 1

4π2
H2k3−2ν . (5.114)

For ν = 3/2 and for slow roll when H for τ → 0 is almost constant we can set the

scale of the fluctuations. In fact, we find the well known scale invariant spectrum for

ν = 3/2

P =
1

4π2
H2 . (5.115)

It can be shown that this is more or less the whole story in case of the gravitational,

or tensor, perturbations. The scalar fluctuations obey similar equation

Ps ∼
(
H

φ̇

)2
1

4π2
H2 . (5.116)

Ussualy we express the deviation from the scale invariance by introducing spec-

tral indices according to

ns − 1 =
d lnPs
d ln k

= 3− 2νs ,

nT =
d lnPT
d ln k

= 3− 2νT ,

(5.117)
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where νs refers to the scalar perturbations and νT refers to the gravitational, or tensor

perturbations. While not clear from our simplified analysis, the ν ′s need not be the

sam in the two cases. Observations show that ns is very close to 1 consistent with the

basic idea of inflation. It is extreme important to find any slight deviation from the

scale invariant vale which could give important information about the inflationary

potential.

In fact, the flatness of the spectrum of density fluctuations, together with flatness

of the Universe Ω = 1 constitute the two most robust predictions of inflationary

cosmology. On the other hand there is an important difference between the prediction

of flatness of the Universe and the flatness of the spectrum of perturbations of metric.

It is difficult (though possible) to construct an inflationary model deviating from the

prediction Ω = 1. On the other hand the situation with the flatness of the spectrum

is opposite: It is very difficult (though possible) to construct a model with an exactly

flat spectrum of perturbations of metric. In this sense, existence of a small deviation

of the spectrum of inflationary perturbations from the flat spectrum (i.e. breaking

of the scale invariance of the spectrum) represents an additional robust prediction of

inflation.

5.10 Eternal Inflation

The eternal inflation scenario is based on the discovery of the process of self-reproduction

of inflationary Universe.In fact, this process exists in old inflationary theory and in

the new one but its significance was appreciated after discovery of eternal inflation

in the simplest versions of the chaotic inflation scenario.

In the case of the new inflation, the exponential expansion occurs as the scalar

field rolls from the false vacuum state at the peak of the potential energy towards

to the true vacuum. Remarkably, it was shown very briefly after introduction of this

model that the new inflation scenario is generically eternal. The key point is that,

even though classically the field would roll off the hill, quantum mechanically there

is always an amplitude for it to remain at the top.

The time scale for the decay of the false vacuum is controlled by

m2 = − ∂2V

∂2φ

∣∣∣∣∣
φ=0

, (5.118)

which is the negative mass-squared of the scalar field when it is at the top of the

hill on the potential. This is a free parameter of each model but m has to be small

compared to Hubble constant or lese the model does not lead to enough inflation.

In other words, for parameters choosen so that the inflation works, the expo-

nential decay of false vacuum is slower than an exponential expanssion. Even if the

false vacuum is decaying, the expansion outruns the decay and the total volume of

false vacuum actually increases with time rather than decreases. Thus inflation does

not end at all places at once,instead it ends at localized patches, in a succession
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that continues at infinitum. Each patches essentially a whole Universe so that it

can be said that inflation produces not just one Universe but an infinite number of

Universes.

In the context of the chaotic Universe models the situation is slightly subtle

even if it was shown by A. Linde that these models are eternal as well.We know that

inflation occurs as the scalar field rolls down a hill of the potential energy diagram.

As the field rolls down the hill quantum fluctuations will be superimposed on top

of the classical motion. The best way to think about this is to ask what happens

during one time interval of duration 4t = H1 (Hubble time) in a region of one

Hubble volume H3. Suppose that φ0 is the average value of φ in this region at the

start of the interval. By definition of a Hubble time the rate of the expanssion is

given by

a(t+4t)/a(t) = eH4t = e . (5.119)

This means that the change of volume is

V (t+4t)/V (t) = a3(t+4t)H−3/(a3(t)H−3) = e3 (5.120)

Since e3 ≈ 20 we see that volume will expand by a factor 20. Since correlations are

extended typically over one Huble length if follows that in the end of the Hubble

time the initial Hubble size region grows and breaks up into 20 independent Hubble

sized regions.

During the time interval 4t the classical field φ is rolling down the hill. On the

other hand the classical change in the field 4φcl during the time interval 4t is going

to be modified by quantum fluctuations 4φqu which can drive the field upwards or

downward relative to classical trajectory. For any one of the 20 regions at the end

of the Hubble time we can describe the change of the field as

4φ = 4φcl +4φqu . (5.121)

In the crude approximation the fluctuation is treated as a free quantum field. This

fact implies that 4φqu the quantum fluctuation averaged over one of the 20 Hubble

volumes at the end, will have a Gaussian probability distribution, with a with of

order H/2π. Then there is then a probability that the sum of the two terms on the

right hand side will be positive-that the scalar field will fluctuate up instead down.

As long as the probability is bigger than 1 in 20 then the number of inflating regions

with φ > φcl will be larger at the end of the interval than at the beginning. This

process will then go on forever so inflation will never end.

We see that the condition for an existence of eternal inflation is that the proba-

bility for the scalar field to go up must be bigger than 1/e3 ≈ 1/20. It can be shown

that criterion implies the relation

H2

φ̇cl
> 3.8 (5.122)
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The probability that 4φ is positive tends to increase as one considers larger and

larger values of φ so that sooner or later one reaches the point when the inflation

becomes eternal. In fact for that reason we think that inflation is almost always

eternal.

The eternal inflation follows from the observation that in many models large

quantum fluctuations that are produced during inflation may locally increase the

value of the energy density in some parts of the Universe. These reasons then expand

at a greater rate than their parent domains and quantum fluctuations in them lead

to production of new inflationary domains which expand even faster. This leads to

an eternal process of self-reproduction of the Universe.

In order to understand the process of self-reproduction we should remember that

the processes separated by distances l greater than H−1 proceed independently one

another. This is a consequence of the fact that during an exponential expanssion

the distance between any two objects separated by more than H−1 is growing with

speed exceeding the speed of light. Then an observer in the inflationary Universe can

see only the processes occurring inside the horizon of radius H−1. In this sense any

inflationary domain of initial radius exceeding H−1 can be considered as a separate

mini-Universe.

In order to study the behavior of such a mini-Universe we should take into

account the quantum fluctuations. Let us consider an inflationary domain of initial

radius H−1 containing sufficient homogeneous field with initial value φ�M2
p . From

the basic equation of the inflation model

H =
mφ√

6
, φ̇ = −m

√
2

3
(5.123)

we can deduce that during time interval 4t = H−1 the field inside the domain will

be reduced by 4φ that follows from the second equation above

4φ
4t

= −m
√

2

3
⇒4φ = −m

√
2

3
H−1 = −2

φ
, (5.124)

where in the second step we have used the first equation in (5.123). On the other

hand it can be shown that the quantum fluctuation of the field φ is

|δφ(x)| ≈ H

2π
=

mφ

2π
√

6
. (5.125)

Then we see that the magnitude of quantum fluctuation is larger than 4φ for

mφ∗

2π
√

6
≈ 2

φ∗
⇒ φ∗ ∼ 5√

m
(5.126)

Then for φ � φ∗ the decrease of the field φ due to the classical motion is much

greater than the average amplitude of the quantum fluctuations δφ generated during
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the same time. On the other hand for φ � φ∗ one has δφ(x) � 4φ. Since the

typical wave length of the fluctuation mode is ∼ H−1 it turns out that the whole

domain after the time 4t = H−1 divides into following number of domain with

almost homogenous field

a(4t)H−1/H−1 = e3HH−1 ∼ 20 (5.127)

where the first expression express the physical size of the domain divided wave length.

In summary, we get 20 separated domains of size H−1, each containing almost ho-

mogenous field φ −4φ + δφ. In almost half of these domains the field φ grows by

|δφ(x)| − 4φ ≈ H/2π rather than decreases. This means that the total volume of

the Universe containing growing field φ increases 10 times. During the next time

interval 4t = H−1 this process repeats. Thus, after the two time intervals H−1 the

total volume of the Universe containing the growing scalar field increases 100 times.

In other words the Universe enters eternal process of self-reproduction.

One should however be careful with interpretation of this result. There is still

an ongoing debate of whether eternal inflation is eternal only in the future or also in

the past. To see this preciselly where is the problem let us consider any particular

time-like geodetic line at the stage of inflation. For any given observer following this

geodetic the duration ti of the stage of inflation on this geodesic will be finite. On the

other hand eternal inflation implies that if one takes all such geodesics and calculate

the time ti for each of them, then there will be no upper bound for ti. In other words

for each time T there will be such geodesic which experience inflation for the time

ti > T .

Similarly, if we study any particular geodesic in the past time direction, one can

prove that it has finite length. In other words, the inflation n any particular point in

the Universe should have a beginning at some time τi. However there is no reason to

expect that there is an upper bound for all τi on all geodesics. If this upper bound

does not exist, then eternal inflation is eternal not only in the future but also in the

past.

Put differently, there is a beginning for each part of the Universe and there will

be an end for inflation at any particular point. But there will be no end for the

evolution of Universe as a whole in the eternal inflation scenario and at present we

do not have any reason to believe that there was a single beginning of the evolution

of the whole Universe at some moment t = 0 which was traditionally associated with

Big Bang.

If this scenario is correct, then physics alone cannot provide a complete expla-

nation for all properties of our part of the Universe.

5.11 Eternal Inflation: Implications

Even if the other Universes that are created during the eternal inflation are too
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remote to imagine observing directly we will see that an eternal inflation has real

consequences in terms of the way we extract predictions from theoretical models.

Firstly, the eternal inflation implies that all hypothesis about initial conditions

for the Universe, such as the Hartle and Hawking no boundary proposal, the tunnel-

ing proposals by Vilekin or Linde become totally divorced from observation. This

follows from the presumption of the eternal inflation with its infinite production of

pocket Universes. Then one can expect that the statistical properties of inflating

region should approach a steady state which is independent on initial condition. Un-

fortunatelly there are great problems with the study of this steady state, for example,

the properties of this state seems to depend crucially on the super-Planckian physics

which we do not understand at present. It is however possible that string theory

could be helpful with this study. More preciselly, the same quantum fluctuations

that make eternal inflation possible tend to drive the scalar field further and further

up to potential energy curve so that some attempts that wanted to quantity the

steady state require the imposition of some kind of a boundary condition at large φ.

Even if the Universe forgets the details of its genesis the question, how the

Universe began still remain interesting. To see this note that eternally inflating

Universes continue forever once they start they are apparently not eternal into the

past. 12

The second consequence of the eternal inflation is that the probability of the

onset of inflation becomes totally irrelevant provided that the probability is not

identically zero. In fact, this observation is slightly in the clash with our previous

claim that chaotic inflation gives better result that the new inflation scenario. Even

if the initial conditions necessary for the new inflation scenario cannot be justified

on the basis of the thermal equilibrium as was proposed in original papers, in the

context of the eternal inflation it is sufficient to conclude that the probability for the

required initial conditions is nonzero.

The third consequence of the eternal inflation is the possibility that it offers to

rescue the predictive power of theoretical physics. Here we mean the status of M-

theory. Even if this theory by itself has uniqueness it appears that the vacuum is far

from unique. Since the predictions will depend on the properties of the vacuum, the

predictive power of M-theory could be limited. Eternal inflation however provides

a possible mechanism to remedy this problem since it might help to constrain the

vacuum state of the real Universe and hopefully significantly enhance the predictive

power of M-theory. We must however stress that this is pure speculation whose

validity is not justified but one can hope that recent works in the context of the

string theory landscape could bring new light on this conjecture.

12This remark implies that the word “eternal” is not technically correct, we should rather speak

about “semi-eternal” or “future-eternal” Universe.
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5.12 Does Inflation Need a Beginning

We know that according to the inflation scenario is eternal in the future. Than a

natural question arrives: Is it possible that the inflation is eternal into the past?

There is a nice theorem by Borde, Guth and Vlenkin (2003) that proves that the

answer to this question is no. There is of course no conclusion that an eternally

inflating model must have a unique beginning and no conclusion that there is an

upper bound on the length of all backwards-going geodesics from a given point. In

other words this theorem shows that some new physics would be needed do describe

the past boundary of the inflating region.

5.13 Inflation and Observations

It is very nice that inflation can make prediction which can be tested by cosmo-

logical observations. The inflationary prediction for nearly flat spectrum of density

perturbation is in agreement with both you measurements of the CMB anisotropy

and observations of structures in the Universe.

Let us also give another example where the inflation cosmology gives very nice

explanation of the observation date.

Today,we have three-dimensional map of the distribution of galaxies in space

that contain more than one hundred thousand galaxies.They clearly indicate that the

luminous matter in the Universe is neither uniformly nor randomly distributed. We

see clusters of galaxies,superclusters, filaments and voids that are regions of space

empty of galaxies. The distribution can be quantified in terms of the luminosity

power spectrum.

As we have also seen another observation window in cosmology is the cosmic

microwave background radiation. This radiation is characterised by a surprising

isotropy, in other words it looks the same from all different directions on the sky.

However this radiation has also fractional level of a bit less than 10−4 of anisotropies.

These anisotropies can be characterised in terms of their angular power spectrum.

The sky map (that is clearly two-dimensional of topology of sphere) of anisotropies

is expanded in spherical harmonics Ylm

4T
T

(θ, φ) =
∞∑
l=1

l∑
m=−l

almYlm(φ, θ) , (5.128)

where θ, φ are the usual angles on the surface of two-sphere. It can be shown that

the angular power spectrum of CMB has characteristic pattern of anisotropies. The

challenge of cosmology is to explain both the overall isotropy of CMB and the specific

patter of anisotropies.

In order to explain these observation structures we have to look to the very early

Universe. The reason is that the Standard Big Bang cosmology that describes the

cosmological evolution at late times where the notion “late times” means the times
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that includes period of nucleosynthesis and later implies that the length scales that

are currently observed were outside the Hubble radius in the early times and no

causal structure formation scenario is possible.

It is great success of inflationary cosmology that can explains all problems we

listed above and also provides a causal mechanism for the origin of inhomogeneities

in the Universe.
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