Condensed Matter II

Problem set \#7

Spring 2023

1 Donor states in Si

The conduction band of Silicium exhibits six equivalent minima in the direction Δ in the first Brillouin zone. The electronic state vectors in such directions are designated by the following symbols:

- $|x\rangle$ for the minimum in direction [100]
- $|y\rangle$ for the minimum in direction [010]
- $|z\rangle$ for the minimum in direction [001]
- $|\bar{x}\rangle$ for the minimum in direction [$\overline{1} 00]$
- $|\bar{y}\rangle$ for the minimum in direction [01̄0]
- $|\bar{z}\rangle$ for the minimum in direction [00 $\overline{1}]$

Figure 1: Regular tetrahedron with vertices Si atoms on the a, b, c, d sites. In the middle of the tetrahedron is a donor atom.

A donor atom is located at the center of a regular tetrahedron as indicated in Fig 1. As a reminder, the symmetry of the tetrahedraon is T_{d}, of order 24 , with elements:

- E (identity)
- 8 rotations C_{3} about the diagonals of a cube.
- 3 rotations C_{2} about axes x, y, z.
- 6 improper rotations S_{4} about axis x, y, z (rotations of angle $\pi / 2$ followed by a reflection in a plane perpendicular to the axis of rotation).
- 6 reflections σ_{d} in planes containing one edge and the center of the tetrahedron.

1.1 Questions

(i) Apply a symmetry operation of each class of the T_{d} group to the six dimensional vector $\left(\begin{array}{c}|x\rangle \\ |y\rangle \\ |z\rangle \\ |\bar{x}\rangle \\ |\bar{y}\rangle \\ |\bar{z}\rangle\end{array}\right)$
(ii) Use the previous result to establish the character table of the six-dimensional representation R_{6} of the group T_{d}.
(iii) Using the previously established (Cf Problem Set \#3) character table of the T_{d} group, decompose R_{6} into its irreducible components.
(iv) Verify that the following vector states are bases of the corresponding irreducible representations:

- $A_{1}: \frac{|x\rangle+|y\rangle+|z\rangle+|\bar{x}\rangle+|\bar{y}\rangle+|\bar{z}\rangle}{\sqrt{6}}$
- $E: \frac{|x\rangle-|y\rangle+|\bar{x}\rangle-|\bar{y}\rangle}{2}, \frac{|x\rangle+|y\rangle-2|z\rangle+|\bar{x}\rangle+|\bar{y}\rangle-2|\bar{z}\rangle}{\sqrt{12}}$
- $T_{2}: \frac{|x\rangle-|\bar{x}\rangle}{\sqrt{2}}, \frac{|y\rangle-|\bar{y}\rangle}{\sqrt{2}}, \frac{|z\rangle-|\bar{z}\rangle}{\sqrt{2}}$

