Condensed Matter II

Problem set \#3

Spring 2023

$1 T_{d}$ group representation

1.1 Background

The group of symmetry operations of the regular tetrahedron T_{d} is isomorphic to the group of permutations of four objects $P(4)$.

Figure 1: Regular tetrahedron with vertices abcd.
The elements of the group T_{d} are (Schoenflies notation):

- E (identity)
- 8 rotations C_{3} about the diagonals of a cube.
- 3 rotations C_{2} about axes x, y, z.
- 6 improper rotations S_{4} about axis x, y, z (rotations of angle $\pi / 2$ followed by a reflection in a plane perpendicular to the axis of rotation).
- 6 reflections σ_{d} in planes containing one edge and the center of the tetrahedron.

The elements of the group $P(4)$ are:

- $E=(\mathrm{abcd}) A=(\mathrm{acbd}) B=(\mathrm{cbad}) C=(\mathrm{bacd}) D=(\mathrm{cabd}) F=(\mathrm{bcad})($ perm. abc;d)
- $G=(\mathrm{abdc}) H=(\mathrm{adbc}) J=(\mathrm{dbac}) K=(\mathrm{badc}) L=(\mathrm{dabc}) M=(\mathrm{bdac})$ (perm. abd;c)
- $N=(\mathrm{adcb}) O=(\mathrm{acdb}) P=(\mathrm{cdab}) Q=(\mathrm{dacb}) R=(\mathrm{cadb}) S=(\mathrm{dcab})$ (perm. acd; b$)$
- $T=(\mathrm{dbca}) U=(\mathrm{dcba}) V=(\mathrm{cbda}) W=(\mathrm{bdca}) X=(\mathrm{cdba}) Y=(\mathrm{bcda})$ (perm. bcd;a)

1.2 Questions

(i) Show that $P(4)$ and T_{d} are isomorphic.
(ii) Partition the elements of $P(4)$ so that the elements of each subset have the same order (the order n of element X is the smallest $n \in \mathbb{N}$ such that $X^{n}=E$).
(iii) Determine at least 10 subgroups. Among those, determine the subgroups isomorphic to $P(3)$.
(iv) Explain why $\{E, G, N, T\}$ is or is not a subgroup.
(v) Determine the classes (sets of equivalent elements, through the relation $A \sim B \Leftrightarrow$ $\left.\exists X \in G, B=X A X^{-1}\right)$
(vi) Find several representations.
(vii) Determine the irreducible representations, and the character table of the group.

