4 Příklady Fraunhoferových difrakčních jevů

- 4.1 Fraunhoferova difrakce na obdélníkovém otvoru
- 4.2 Fraunhoferova difrakce na stěrbině
- $4.3\;$ Fraunhoferova difrakce na kruhovém otvoru
- 4.4 Fraunhoferova difrakce na otvoru ve tvaru tenkého mezikruží

Fraunhoferovu difrakci popisuje Fourierova transformace funkce $\psi_0(x_M, y_M)$ charakterizující vlnění na zadní straně rovinného difrakčního stínítka. Tato funkce je součinem dvou funkcí: (i) funkce charakterizující osvětlující vlnu, tj. vlnu dopadající na stínítko a (ii) funkce propustnosti $t(x_M, y_M)$ difrakčního stínítka, která charakterizuje objekt, na němž dochází k difrakci. Při experimentování jde většinou o to, aby Fraunhoferova difrakce charakterizovala difrakční stínítko, tj. aby byla popisována Fourierovou transformací funkce propustnosti. Dosáhneme toho např. tím, že použijeme za osvětlující vlnu rovinnou vlnu $\exp(ik\vec{n}_0 \cdot \vec{r})$ šířící se ve směru $\vec{n}_0 \left(n_{0x}, n_{0y}, \sqrt{1 - n_{0x}^2 - n_{0y}^2}\right)$. Je zřejmé, že při dopadu na stínítko v rovině z = 0 (tj. na přední straně difrakčního stínítka) charakterizuje tuto rovinnou vlnu fázor $\exp[ik(n_{0x} x_M + n_{0y} y_M)]$. Těsně po průchodu difrakčním stínítkem (tj. na zadní straně difrakčního stínítka) charakterizuje vlnovou funkci součin

$$\psi_0(x_M, y_M) = t(x_M, y_M) \exp\left[ik(n_{0x} x_M + n_{0y} y_M)\right].$$
(1)

Dosadíme-li tento součin do integrálu 3.5(12), dostaneme

$$\psi(n_x - n_{0x}, n_y - n_{0y}) = C \iint_{-\infty}^{\infty} t(x_M, y_M) \exp\left\{-ik \left[x_M \left(n_x - n_{0x}\right) x_M + \left(n_y - n_{0y}\right) y_M\right]\right\} dx_M dy_M.$$
(2)

Při osvětlení difrakčního stínítka šikmo dopadající rovinnou vlnou je tedy Fraunhoferova difrakce charakterizována Fourierovou transformací funkce propustnosti difrakčního stínítka, jejíž fourierovské proměnné jsou rozdíly směrových kosinů difrakčního směru \vec{n} a směru \vec{n}_0 dopadající rovinné vlny. Šikmo dopadající osvětlovací vlna se běžně používá, když se pracuje s Fraunhoferovou difrakcí na optických mřížkách (např. v optické spektroskopii). Většinou však používáme k osvětlení kolmo dopadající rovinnou vlnu, kdy $\vec{n}_0(0, 0, 1)$. Tato vlna má v rovině difrakčního stínítka konstantní hodnotu rovnou jedničce, takže

$$\psi_0(x_M, y_M) = t(x_M, y_M).$$
(3)

Fraunhoferovu difrakci pak podle 3.6(12) charakterizuje Fourierova transformace funkce propustnosti

$$\psi(n_x, n_y) = C \iint_{-\infty}^{\infty} t(x_M, y_M) \exp\left[-\mathrm{i}k(n_x \, x_M + n_y \, y_M)\right] \mathrm{d}x_M \, \mathrm{d}y_M,\tag{4}$$

jejíž Fourierovské proměnné jsou směrové kosiny difrakčního směru $\vec{n}.$

Difrakčním jevům Fraunhoferova typu je věnována podstatná část semestrální přednášky o fourierovských metodách v teorii difrakce a ve strukturní analýze. V ní je vypočteno a diskutováno větší množství konkrétních Fraunhoferových difrakčních jevů, a proto zde odkazujeme na text přednášky [1]. V přednáškách o difrakci světla však nelze Fraunhoferovy jevy zcela pominout. Proto připomeneme alespoň některé typické jevy: Fraunhoferovu difrakci na obdélníkovém otvoru v nepropustném stínítku a s ní související difrakci na štěrbině, Fraunhoferovu difrakci na kruhovém otvoru a na velmi tenkém mezikruží. (Mnoho Fraunhoferových difrakčních jevů popsal a vypočetl F. M. Schwerd [2] již ve 30. letech 19. století.)

4.1 Fraunhoferova difrakce na obdélníkovém otvoru

Souřadnicovou soustavu zvolíme tak, že její počátek O je ve středu obdélníka a osy x a y jsou rovnoběžné se stranami obdélníkového otvoru v nepropustném stínítku (viz obr. 1). Strany obdélníka mají délky a a b. Funkce propustnosti takového difrakčního stínítka má tedy tvar

Obrázek 1: K Fraunhoferově difrakci na obdélníkovém otvoru.

$$t(x_M, y_M) = \begin{cases} 1, & \text{kdy} \check{z} & |x_M| \le a/2, & |y_M| \le b/2, \\ 0, & \text{kdy} \check{z} & |x_M| > a/2 & \text{nebo} & |y_M| > b/2. \end{cases}$$
(1)

Dopadající rovinná vlna má směr os
yza difrakční integrál4(4) je tvaru

$$\psi(n_x, n_y) = C \int_{-\frac{a}{2} - \frac{b}{2}}^{\frac{b}{2}} \exp\left[-ik(n_x x_M + n_y y_M)\right] dx_M dy_M.$$
(2)

Tento dvojný integrál faktorizujeme

$$\psi(n_x, n_y) = C \int_{-\frac{a}{2}}^{\frac{a}{2}} \exp\left(-ik \, n_x \, x_M\right) dx_M \int_{-\frac{b}{2}}^{\frac{b}{2}} \exp\left(-ik \, n_y \, y_M\right) dy_M \tag{3}$$

a vypočítáme jednoduché integrály:

$$\int_{-\frac{a}{2}}^{\frac{1}{2}} \exp(-ik n_x x_M) dx_M = \frac{1}{-ik n_x} \left[\exp(-ik n_x a/2) - \exp(ik n_x a/2) \right] = \\ = \frac{2}{k n_x} \sin(k n_x a/2) = \\ = a \frac{\sin(k n_x a/2)}{k n_x a/2}.$$
(4)

Podobně pro integrál podle $y_M.$ Vlnová funkce charakterizující Fraunhoferovu difrakci na obdélníkovém otvoru má tedy tvar

$$\psi(n_x, n_y) = C \, a \, b \, \frac{\sin\left(k \, n_x \, a/2\right)}{k \, n_x \, a/2} \, \frac{\sin\left(k \, n_y \, b/2\right)}{k \, n_y \, b/2}.$$
(5)

FaktorCabsouvisí s intenzitou I_0 v primárním směru $\vec{n}_0(0,0,1)$ vztahem

$$I_0 = |\psi(0,0)|^2 = |C|^2 a^2 b^2.$$
(6)

Fotografický snímek Fraunhoferovy difrakce na obdélníkovém otvoru je na obr. 2.7 a v jiném měřítku a orientaci na obr. 2. Graf funkce $\sin x/x$ je na obr. 3.

Obrázek 2: Fraunhoferova difrakce na obdélníkovém otvoru o rozměrech 7,5 mm × 5,4 mm. $\lambda=6,3\cdot10^{-7}\,{\rm mm.}$ (Viz též obr. 2.7.)

Obrázek 3: Graf funkce $\sin x/x.$

4.2 Fraunhoferova difrakce na štěrbině

Uvažujeme nyní o Fraunhoferově difrakci na štěrbině šířky aorientované rovnoběžně se směrem osyy (viz obr. 4)

Obrázek 4: K Fraunhoferově difrakci na stěrbině.

Druhý integrál ve 4.1(3) musíme v tomto případě nahradit limitou

$$\lim_{b \to \infty} \int_{-\frac{b}{2}}^{\frac{b}{2}} \exp(-ik \, n_y \, y_M) \, \mathrm{d}y_M = \lim_{b \to \infty} b \, \frac{\sin(k \, n_y \, b/2)}{k \, n_y \, b/2},$$

jež, jak známo (srov. např. [1], str. 9,10), je úměrná Diracově distribuci:

$$\lim_{b \to \infty} \int_{-\frac{b}{2}}^{\frac{b}{2}} \exp\left(-\mathrm{i}k \, n_y \, y_M\right) \mathrm{d}y_M = \frac{2\pi}{k} \, \delta(n_y). \tag{1}$$

Vlnová funkce charakterizující Fraunhoferovu difrakci na štěrbině má tedy tvar

$$\psi(n_x, n_y) = C \, \frac{2\pi}{k} \, a \, \frac{\sin\left(k \, n_x \, a/2\right)}{k \, n_x \, a/2} \, \delta(n_y). \tag{2}$$

Difrakční směry s nenulovou intenzitou jsou tedy kolmé na okraje štěrbiny. V našem případě mají směr $\vec{n}(n_x, 0, \sqrt{1 - n_x^2})$. Je to patrné z obr. 5. V experimentu však štěrbina nikdy nemůže být nekonečně dlouhá, takže ve skutečnosti jde vždy o difrakci na velmi protáhlém obdélníku. V důsledku toho se pozoruje nenulová intenzita i pro malé hodnoty n_y , zejména v okolí primárního směru.

Obrázek 5: Fraunhoferova difrakce na stěrbině (de facto na obdélníku 1,0 mm × 6,6 mm protáhlém ve svislém směru). $\lambda = 6.3 \cdot 10^{-7}$ mm.

4.3 Fraunhoferova difrakce na kruhovém otvoru

Nepropustné difrakční stínítko s kruhovým otvorem o poloměru a situ
ované do roviny z = 0 tak, že střed otvoru je totožný s počátkem soustavy souřadnic, má funkci propustnosti

$$t(x_M, y_M) = \begin{cases} 1, & \text{kdy}\check{z} & x_M^2 + y_M^2 \le a^2 \\ 0, & \text{kdy}\check{z} & x_M^2 + y_M^2 > a^2. \end{cases}$$
(1)

Dopadající rovinná vlna má směr os
yza difrakční integrál (4) má tvar

$$\psi(n_x, n_y) = C \iint_{\substack{x_M^2 + y_M^2 \le a^2}} \exp\left[-ik(n_x \, x_M + n_y \, y_M)\right] dx_M \, dy_M.$$
(2)

V polárních souřadnicích

$$\begin{aligned} x_M &= r \cos \varphi, \qquad n_x = R \cos \Phi, \\ y_M &= r \sin \varphi, \qquad n_y = R \sin \Phi \end{aligned}$$
 (3)

je

$$n_x x_M + n_y y_M = Rr(\cos\Phi\,\cos\varphi + \sin\Phi\,\sin\varphi) = Rr\cos(\Phi - \varphi)$$

a vlnová funkce (2) je vyjádřena integrálem

$$\psi = C \int_{0}^{a} \int_{0}^{2\pi} \exp\left[-ikRr\cos(\Phi - \varphi)\right] d\varphi r dr.$$
(4)

S použitím integrální reprezentace Besselovy funkce nultého řádu

$$J_0(z) = \frac{1}{2\pi} \int_{\alpha}^{\alpha+2\pi} \exp\left(\pm iz\cos\vartheta\right) d\vartheta$$
(5)

(viz např. [1], B.13(6)) je vnitřní integrál ve (4)

$$\int_{0}^{2\pi} \exp\left[-ikRr\cos(\Phi-\varphi)\right] d\varphi = 2\pi J_0(kRr).$$

Vlnovou funkci (4) tak dostáváme ve tvaru

$$\psi = C \, 2\pi \int_{0}^{a} J_0(kRr) \, r \, \mathrm{d}r, \tag{6}$$

z něhož je zřejmá její rotační symetrie. Integrál v (6) vypočítáme pomocí vztahu

$$\int_{0}^{x} J_0(z) z \, \mathrm{d}z = x J_1(x)$$

(viz např. [1], B.8(11)). S pomocí substituce t = kRr vypočteme vlnovou funkci (6) ve tvaru

$$\psi = \frac{C 2\pi}{(kR)^2} \int_0^{kaR} J_0(t) t \, \mathrm{d}t = \frac{C 2\pi}{(kR)^2} \, (kaR) \, J_1(kaR).$$
(7)

Drobnou úpravou pak získáme standardní tvar vlnové funkce charakterizující Fraunhoferovu difrakci na kruhovém otvoru:

$$\psi(n_x, n_y) = C \pi a^2 \frac{2J_1(kaR)}{kaR}, \qquad R = \sqrt{n_x^2 + n_y^2}.$$
(8)

Obrázek 6: Graf Airyho funkce $2J_1(x)/x$.

Obrázek 7: Fraunhoferova difrakce na kruhovém otvoru o poloměru a = 1,0 mm. $\lambda = 6,3 \cdot 10^{-7}$ mm.

Funkce $\frac{2J_1(x)}{x}$ se nazývá Airyho funkcí. Její graf je na obr. 6 a detailně je popsána např. v [1], 15.2. Patří k nejdůležitějším funkcím vyskytujícím se ve vlnové optice. Vyjadřuje totiž také obraz bodového zdroje vytvořeného ideální čočkou konečné velikosti, a je proto východiskem pro odvození výrazu pro rozlišovací schopnost takové čočky.

Fotografický snímek Fraunhoferovy difrakce na kruhovém otvoru je na obr. 7.

4.4 Fraunhoferova difrakce na otvoru ve tvaru tenkého mezikruží

Funkce propustnosti otvoru ve tvaru mezikruží o poloměru a a $a+\varepsilon$ je

$$t(x_M, y_M) = \begin{cases} 1, & \text{kdy}\check{z} & \sqrt{x_M^2 + y_M^2} \in \langle a, a + \varepsilon \rangle \\ 0, & \text{kdy}\check{z} & \sqrt{x_M^2 + y_M^2} \notin \langle a, a + \varepsilon \rangle. \end{cases}$$
(1)

Difrakční integrál charakterizující difrakci na takovém mezikruží lze upravit týmž způsobem jako v odst. 4.3 do tvaru obdobnému k 4.3(6):

$$\psi = C \, 2\pi \int_{a}^{a+\varepsilon} J_0(kRr) \, r \, \mathrm{d}r. \tag{2}$$

Vzhledem k tomu, že předpokládáme, že ε je velmi malé, můžeme nahradit integrál ve (2) hodnotou integrandu v bodě r = a násobenou šířkou ε oboru integrace:

$$\int_{a}^{a+\varepsilon} J_0(kRr) \, r \, \mathrm{d}r \approx J_0(kaR) \, a \, \varepsilon.$$

Vlnovou funkci (2) tak dostáváme ve tvaru

$$\psi(n_x, n_y) = C \, 2\pi \, a \, \varepsilon \, J_0(kaR), \qquad R = \sqrt{n_x^2 + n_y^2}.$$
 (3)

Ve výrazu (3) je $2\pi a\varepsilon$ plochou mezikruží. Besselova nultého řádu $J_0(x)$ (viz obr. 8) je v počátku rovna jedné, $J_0(0) = 1$.

Obrázek 8: Graf Besselovy funkce $J_0(x)$.

Fraunhoferovu difrakci na otvoru ve tvaru tenkého mezikruží tedy charakterizuje vlnová funkce, jež je úměrná Besselově funkci $J_0(x)$. To je důležitý poznatek pro teorii i praxi optiky besselovských svazků.

* * *

Pro optickou spektroskopii jsou důležité Fraunhoferovy difrakční jevy na mřížkách. Je jím věnována rozsáhlá literatura, viz např. [3]. Výběr 90 článků pojednávajících o výrobě, teorii a aplikacích difrakčních mřížek obsahuje kniha [4].

Reference

- [1] Komrska J.: Fourierovské metody v teorii difrakce a ve strukturní analýze. VUTIUM Brno, 2001.
- [2] Schwerd F. M.: Die Beugungserscheinungen aus den Fundamentalgesetzen der Undulationstheorie analytisch entwickelt und in Bildern dargestellt. Schwan und Goetz, Mannheim 1835.
- [3] Stroke G. W.: Diffraction Gratings. In Handbuch der Physik (S. Flügge, Editor), Bd 29. Springer Verlag, Berlin 1967.
- [4] Maystre D. (editor): Selected Papers on Diffraction Gratings. SPIE Optical Engineering Press, Bellingham, Washington USA, 1996.