Condensed Matter II

Problem set #3

Spring 2023

1 T_d group representation

1.1 Background

The group of symmetry operations of the regular tetrahedron T_d is isomorphic to the group of permutations of four objects P(4).

Figure 1: Regular tetrahedron with vertices abcd.

The elements of the group T_d are (Schoenflies notation):

- E (identity)
- 8 rotations C_3 about the diagonals of a cube.
- 3 rotations C_2 about axes x, y, z.
- 6 improper rotations S_4 about axis x, y, z (rotations of angle $\pi/2$ followed by a reflection in a plane perpendicular to the axis of rotation).
- 6 reflections σ_d in planes containing one edge and the center of the tetrahedron.

The elements of the group P(4) are:

- E = (abcd) A = (acbd) B = (cbad) C = (bacd) D = (cabd) F = (bcad) (perm. abc;d)
- G = (abdc) H = (adbc) J = (dbac) K = (badc) L = (dabc) M = (bdac) (perm. abd;c)
- N = (adcb) O = (acdb) P = (cdab) Q = (dacb) R = (cadb) S = (dcab) (perm. acd;b)
- T = (dbca) U = (dcba) V = (cbda) W = (bdca) X = (cdba) Y = (bcda) (perm. bcd;a)

1.2 Questions

- (i) Show that P(4) and T_d are isomorphic.
- (ii) Partition the elements of P(4) so that the elements of each subset have the same order (the order n of element X is the smallest $n \in \mathbb{N}$ such that $X^n = E$).
- (iii) Determine at least 10 subgroups. Among those, determine the subgroups isomorphic to P(3).
- (iv) Explain why $\{E, G, N, T\}$ is or is not a subgroup.
- (v) Determine the classes (sets of equivalent elements, through the relation $A \sim B \Leftrightarrow \exists X \in G, B = XAX^{-1}$)
- (vi) Find several representations.
- (vii) Determine the irreducible representations, and the character table of the group.