Ústav geologických věd Přírodovědecké fakulty Masarykovy univerzity

Strukturně-geologický vývoj jižní části Moravského krasu

Dizertační práce

Mgr. Jiří Rez

Vedoucí: prof. RNDr. Jiří Kalvoda, CSc. Konzultant: doc. RNDr. Rostislav Melichar, Dr.

Brno 2010

© 2010 Mgr. Jiří Rez Všechna práva vyhrazena

Bibliografické údaje:

Jméno a příjmení autora:	Jiří Rez
Název dizertační práce:	Strukturně-geologický vývoj jižní části Moravského krasu
Název v angličtině:	Tectonic history of the southern part of the Moravian Karst
Studijní program:	Geologie
Studijní obor (směr), kombinace oborů:	Geologické vědy se zaměřeními
Školitel:	prof. RNDr. Jiří Kalvoda, CSc.
Rok obhajoby:	2010

Anotace:

Stavba jižní části Moravského krasu je příkrovová. Byly rozlišeny dvě generace násunů. Násuny starší generace T_1 oddělují dva stejně staré, ale faciálně odlišné vývoje: mělkovodní hostěnický, charakteristický silně kondenzovanou sedimentací, a hlubokovodnější vývoj horákovký, charakteristický mocnými sledy kalciturbiditů. Násunová zóna se složitou šupinovitou stavbou je dokumentována v lomech Mokrá a vrtech (např. SV1). Tyto starší násuny jsou porušeny násuny generace T_2 . Během nasouvání byly násuny T_1 zvrásněny ve výrazné antiformy v nadloží a synformy v podloží násunů mladší generace T_2 . Starší generace násunů vznikla současně s hlavním nasouváním kulmských příkrovů ve visé, mladší generace násunů vznikla v reakci na pravostranné horizontální pohyby podél moravské střižné zóny ve westphalu. Takto vzniklá stavba byla porušena sítí mladších zlomů několika generací. Napjatostní analýza zlomů rozlišila tři napjatostní fáze, které jsou kompatibilní s fázemi získanými napjatostní analýzou založenou na mechanickém dvojčatění kalcitu.

Annotation:

The Southern part of Moravian Karst has nappe structure. Two generations of thrust faults were recognized. Older T_1 thrusts juxtaposed two different coeval facies: condensed shallow-water Hostěnice facies and deeper-water Horákov facies with huge thicknesses of calciturbiditic sequences. The thrust zone with complex inner structure is documented in Mokrá quarries and in boreholes (e.g. SV1). These older thrusts were offset by younger T_2 thrusts. T_1 thrusts were folded into antiforms in hanging-walls and into synforms in foot-walls of T_2 thrusts. T_1 thrusting was coeval with the main nappe stacking of Culmian flysch during Visean; T_2 thrusting can be linked to the dextral shearing along the Morava shear zone in Westphalian. This fold/thrust structure underwent several faulting events. Fault-slip data stress analysis yielded three stress-states, which are compatible with stress-states yielded by calcite twinning stress inversion.

Klíčová slova:

Moravský kras, příkrovy, násuny, napjatostní analýza, dvojčatění, kalcit

Key words:

Moravian Karst, nappes, thrusts, stress analysis, twining, calcite

ii

Na předkládané práci jsem pracoval samostatně a použitou literaturu jsem řádně citoval a uvedl v seznamu literatury. Svoluji k zapůjčování práce v knihovně.

Poděkování:

Na tomto místě bych rád poděkoval prof. Kalvodovi za trpělivost, podporu a určení mikrofauny, doc. Melicharovi za podporu, inspiraci a kritické připomínky, které celou práci vždycky posunuly dál, a dr. Otavovi za poskytnutí terénní dokumentace J. Dvořáka a L. Maštery.

Obsah:

1. Úvod	. 1
2. Historie výzkumů	3
3. Metodika	. 7
4. Stratigrafie a faciální vývoj	9
4.1. Přehled facií	. 9
4.2. Lomy Mokrá	. 10
4.3. Vybrané profily v oblasti	. 10
4.4. Vybrané vrty	. 11
5. Strukturní data	. 13
5.1. Vrásová deformace	. 13
5.2. Struktury odlepení	. 17
5.3. Násunové zlomy	. 18
5.4. Zlomová stavba	. 22
5.5. Napjatostní analýza kalcitových dvojčat	. 24
6. Diskuse	. 30
6.1. Diskuse Dvořákovy koncepce	. 30
6.2. Diskuse pozorované stavby	. 30
6.3. Diskuse napjatostní analýzy	. 32
6.4. Problém křtinských/hlíznatých vápenců	. 34
7. Závěry	. 36
8. Literatura	. 37
Příloha 1: Seznam dokumentačních bodů	. 41
Příloha 2: Přehled stratigrafických vzorků	. 55
Příloha 3: Přehled měření orientace kalcitu	. 57
Příloha 4: Mapa lokalizací obrázků použitých v textu a vybraných dokumentačních bodů	. 65

1. Úvod

Moravskoslezské paleozoikum, jehož nedílnou součástí je i jižní část Moravského krasu, má nepochybně příkrovovou stavbu (např. Bábek et al. 2006, Čížek & Tomek 1991, Hladil & Melichar 1999, Schulmann et al. 1991). A to nejen flyšové příkrovy kulmu, ale i podložní předflyšové sledy (např. Čížek & Tomek 1991, Dvořák et al. 2005, Melichar & Kalvoda 1997, Rez et al. v tisku). Relativně monotónní kulmské sledy umožňují rozlišení příkrovové tektoniky velmi omezeně, a to v podstatě pouze pokud jsou na příkrovových plochách přítomny "exotické" horniny ve formě tektonických šupin (např. Chadima & Melichar 1998). Oproti tomu faciálně pestré předflyšové sekvence umožňují poměrně přesně dešifrovat kinematiku příkrovové tektoniky moravskoslezského paleozoika.

Jižní část Moravského krasu je oblast zhruba mezi Hostěnicemi a Brnem (obr. 1.1, 1.2), která zabírá značnou část listu Základní geologické mapy ČR 1:25000, 24-413 Mokrá-Horákov (obr. 1.1). Jižní část Moravského krasu je chápána jako víceméně samostatná strukturní jednotka s osobitým geologickým vývojem, poněkud odlišným od zbytku Moravského krasu (Bábek et al. 2006, Dvořák 1967). Hlavním rozdílem, kromě celkově nižší teploty deformace (Bábek & Otava 2006, Franců et al. 2002), je hlavně přítomnost značných mocností líšeňského souvrství. A právě faciálně pestré sedimenty líšeňského souvrství činí tuto oblast zajímavou pro studium kinematiky a stavby variských externid.

Existuje relativně velké množství faciálních a stratigrafických dat, plody dlouholeté práce paleontologů a "mapérů", která ale zatím nebyla zasazena do jednotného, moderně pojatého strukturního plánu. Hlavním cílem této práce je syntetizovat existující a nová strukturní data s existujícími i novými faciálními a litostratigrafickými údaji, vytvořit funkční model stavby jižní části Moravského krasu a nastínit její deformační historii. Neméně významným cílem je provést napjatostní analýzu oblasti moderními metodami: mnohonásobnou inverzí zlomových struktur a napjatostní analýzou založenou na mechanickém dvojčatění kalcitu, která je zatím v českých strukturněgeologických vodách zcela nová.

Obr. 1.1: Zjednodušená obkrytá mapa východního okraje brněnského masivu (upraveno podle Buday 1996, Dvořák & Pták 1963, Hladil 1987b, Melichar & Kalvoda 1997).

Obr. 1.2: Zjednodušená odkrytá geologická mapa jižní části Moravského krasu (upraveno podle Dvořák 1997b, Hladil 1987b, Hladil et al. 1991). Uvedeny jsou také názvy hlavních struktur použité dále v textu (upraveno podle Dvořák 1967).

2. Historie výzkumů

Celou historii výzkumů Moravského krasu lze vystihnout čtyřmi jmény: Zapletal, Kettner, Dvořák, Hladil, i když by se slušelo připsat ke každému z nich několik dalších jmen spolupracovníků. A přesně v tomto pořadí se také střídaly koncepce tektonické stavby oblasti. Následující řádky se pokusí vyzdvihnout podstatné práce, jak strukturněgeologické, tak stratigrafické a nastínit tak historické pozadí pro diskusi stavby jižní části Moravského krasu.

Jednu z prvních ucelených tektonických koncepcí Zapletal (1922a). Tektonická publikoval stavba Moravského krasu vznikla podle Zapletala ve třech fázích: 1) jako první vznikly podélné vrásy směru S-J; 2) ve druhé fázi byly podélné vrásy převrásněny příčnými a porušeny přesmyky; 3) vzniklá stavba byla porušena poklesovými zlomy SSZ-JJV a SSV-JJZ směrů. Publikoval také geologické mapy (Zapletal 1922b, 1927), které již zachytily hlavní rozložení horninových typů v oblasti. Vyčlenil také základní typy vápenců (obr. 2.1). Pokorný, který mapoval jižní část Moravského krasu na sklonku 40 let (Pokorný 1949, 1950), se při interpretaci přidržel Zapletalova konceptu. Jeho mapa však opět obsahuje některé zajímavé detaily (např. překocené vrásy v údolí Říčky), i když nezahrnuje strukturně velmi složitou oblast dnešních lomů Mokrá.

Obr. 2.1: Stratigrafické schéma Moravského krasu (Buday 1996, Zapletal 1922a).

Příkrovovou stavbu Moravského krasu a přilehlých oblastí (němčicko-vratíkovského pruhu a brněnského masivu) koncipoval Kettner ve čtyřicátých letech dvacátého století (Kettner 1942, 1947, 1949). Rozpoznal dvě různé devonské facie: facii Moravského krasu (karbonátovou) a facii drahanskou (břidličnou). Poněkud mladší mělkovodní facie Moravského krasu byla během variské orogeneze ještě před sedimentací kulmu včetně podložního brněnského masivu nasunuta od západu na facii drahanskou podél tzv. drahanského nasunutí během tzv. bretonské fáze (Kettner 1949, 1967). Po sedimentaci kulmu, který podle Kettnera na takto vzniklou stavbu transgredoval, došlo k obnovení násunových pohybů (tzv. asturská fáze), během nichž byly předkulmské sledy nasunuty na kulm (Kettner 1949, Kettner & Prantl 1942). Také samotná facie Moravského krasu má předkulmskou příkrovovou stavbu. Kettner pozoroval čtvero opakování amfiporového horizontu v tzv. světlých vápencích (lažánecké vápence v dnešním smyslu). Vysvětlil je existencí čtyř k východu se ponořujících, od západu nasunutých ležatých vrás s "vyválcovanými" překocenými rameny (~ vrásových příkrovů) opíraje se o

Obr. 2.2: Příklad Kettnerova geologického řezu Moravským krasem (Kettner 1949); Legenda: 1-brněnský masiv; 2bazální klastika; 3-stringocefalové vápence (josefovské); 4amfiporové vápence (lažánecké); 5-korálové vápence (vilémovické); 6-červené vápence hlíznaté (křtinské); 7kulmské droby; A-autochton; L.-lažánecká vrása; S.suchdolská vrása; M.-macošská vrása; V.-vavřinecká vrása (jediná nemá amfiporové vápence).

mnohé profily v severní části Moravského krasu (např. obr. 2.2).

V jižní části Moravského krasu pracoval Kettnerův žák Josef Jarka (1948). Mapoval území od Křtin po Mokrou s cílem ověřit příkrovovou stavbu definovanou Kettnerem i v jižní části Moravského krasu. Tuto koncepci však nepotvrdil (avšak sám přímo nevyvrátil). Zjistil, že opakování amfiporového horizontu ve světlých vápencích není tektonické, ale že jde o různě staré vrstvy. Kettner (1967) to vysvětlil jednoduše: protože se celá stavba Moravského krasu uklání k severu, je na jihu zachována pouze autochtonní série. Také Jarka vyslovil názor, že v jižní části je zachována pouze bazální násunová plocha nejspodnější - lažánecké vrásy v podobě hlíznatých křtinských vápenců. V souladu s Kettnerem považoval tektonickou stavbu za předkulmskou, hranici s kulmem za transgresivní, reaktivovanou během mladších variských pohybů. Disproporci v sedimentárním sledu jižně a severně od řícmanicko-ochozské elevace (různě mocná bazální klastika a absence josefovských vápenců na jih od řícmanicko-ochozské elevace) vysvětlil Jarka blíže nespecifikovaným tektonickým sblížením různých sedimentárních sledů během variské orogeneze.

Z dnešního pohledu je velmi přínosná publikace Prantla (1948), který spolupracoval s Kettnerem na severu Moravského krasu (Kettner & Prantl 1942). Prantl si povšiml faciálních rozdílů v dnešním líšeňském souvrství a definoval dva odlišné, avšak stejně staré faciální vývoje: mělkovodnější maloměřický a hlubokovodnější líšeňský vývoj (obr. 2.3). Styk obou facií je podle Prantla tektonický, líšeňský vývoj včetně podložního brněnského masivu je nasunut na maloměřický podél plochého zlomu odhaleného v Růženině lomu na Hádech (Prantl 1948).

		maloměřický vývoj	líšeňský vývoj												
	famen	tmavé deskovité vápence s vložkami břidlic, které směrem do nadloží převládají, bez radiolaritových rohovců	tmavé deskovité vápence s podřízenými vložkami břidlic a radiolaritovými rohovci												
von														šedé brekciovité vápence	šedé brekciovité nebo celistvé vápence
de	/et?)	hrubě lavicovité nebo masivní světlé vápence "korálové"	dobře zvrstvené, tříštnaté kalové vpence "amphiporové"												
	frasn (giv	polymiktní bazální slepence s vápnitým nebo arkózovým tmelem	?												

Obr. 2.3: Srovnání mělkovodního maloměřického a hlubokovodnějšího líšeňského vývoje devonské karbonátové sedimentace v jižní části Moravského krasu (Prantl 1948).

Také Slezák (1956) rozlišil v okolí Mokré dva od famenu odlišné vývoje: vývoj hostěnický a vývoj Mokré (obr. 2.4), které však do sebe laterálně přecházejí (přechodní vývoj). Z tektonického hlediska považoval za nejdůležitější východovergentní násuny severojižního směru, které území rozdělily do čtyř dílčích ker. Tyto násuny porušují také břidlice rozstáňského souvrství. Slezák proto kladl hlavní fázi deformace do krátkého hiátu mezi sedimentací rozstáňských břidlic a slepenců myslejovického souvrství, během kterého došlo k násunu vápenců na kulm. Tato starší stavba byla následně porušena sz.-jv. zlomy.

Obr. 2.4: Stratigrafické schéma okolí Mokré-Horákova (Slezák 1956).

V padesátých letech začal v moravskoslezském paleozoiku pracovat Jaroslav Dvořák. Již prvními pracemi nastínil základní prvky své koncepce (Dvořák 1957, 1958, Dvořák & Pták 1963), která byla po následující desetiletí základem chápání geologie moravskoslezského paleozoika. Zpochybnil násunovou koncepci tektoniky Moravského krasu a rozpoutal tak ostrou diskusi s Kettnerem (Kettner 1958, 1967). Kettner nazíral na stavbu moravskoslezského paleozoika velmi mobilisticky (příkrovová stavba zahrnující i horniny podložního brněnského masivu, vzniklá velkým laterálním zkrácením kůry), inspirován svými výzkumy v Západních Karpatech, kdežto Dvořák vysvětloval pozorované jevy atektonicky (dílčími transgresemi a regresemi, případně gravitačními skluzy) se zdůrazněním vertikálních pohybů kůry.

Kettnerova koncepce, ač založená na mnohých veskrze správných pozorováních, měla několik zjevných nedostatků. A to hlavně: 1) opakování amfiporových vápenců mylně interpretované jako tektonické a 2) vyvrásnění vápenců před sedimentací kulmu během tzv. bretonské fáze. Již Jarka (1948) prokázal různé stáří amfiporových vápenců a vyvrátil tak jejich tektonické opakování. Pozdější výzkumy (např. Zukalová 1971), které vyvrcholily prací Hladila (1983), jasně prokázaly cykličnost sedimentace macošského souvrství a tedy sedimentární opakování amfiporových vápenců. Bretonská fáze, jejíž existence byla hlavním tématem diskuse v 50. a 60. letech, byla založena na domněle jiném tektonickém stylu podložních vápencových a nadložních kulmských sledů, zdánlivě transgresivním kontaktu kulmu a předpokládala hiát mezi vápencovou a kulmskou sedimentací. Chlupáč a Dvořák však postupně přinesli paleontologické důkazy, "nepřerušenou" které dokázaly sedimentaci mezi vápencovým devonem a kulmem (např. Dvořák 1958,

Obr. 2.5: Stratigrafické schéma jižní části moravskoslezského paleozoika (Dvořák 1973).

1963, Dvořák & Pták 1963, Dvořák & Zusková 1998, Chlupáč 1960). Dvořák dokonce popsal plynulé přechody těchto dvou facií (Dvořák & Pták 1963).

Dvořák považoval horniny moravskoslezského paleozoika za sedimenty geosynklinály s-j. směru (použil termín Moravský záliv) vyvinuté v předdevonském krystaliniku Brunie (na západě byla ohraničena ostrovem brněnského masivu), která byla postupně vyplňována od severu. Na jihu této geosynklinály sedimentovaly mělkovodní facie Moravského krasu (např. Dvořák 1973; obr. 2.5).

Jižní část Moravského krasu se podle Dvořáka vyvíjela do značné míry samostatně v dílčí pánvi, oddělené od severní části Moravského krasu příčnou strukturou řícmanicko-ochozské elevace (Dvořák 1963, 1967, Dvořák et al. 1984). Sedimentace devonských až spodnokarbonských sledů byla ovlivňována několika faktory:

Obr. 2.6: Schéma sedimentace líšeňského souvrství v lomech Mokrá ovlivněné různým poklesáváním ker v čase (Dvořák et al. 1987). Legenda: 1-brněnský masiv; 2-bazální klastika; 3-vilémovické vápence; 4-křtinské vápence; 5-hádsko-říčské vápence.

Obr. 2.7: Dvořákův model jižní části Moravského krasu a) vývoj subsidence a synsedimentární komprese dílčí pánve jižní části Moravského krasu: během sedimentace I-hádsko-říčských vápenců, II-březinských břidlic a III-rozstáňských břidlic (Dvořák 1967). Legenda: 1-voda, 2-rozstáňské břidlice, 3-březinské břidlice, 4-hádsko-říčské vápence, 5-macošské souvrství; b) průběh zámkových linií hlavních vrásových struktur (Dvořák 1967).

(1) předdevonsky založenou kernou stavbou podložních hornin brněnského masivu a nehomogenní subsidencí jednotlivých ker vedoucí k častým faciálním změnám pozorovaným v terénu, (2) zužování sedimentačního prostoru ve směru JZ-SV a vyklenování řícmanickoochozské elevace, které zapříčinilo zvýšení přínosu siliciklastického materiálu do pánve, a (3) vyklenování tzv. horákovského hřbetu během famenu a spodního tournai, které rozdělilo pánev na dvě dílčí (obr. 2.7a).

Předdevonsky založená kerná stavba a rozdílná mobilita jednotlivých ker v čase byla podle Dvořáka zásadní pro vytváření poměrně složité faciální situace v terénu. Dvořák (1987) pozoroval mělkovodnější křtinské a hlubokovodnější hádsko-říčské vápence často několikrát v jednotlivých krách nad sebou (hlavně v lomech Mokrá). Vysvětloval to opakovaným změlčováním a prohlubováním sedimentace. Tuto představu nejpodrobněji popsal v lomech Mokrá, které odkrývají velmi pestrou horninovou mozaiku. Jednotlivé k severovýchodu mírně ukloněné kry zde dosahují rozměrů cca 300 x 500 m. Dvořák definoval poměrně složitý scénář vertikálních pohybů jednotlivých ker (obr. 2.6): kry postupně poklesaly od JZ k SV a došlo vždy k sedimentaci hádsko-říčských a křtinských vápenců a následně k výzdvihu kry za současného poklesu kry sousední. Během těchto vertikálních pohybů docházelo k deformaci čerstvě sedimentovaných vápenců, často docházelo ke skluzům nestabilních sedimentů z ukloněných ker za vzniku sv.-vergentních ležatých vrás (např. Dvořák et al. 1987).

Již během sedimentace hádsko-říčských vápenců docházelo k zužování sedimentačního prostoru dílčí pánve jižní části Moravského krasu a diapirickému vyklenování horákovského hřbetu (Dvořák 1967). Současně s vyklenováním horákovského hřbetu probíhala zrychlená subsidence osy pánve a vytvářelo se synklinorium v podložním macošském souvrství (obr. 2.7a). Tomuto uspořádání podle Dvořáka odpovídají průběhy os synklinál a antiklinál v macošském souvrství na západě území, které směrně navazují na antiklinály a synklinály v souvrství líšeňském (Dvořák 1967; obr.2.7b). Horákovský hřbet podle Dvořáka rozdělil dílčí pánev jižní části Moravského krasu na dvě menší, ve kterých sedimentovaly březinské a rozstáňské břidlice. Celá takto vzniklá stavba byla "zasypána" račickými slepenci myslejovického souvrství.

Dalším důležitým prvkem ovlivňujícím sedimentaci ve studovaném území byla podle Dvořáka řícmanickoochozská elevace, která se vyklenovala v průběhu sedimentace, na jejíchž svazích sedimentovaly mělkovodní tournaiské brekciovité vápence.

Vrásovou stavbu považoval Dvořák za jednoduchou. Popsal vrásy ssv-jjz. směrů s vergencemi k západu i k východu, místy spojené s lokálními násuny k Z a V (Dvořák 1967, Dvořák et al. 1987). Evidentně starší, ssv.vergentní překocené až ležaté vrásy považoval Dvořák za gravitační skluzy. Pouze v práci z roku 1967 (Dvořák 1967) uvažoval se synsedimentárním ssv.-jjz. zužováním sedimentačního prostoru, které způsobilo vyklenutí antiklinoria horákovského hřbetu.

Stratigrafické duplikace vysvětloval Dvořák buď redepozicí fauny nebo gravitačními skluzy (i když některé struktury označil jako násuny, např. násun zachycený vrtem SV1 nebo šupinu vápenců v kulmu východně od Mokré). Násun granodioritu brněnského masivu přes bazální klastika a vápence v lomech na Hádech označil za olistolit (Dvořák 1989), i když ve svých raných pracích (Dvořák & Pták 1963) považoval tuto strukturu za násun a důkaz ssvjjz. syn- a post-sedimentárního zužování pánve.

Ve druhé polovině osmdesátých let proběhlo geologické mapování na listu 24-413 Mokrá-Horákov. Redaktorem listu byl Jindřich Hladil (Hladil 1987a, b). Mapování poskytlo celou řadu litostratigrafických a faciálních poznatků, které Hladila a kol. oprávnily obnovit diskusi příkrovové stavby jižní části Moravského krasu. Dvořák reagoval na sérii článků s příkrovovou tematikou (např. Hladil 1991a, 1995, Hladil et al. 1991, Hladil et al. 1999a) ve Věstníku ČGU (Dvořák 1993) a publikací svojí verze mapy Mokrá-Horákov (Dvořák 1997b). Za přečtení stojí také reakce Hladila a Kalvody na Dvořákovy kritické poznámky (Hladil & Kalvoda 1993).

Hladil sérií článků v devadesátých letech nastínil základní prvky faciálního vývoje nejen v jižní části Moravského Krasu (ve spolupráci s Kalvodou, viz kapitola 4, např. Hladil et al. 1991), ale také celého moravskoslezského paleozoika (Hladil 1991b, 1994). Ze vzájemných prostorových vztahů jednotlivých facií vyvodil tektonický scénář (obr. 2.8) zahrnující emskou až frasnskou extenzi spojenou s pravostrannou transtenzí, během níž docházelo k tvorbě obrovských mas útesů macošského souvrství, famenskou inverzi pánve spojenou s tvorbou kalciturbiditů a později kulmu, která přešla ve visé v kolizi, během níž došlo k enormnímu zkrácení prostoru a "zestohování" mocných kulmských sledů, namurskou pravostrannou rotaci bloků provázenou dalším sešupinatěním již deformovaných hornin, která vyvrcholila ve westphalu tvorbou moravské střižné zóny. Celý tento scénář završil permský gravitační kolaps (Hladil 1995, 1998).

Základní důkazy sv.-vergentní násunové tektoniky v jižní části Moravského krasu (obr. 2.9) jsou uvedeny ve vysvětlivkách ke geologické mapě Mokrá-Horákov (Hladil 1987a) a v článcích z roku 1991 (Hladil 1991a, Hladil et al. 1991). Hladil popsal násun brněnského masivu na vápence macošského a líšeňského souvrství v Růženině lomu na Hádech, nasunutí hlubokovodních facií na mělkovodní (Hladil et al. 1991, Kalvoda 1997) zachycené ve vrtech SV1, SV2 a SV3, násunové struktury v Lesním lomu a ve východním okolí Mokré (obr. 2.9). Poměrně složitá násunová stavba vznikla podle Hladila ve dvou fázích: během kolize na konci visé a během pravostranné rotace bloků odtržených od podloží v namuru provázené vznikem násunů (Hladil 1998). Tato pravostranná rotace je podle Hladila doložena nejen konfigurací jednotlivých pruhů různých facií paleozoika (Hladil 1995, 1998), ale také paleomagneticky (90-110°; Hladil et al. 1999b, Krs et al. 1995). Tato rotace může však být vysvětlena i silným přetiskem starších struktur během pohybů podél moravské střižné zóny (Hladil & Melichar 1999, Rajlich 1990).

Obr. 2.9: Schématická mapka jižní části Moravského krasu (Hladil et al. 1991). 1-brněnský masiv; 2-polymiktní bazální klastika s polohami tufů; 3-křemenné pískovce s podřízenými vložkami arkóz a slepenců; 4-vápence; 5kulm;

Obr. 2.8: Scénář vývoje českého masivu během variské orogeneze: po extenzní až transtenzní fázi prag – frasn následuje komprese ve visé projevující se vznikem kulmských příkrovů následovaná namurskou pravostrannou transpresí spojenou s rotací bloků odloučených od podloží vrcholící ve westphalu vznikem moravské střižné zóny (Hladil et al. 1999a).

3. Metodika

Strukturní model studovaného území byl vytvořen na základě podrobného mapování velkých lomů v oblasti, vyhodnocení klíčových vrtů a reinterpretaci terénních dat Dvořáka, Maštery a Hladila z mapování z roku 1987 (Hladil 1987b).

• Geografické mapové podklady pro detailní mapování lomů Mokrá poskytla v elektronické podobě Heidelberg Cement Group (situace lomových stěn z roku 2003).

• Byla pořízena rozsáhlá fotodokumentace lomových stěn, která posloužila pro zakreslení jednotlivých dokumentačních bodů.

• Detailní mapování jednotlivých litologických typů vápenců bylo kalibrováno biostratigraficky. Konodontovou faunu určil prof. Kalvoda. Celkem bylo rozpuštěno 64 vzorků. Lokalizace a stáří jednotlivých vzorků je uvedeno v příloze 2. Lokalizace vzorků je vynesena v příloze 4 (v příloze 4 jsou vyneseny také lokalizace obrázků použitých v textu a lokalizace orientovaných vzorků použitých pro napjatostní analýzu kalcitových dvojčat).

• Strukturní měření byla provedena kompasem firmy Freiberg se stupňovým dělením. Hlavními dokumentovanými strukturami byly plochy vrstevnatosti. Z ploch vrstevnatosti tvořících ramena vrás byly vypočteny vrásové osy (vektorový součin normál ploch vrstevnatosti). Dále byly dokumentovány zlomy, žíly a indikátory směru do nadloží (převážně gradace).

• Kromě vlastních měření z lomů Mokrá a Lesního lomu byla použita data převzatá z terénních deníků Dvořáka a Maštery z geologického mapování listu Mokrá-Horákov, které poskytla ČGS. Naprostá shoda matic orientace (např. Melichar 1991) vlastních a přejatých dat potvrzuje důvěryhodnost měření Dvořáka a Maštery (tab. 3.1).

Dvořák, Maštera (78 měření)		Rez (668 měření)
305/47	S_1	300/58
53/17	S_2	53/13
157/39	S_3	150/28
0,521	$(S_2-S_3)/(S_1-S_3)$	0,591

Tab. 3.1: Srovnání matic orientace ploch vrstevnatosti z lomů Mokrá (charakteristické vektory a poměr charakteristických čísel).

• Souřadnice dokumentačních bodů byly odečteny z mapových podkladů, u přejatých dat byly použity mapy dokumentačních bodů 1:10 000. Použitý souřadnicový systém je S-JTSK. Veškerá měření jsou v příloze 1.

• Strukturní data byla vyhodnocena v programu Spheristat 2.2. Veškeré strukturní diagramy jsou vyneseny v Lambertově projekci na spodní polokouli. Krok kontur konturových diagramů je jedno procento, počáteční kontura je jedno procento. V diagramech jsou pro lepší vizualizaci hlavních trendů vyneseny charakteristické vektory a plochy matice orientace dat – čísly 1, 2 a 3 jsou označeny charakteristické vektory matice orientace (≈hlavní směry přednostní orientace dat), modrými oblouky čárkovaně charakteristické plochy matice orientace (jsou to plochy kolmé k jednotlivým charakteristickým vektorům matice orientace).

• Mapa trendů vrstevnatosti (obr. 5.2) byla konstruována také v programu Spheristat 2.2. Jedná se o průměrné vrstevnatosti v síti bodů 500 x 500 m, počítané jako vážený průměr (1/vzdálenost) všech vrstevnatostí v okruhu 2 km.

Obr. 3.1: Histogram chybovosti měření ploch zlomů a rýhování (90-úhel svírající rýhování a normála zlomu).

• Napjatostní analýza zlomů byla provedena pomocí programu Mark 2010 Kernstockové a Melichara, využívající metodu mnohonásobné inverze (Kernstocková & Melichar 2010, Melichar & Kernstocková 2010). Data byla vytříděna (byly použity pouze zlomy se změřeným rýhováním a jeden zlom byl vyloučen kvůli příliš velké chybě měření) a ortogonalizována. Histogram chybovosti měření je na obr. 3.1. (chyba měření je chápána jako úhel svírající měření plochy zlomu a rýhování). Protože se jedná o metodu mnohonásobné inverze, je výsledkem výpočtu velmi vysoké množství redukovaných tenzorů napjatosti, které v 9D-prostoru vytvářejí shluky, které odpovídají jednotlivým napjatostním fázím. Ve výsledcích v kapitole 5.4 (obr. 5.13) jsou pro názornost uvedeny hustotní diagramy orientace hlavních normálových napětí těchto redukovaných tenzorů, které mohou být ale někdy zavádějící, protože nerozlišují mezi tenzory s různými tvarovými parametry Φ. Samotné hledání napjatostních fází (maxim hustotní funkce) však program Mark 2010 provádí v 9D-prostoru. Výsledkem celé procedury jsou redukované tenzory napjatosti, charakterizované třemi směry hlavních normálových napětí (σ_1 , σ_2 a σ_3) a Lodeho tvarovým parametrem µ_L. Pro srovnání s napjatostní analýzou kalcitových dvojčat byl Lodeho parametr přepočten na parametr Φ ($\Phi = (\sigma_2 - \sigma_3)/(\sigma_1 - \sigma_3)$; $\Phi = (\mu_L + 1)/2$). Zlomy byly separovány do jednotlivých homogenních souborů pomocí úhlů, které svírají jejich C-linie s 9D-vektorem napjatosti (jejich tvorba viz Melichar & Kernstocková 2010). Zlom byl přiřazen dané fázi, pokud byla odchylka těchto dvou vektorů maximálně 5°. Pokud splňoval zlom toto kritérium pro více fází, byl přiřazen k fázi s níž svíral menší úhel.

 Pro účely napjatostní analýzy založené na mechanickém dvojčatění kalcitu byla zhotovena řada orientovaných výbrusů karbonátových žil, protože vápence ve studované oblasti jsou většinou mikritické, neobsahují dostatečné množství měřitelných kalcitových zrn a pro analýzu jsou

Obr. 3.2: Histogram chybovosti měření kalcitu (odchylka od úhlu 26.25°, který teoreticky svírá osa c a normála dvojčatné plochy.

tudíž nevhodné). Ze všech výbrusů byly 4 vybrány pro další analýzu (vhodná velikost zrna, dostatečné množství zdvojčatělých zrn). U každého zrna byla změřena orientace optické osy c, velikost zrna, orientace dvojčatných lamel, jejich tloušťka a hustota (počet lamel na mm). Tato měření byla provedena na pětiosém Fjodorovově stolku CTΦ-1 namontovaném na polarizačním mikroskopu MNH-8 (postup viz např. Melichar 1991). Při měření byly použity segmenty s indexem lomu 1.65 (střední hodnota pro kalcit) a byla zavedena korekce na rozdíl indexu lomu segmentů a minerálu (Fediuk 1961). Data byla zpracována v programu autora TwinCalc 1.4. Správnost měření byla ověřena výpočtem vzájemného úhlu normály dvojčatné lamely a osy c (teoreticky 26.25°, histogram odchylek měření od tohoto úhlu je na obr. 3.2) i dvojčatných ploch navzájem (teoreticky 45°). Takto byly rozlišeny i plochy štěpnosti, které mohou být poměrně snadno zaměněny s tzv. mikrolamelami (tj. lamely o pravé mocnosti menší než 0.5 µm). Následně byla data ortogonalizována (metodou nejmenších čtverců byla rotována do teoreticky správných pozic).

• Napjatostní analýza dvojčatných lamel kalcitu byla provedena v programu TwinCalc 1.4 (teoretické pozadí viz Burkhard 1993, Ferrill 1998, Jamison & Spang 1976, Rowe & Rutter 1990, Turner 1953, Turner et al. 1954). V současnosti hlavní používanou metodou je metoda Laurenta a Lacomba (Lacombe & Laurent 1996, Laurent et al. 1981, Rocher et al. 2004, Tourneret & Laurent 1990). Tato metoda hledá nejvhodnější tenzor napjatosti ze 100 až 1000 náhodně generovaných tenzorů napjatosti pomocí penalizační funkce f_L . Vybrán je tenzor s nejmenší hodnotou f_L. V následném kroku je tenzor napjatosti optimalizován prohledáním jeho nejtěsnějšího okolí (opět za použití funkce f_L). Výsledkem této metody je kompletní tenzor napjatosti (a tedy i velikosti diferenciálního napětí). V této práci byla použita modifikace metody Laurenta a Lacomba (Rez & Melichar 2010). Kvůli eliminaci možných chyb byla penalizační funkce počítána pro 64 152 000 tenzorů (krok orientace hlavních normálových napětí 1°, krok tvarového parametru Φ 0,1). Dále byla použita penalizační funkce f_R (Rez & Melichar 2010), která má ostřejší maxima a tím pádem přesnější výsledky. V obr. 5.17 - 5.20 jsou zobrazeny diagramy distribuce penalizační funkce f_R. Každý směr těchto diagramů představuje jeden z 1980 tenzorů napjatosti s daným směrem σ_1 (180 směrů $\sigma_3 \ge 11$ hodnot Φ) s nejvyšší hodnotou penalizační funkce. Maxima jsou obarvena červeně, minima modře (viz legenda na obr. 5.16). Vizuální srovnání těchto diagramů s výsledky analýzy umožňuje jejich poměrně snadnou kontrolu.

• Souběžně s metodou Laurenta a Lacomba byla pro hrubou kontrolu napjatostních fází použita modifikovaná metoda klínů (Rez & Melichar 2010). Tato metoda využívá závislosti velikosti napětí potřebného ke zdvojčatění dané dvojčatné plochy na orientaci napětí. Tuto závislost lze vyjádřit pomocí Schmidova kritéria μ.

$\mu = sin(\pi/2 - \varphi)cos\lambda$

kde φ je úhel svírající napětí *S* a normála dvojčatné plochy *e* a λ je úhel svírající napětí *S* a kluzný vektor *g*, přičemž jak *e*, tak *g* jsou krystalograficky dané (např. Jamison & Spang 1976, Turner et al. 1954). μ nabývá hodnot 0 pro nejméně vhodně orientovaná napětí až 0,5 pro nejvýhodněji orientovaná napětí. Aby plocha zdvojčatěla, musí střižné napětí τ podél *g* přesáhnout kritické střižné napětí τ_c . Musí tedy platit vztah:

Obr. 3.3: Schéma výpočtu modifikované metody klínů (pravděpodobnostní funkce f_{μ}). Hodnoty μ pro zdvojčatělé lamely (např. první diagram) se přičítají, hodnoty μ pro nezdvojčatělé plochy (např. druhý diagram) se odečítají. Diagram vpravo je výsledná funkce f_{μ} . σ_1 leží v červené oblasti, σ_3 v oblasti modré.

Tohoto vztahu se dá využít jako pravděpodobnostní funkce orientace σ_1 (obr.3.3). Pro každý směr se vypočte tato funkce:

$$f_{\mu_{\alpha_{L}}/\varphi_{L}} = \sum_{i=1}^{n} \mu_{iT} - \sum_{i=1}^{n} \mu_{iU}$$

kde μ_{iT} jsou velikosti Schmidova kritéria zdvojčatělých lamel a μ_{iU} jsou velikosti Schmidova kritéria nezdvojčatělých ploch. Graficky je tento proces znázorněn na obr. 3.3. Tato metoda nedosahuje přesnosti metody Laurenta a Lacomba, ale může být použita pro první velmi rychlý odhad a pro rámcovou kontrolu ostatních metod.

• Velikosti diferenciálního napětí byly také určeny metodou Jamisona a Spanga (1976) a Rowa a Ruttera (1990). Obě metody jsou založeny na různých parametrech dojčatění závislých na diferenciálním napětí. Metoda Jamisona a Spanga využívá přímé úměry mezi počtem zrn s jedním, dvěma či všemi třemy zdvojčatělými systémy a diferenciálním napětí. Metody Rowa a Ruttera využívají pozitivní korelaci mezi velikostí diferenciálního napětí a 1) zvyšující se hustotou lamel (počet lamel na 1 mm) a 2) nárůstem celkového objemu dvojčatných lamel. Všechny metody jsou empiricky kalibrované a mají stejné předpoklady a nedostatky (Ferrill 1998). Liší se teplotou deformace, pro jakou byly kalibrovány. Metoda Jamisona a Spanga je vhodnější pro teploty nižší než 200°C a metody Rowa a Ruttera pro teploty vyšší (Ferrill 1998). V textu jsou uvedeny výsledky obou metod, i když z hlediska teploty deformace v jižní části Moravského krasu (Franců et al. 2002) se jeví jako vhodnější metoda Jamisona a Spanga.

4. Stratigrafie a faciální vývoj

4.1. Přehled facií

Jižní část Moravského krasu náleží facii Moravského krasu moravskoslezského paleozoika (ve smyslu Zukalové & Chlupáče 1982), je však faciálně mírně odlišná od severní a střední části Moravského krasu (obr. 4.1; např. Bábek et al. 2006, Chlupáč et al. 1986, Kalvoda et al. 2007), a to hlavně řádově většími mocnostmi líšeňského souvrství (které však může být na severu redukováno tektonicky) a absencí prvního cyklu souvrství macošského.

Jak již bylo uvedeno výše, faciální různorodost jižní části Moravského krasu byla rozpoznána již v minulém století (Pokorný 1950, Prantl 1948). Kalvoda vyčlenil v jižní části Moravského krasu dva od frasnu faciálně odlišné vývoje (obr. 4.2; Hladil 1987a, Hladil et al. 1991, Kalvoda 1997, Kalvoda et al. 2010): paraautochtonní vývoj hostěnický a allochtonní vývoj horákovský. Schematická mapka rozšíření obou facií, včetně jednotlivých výchozů použitých k jejímu sestrojení, je na obr. 4.3 a 6.2.

Prvním rozlišitelným členem mělkovodního hostěnického vývoje jsou vilémovické vápence čtvrtého cyklu – mikritické, biodetritické světlé vápence, sedimenty mělké, chráněné rampy s hojnými amfiporami (Hladil 1987a). Líšeňské souvrství v hostěnickém vývoji je zastoupeno velmi kondenzovaným sledem (mocným jen několik desítek metrů) mikritických a biomikritických vápenců famenu až středního tournai (*spodní křtinské* vápence¹). Na ně nasedají také velmi málo mocné mikrobrekciovité až brekciovité případně písčité vápence proximální kalciturbidity, laterální ekvivalent březinského souvrství (Kalvoda 1997).

Horákovský vývoj je oproti hostěnickému nepoměrně mocnější. Sedimentoval se v hlubších částech svahu a je charakterizován hlavně usazováním mocných sledů biodetritických kalciturbiditů. Vilémovické vápence 4. cyklu jsou typicky otevřený útesový vývoj s častými brekciemi a masivními koloniovými korály (Hladil 1987a). Ve spodním famenu sedimentovaly tzv. spodní hádskoříčské vápence, tmavě šedé, deskovité, biodetritické, s častými gradacemi. Na hranici famen/tournai došlo ke změlčení pánve (Kalvoda & Kukal 1987) a začaly sedimentovat kalové kalciturbidity – mikritické svrchní křtinské vápence (Kalvoda 1997). Ve středním tournai nastoupila sedimentace svrchních hádsko-říčských vápenců středně šedých až tmavě šedých, biomikritických až biodetritických kalciturbiditů s radiolaritovými rohovci. ve flyšovou sedimentaci Přechod charakterizuje sedimentace březinského souvrství zastoupeného rezavě hnědými březinskými břidlicemi, které se při bázi střídají s četnými vložkami vápenců, kterých směrem do nadloží ubývá. Již typicky kulmské sedimenty jsou zastoupeny zelenošedými břidlicemi s podřízenými vložkami drob rozstáňského souvrství a račickými slepenci souvrství myslejovického (Kalvoda 1997, Kalvoda et al. 2010, Zukalová & Chlupáč 1982).

Obr. 4.1: Srovnání vývoje severní a jižní části Moravského krasu (Hladil 1987a, Chlupáč et al. 1986).

Obr. 4.3: Schématická faciální mapa jižní části Moravského krasu (podle vlastních výzkumů a dat z Dvořák 1989, Hladil 1987a, Hladil et al. 1991, Kalvoda 1997, Rutová 2009)

¹ Formální členění líšeňského souvrství na mikritické křtinské vápence a biodetritické hádsko-říčské vápence je v tomto případě nedostatečné. Pro snadnější orientaci v textu jsou používány neformální stratigrafické jednotky používané v těžební praxi.

Obr. 4.2: Stratigrafické schéma jižní části Moravského krasu (podle Kalvoda 1997, Kalvoda et al. 2010). Toto schéma je také použito jako legenda ke všem následujícím vyobrazením, pokud není uvedeno jinak.

4.2. Lomy Mokrá

Lomy Mokrá (západní, střední a východní lom) odkryly profil v celkové délce zhruba 1800 m, který zachycuje tektonický kontakt obou vývojů: hlubokovodnější horákovský vývoj je nasunut podél složité násunové zóny na mělkovodní vývoj hostěnický (obr. 4.4 a obr. 5.8).

Západní lom zachytil zdánlivě monotónní sled vilémovických vápenců, monoklinálně se uklánějících k východu, překrytých spodními hádsko-říčskými vápenci (obr. 4.4a). Kontakt vilémovických a spodních hádskoříčských vápenců je postižen kluzem paralelním s vrstevnatostí zvýrazněným mylonitizací² a tlakovým rozpouštěním (ve východní stěně je jasně patrná vrása odlepení metrových rozměrů, obr. 5.5d). Také zhruba uprostřed sledu vilémovických vápenců je vyvinuta několik metrů mocná mylonitizovaná zóna oddělující mírně odlišné vilémovické vápence (větší podíl SiO₂ v nadloží; obr. 5.10b) s četnými projevy mezivrstevního skluzu (drobné střižné zóny paralelní s vrstevnatostí). To naznačuje allochtonitu sedimentů v nadloží této mylonitové zóny. Násun vilémovických vápenců na vilémovické vápence doložil Hladil (1987a) ve "starém lomu" u správní budovy, kde jsou vápence 3. cyklu nasunuty na vápence 4. cyklu. V jižní části středního lomu odděluje vápence vilémovické pouze několik metrů mocná šupina spodních křtinských vápenců (obr. 5.8).

Střední lom odkryl velmi pestrý sled hornin obou vývojů (obr. 4.4b). Na západě vycházejí horniny hostěnického vývoje. Na vilémovické vápence nasedají silně zvrásněné a kondenzované spodní křtinské vápence následované několika metry brekciovitých vápenců. Nadložní horákovský vývoj je na podložní hostěnický nasunut podél násunové zóny mocné cca 100 m se složitou šupinovitou stavbou. Jednotlivé šupiny jsou odděleny mylonitovými násunovými plochami. První šupina má normální vrstevní sled. Je tvořena zvrásněnými svrchními

hádsko-říčskými vápenci a na ně nasedajícími břidlicemi s vložkami vápenců (březinské souvrství). Následuje generelně překocený sled horákovského vývoje. Na břidlice s vložkami vápenců březinského souvrství nasedají intenzivně vrásněné svrchní křtinské vápence, pravděpodobně tektonicky duplikované, tvořící několik šupin s překoceným i normálním vrstevním sledem. Celý profil uzavírá ležatá antiklinála horákovského vývoje tvořená spodními hádsko-říčskými a vilémovickými vápenci (obr. 4.4b).

Profil ve *východním lomu* zachytil kompletně vyvinuté překocené rameno antiklinály horákovského vývoje z východní části středního lomu (obr. 4.4c). Nejvýše jsou spodní hádsko-říčské vápence, pod nimi svrchní křtinské a svrchní hádsko-říčské vápence. Tato antiklinála je nasunuta na horniny rozstáňského a myslejovického souvrství podél násunové zóny mocné cca 90 m s "melanžovitou" šupinovitou stavbou, ve které se střídají šupiny různých typů vápenců s břidlicemi rozstáňského souvrství.

4.3. Vybrané profily v oblasti

Pro vymezení rozsahu hostěnického a horákovského vývoje byla použita data z několika klíčových výchozů (obr. 4.3).

Západně od obce Hostěnice vystupují v malých lomech vilémovické vápence 4. cyklu, famenské až střednotournaiské spodní křtinské vápence a svrchnotournaiské až spodnoviséské brekciovité vápence hostěnického vývoje. Tento sled reprezentuje jednu z nejmělčích částí hostěnického vývoje (Kalvoda 1997).

Jihozápadně od Kanického kopce popsal Hladil (1987a) mísovitě prohnuté vilémovické vápence 2. cyklu nasunuté na vilémovické vápence 3. cyklu.

Lomy na Kopaninách odkrývají stejnou kondenzovanou sekvenci frasn/famenských hornin (vilémovické až spodní křtinské vápence) jako vrt V 204 1987a; viz dále), naznačující příslušnost (Hladil k hostěnickému vývoji. Rutová (2009) popsala 2,5 m mocný profil sv. od lomů na Kopaninách, který zachytil kondenzovaný sled spodních křtinských vápenců stáří svrchní famen - spodní tournai (zóny Pa. gracilis až Si. sandbergi) hostěnického vývoje.

² Násunové plochy jsou podrobně popsány v kapitole 5.3 Násunové zlomy

Obr. 4.4: Schématické a idealizované profily a) západním, b) středním a c) východním lomem Mokrá. Pozice profilů je vyznačena na obr. 4.3. Násunové zlomy jsou zvýrazněny tlustou černou čarou, směr sunutí prostorovou šipkou.

Lesní lom severně od Brna-Líšně je tvořen vápenci horákovského vývoje a to včetně vápenců vilémovických v jeho sz. rohu (Hladil 1987a, Hladil et al. 1991). Nad vilémovickými vápenci jsou vyvinuty spodní hádsko-říčské vápence (při kontaktu s vilémovickými vápenci silně deformované až mylonitizované, nabohacené organickou hmotou). Ve východní stěně jsou zachyceny svrchní křtinské vápence a svrchní hádsko-říčské vápence. Celý sled je porušen několika mezivrstevními prokluzy (násuny paralelními s vrstevnatostí). Hladil uvádí i tektonické opakování sekvencí svrchního famenu až spodního tournai ve východní stěně lomu (Hladil 1987a).

Profil zachycený na **Šumbeře** severně od Hádů je typickým příkladem horákovského vývoje (Hladil 1987a). Začíná vilémovickými vápenci horákovského vývoje, tedy relativně hrubozrnnými biodetritickými vápenci s masivními korály a četnými zbytky organizmů otevřeného moře. Na vilémovické vápence nasedají spodní hádskoříčské vápence (při bázi s krinoidovými polohami).

Lomy na Hádech odkrývají profil horákovským vývojem. Celý několik desítek metrů mocný sled spodních hádsko-říčských vápenců (cca 80 m) je poněkud odlišný od sledu zachyceného v Lesním lomu. Jedná se převážně o černě zbarvené, laminované vápnité břidlice s vložkami biodetritických vápenců, což je způsobeno buď velmi intenzivní deformací (časté jsou "hlíznaté" polohy, viz diskuse dále) a nebo se jedná o nejhlubší, distální partie s velmi vysokým horákovského vývoje podílem nekarbonátových složek. Podle Dvořáka (2005) náležejí tyto vápence palmatolepisové biofacii, což může svědčit o tom, že tyto vápence sedimentovaly ve větších hloubkách. Zbytek profilu je tvořen spodními hádsko-říčskými vápenci v typickém vývoji (Dvořák 1989).

Lom v Habeši zachytil vilémovické vápence s amfiporami a velmi kondenzovaný sled spodních křtinských vápenců stáří famen – spodní tournai, tedy typický hostěnický vývoj (Dvořák 1989, Hladil 1987a, Prantl 1948). Severně od lomu v Habeši dokumentoval Hladil (1987a) brekciovité vilémovické vápence 4. cyklu bez amfipor, které lze přiřadit spíše horákovskému vývoji.

4.4. Vybrané vrty

V jižní části Moravského krasu byla vyhloubena celá řada vrtů. Mělké "prospekční" vrty z okolí lomů Mokrá či Lesního lomu (ač jdou jejich počty do stovek) se pro účely této práce ukázaly jako naprosto nevhodné, kvůli nedostatečné, jednostranně zaměřené dokumentaci (většinou jsou k dispozici pouze rámcové litologické popisy a chemické analýzy). Nicméně existuje několik opěrných vrtů, které zachytily velmi zajímavý sled hornin.

Vrt *V 204* při západním okraji Lesního lomu navrtal 58 m spodních hádsko-říčských vápenců a v jejich podloží 20 m silně kondenzovaných famenských mikritických – spodních křtinských vápenců (doložena fauna zón triangularis až velifer). Také podložní vilémovické vápence byly vyvinuty v kondenzovaném vývoji (Dvořák 1989), což naznačuje příslušnost k hostěnickému vývoji a přítomnost násunové plochy v hloubce 58 m, čemuž napovídá také intenzivní černé zbarvení vápenců a vložky "břidlic" v této hloubce.

Vrt *HV1* potvrdil v hloubce 25 m nasunutí spodních hádsko-říčských vápenců na myslejovické souvrství. V hloubce 104 m zachytil vrt šupinu vápenců na rozhranní myslejovického a rozstáňského souvrství. Podložní břidlice a droby rozstáňského souvrství také obsahují několik šupin silně deformovaných vápenců. V hloubce 158,5 m vrt zastihl 10 m mocnou polohu svrchních hádsko-říčských vápenců s rohovci a pod nimi svrchní křtinské vápence. Až do hloubky 410 m následovala tektonická melanž: střídání černých "břidlic" (\approx mylonitů) a biodetritických a mikritických vápenců. V podloží této zóny navrtal vrt vilémovické vápence, které jsou nasunuty v hloubce 459 m na biodetritické vápence s vložkami břidlic a mikrických vápenců (Dvořák 1989).

Obr. 4.5: Litologické profily vrtů SV1 a SV3 (Dvořák 1989, Hladil 1987a) a jejich interpretace. Legenda: 1-vápnité břidlice; 2-mikritické vápence; 3-hlíznaté mikritické vápence; 4-tmavě šedé biodetritické vápence; 5-biodetritické vápence s vložkami vápnitých břidlic; 6-brekciovité vápence; 7- černošedé laminované vápence; 8-rohovce; 9-vilémovické vápence; 10-šedozelené pískovce; 11-slepenec; 12-násunový zlom.

Nejvýznamnějším vrtem je 536 m hluboký vrt SV1, který zachytil stejný sled hornin jako střední lom v Mokré (obr. 4.5). Vrt navrtal 163 m horákovského vývoje, tedy 18 m svrchních hádsko-říčských, 8 m svrchních křtinských a 115 m spodních hádsko-říčských vápenců, a také 22 m vilémovických vápenců, které jsou korelovatelné s profily na Šumbeře a Lesním lomu, tedy typickými zástupci facie otevřené rampy horákovského vývoje (Hladil 1987a). Dále zachytil vrt SV1 spodní hádsko-říčské vápence s překoceným sledem v celkové mocnosti 76 m na bázi s černošedými břidlicemi (= mylonit násunového zlomu) a cca 42 m mocnou šupinu svrchních hádsko-říčských vápenců (obr. 4.5), tedy 128 m mocnou násunovou zónu s duplexovitou vnitřní stavbou. Pod horninami horákovského vývoje byl v hloubce 291 m navrtán kondenzovaný vývoj hostěnický: spodní křtinské vápence mocné 21 m, vápence vilémovické a bazální klastika.

Vrt *SV2* zachytil poměrně složitou šupinovitou strukturu vyvinutou v horninách horákovského vývoje (podrobnosti viz Dvořák 1989, Hladil 1987a).

500 m hluboký vrt SV3 zachytil násunovou zónu v hloubce 383-430 m (obr. 4.5). Nadložní horákovský vývoj je tvořen 106 m spodních hádsko-říčských vápenců. Dále cca 163 m sedimentů hlubší rampy – černošedých mikritických deskovitých vápenců střídajících se s vápnitými břidlicemi stáří svrchní frasn až spodní famen. Svrchní část tohoto poněkud neobvyklého vývoje přirovnal Hladil k vápencům vintockým. Obsahují faunu horákovské facie a do podloží přecházejí do vilémovických vápenců. Obdobný frasn/famenský vývoj popsal Kalvoda v lomu západně od Bedřichovic (Hladil & Kalvoda 1993, Kalvoda 1989). Vilémovické vápence horákovského vývoje dosáhly ve vrtu SV3 mocnosti cca 100 m a obsahovaly vložky klastik (obr. 4.5). V hloubce 383 m byla pod polohou klastik navrtána šupina spodních hádsko-říčských vápenců a pod ní šupina svrchních hádsko-říčských vápenců. Podložní vilémovické vápence náleží již hostěnickému vývoji.

5. Strukturní data

Jižní část Moravského krasu – přímé podloží variských flyšových příkrovů – prodělala komplexní deformační vývoj. Sedimentární sledy popsané výše prodělaly několikafázavou vrásovou deformaci, různé současé facie byly sblíženy systémem příkrovů a nakonec byla celá oblast postižena mladší radiální zlomovou tektonikou.

5.1. Vrásová deformace

Základní "velké" vrásové struktury jsou jasně patrné už z mapy (obr. 1.2, obr 5.2). Jsou to hostěnická a horákovská antiforma a mokerská a hádská synforma. Tuto generelní stavbu potvrzuje i mapa průměrných vrstevnatostí (obr. 5.2) a konturový diagram vrstevnatostí na obr. 5.1a. Také sklon hlavních vrásových os k JZ lze pozorovat v mapě (obr. 1.2) a potvrzuje ho konturový diagram vrásových os na obr. 5.1b. Tento sklon je v kontextu východního okraje brněnského masivu anomální, většina struktur se sklání k severu (např. Hanžl & Melichar 1995, Melichar & Kalvoda 1997, Rez & Melichar 2002). Z tohoto v hrubých rysech jednotného plánu vybočují lomy na Hádech, které mají vrásové osy anomálně ukloněné k severu (obr. 5.4e). To je pravděpodobně způsobeno druhotnou rotací při následných fázích deformace (viz kapitola 6. Diskuse).

Detailní vrásová stavba je samozřejmě mnohem složitější. Terénní pozorování v lomech Mokrá a Lesním lomu umožnila rozlišení dvou generací vrás. Vrásy první generace F_1 jsou většinou ukloněné až ležaté, zavřené až izoklinální s jasnou vergencí k SV (obr. 5.3f, 5.3g, 5.4d, Výrazné pásmové kružnice v konturových 5.4e). diagramech na obr. 5.1a, 5.3a a 5.4a náležejí právě této generaci vrás. Jejich osy se uklánějí k JV (cca 145/20, obr. 5.1b, 5.3c, 5.4c). Směr rýhování na vrstevních plochách potvrzuje sv.-jz. kompresi se sv. vergencí (obr. 5.3b, rýhování získaná v Lesním lomu, obr. 5.4b, jsou v tomto ohledu bohužel neprůkazná, je jich málo a mají příliš velký rozptyl). Mechanizmem vrásnění byl ohyb se skluzem, což naznačuje jak rýhování na vrstevních plochách jednoznačně spojené s vrásněním, tak i geometrie vrás - vrásy mají většinou konstantní pravou mocnost a spadají tedy do kategorie 1B, vznikající právě ohybem se skluzem (Ramsay & Huber 1989). Ostatně nehomogenita kalciturbiditů k ohybu se skluzem vyloženě vybízí. Intenzita deformace se mění v závislosti na vrásněném materiálu, nejdetailněji bývají provrásněny křtinské vápence a březinské břidlice, většinou jen mírné zvrásnění vykazují vilémovické vápence (obr. 5.3h), což často vede k odlepení líšeňského souvrství a disharmonickému vrásnění. Intenzita deformace narůstá také v blízkosti hlavních násunových struktur.

Vrásy F₁ jsou převrásněny vrásami druhé generace - F_2 . Vztahy rýhování F_1 a F_2 jednoznačně určily relativní stáří obou fází vrásnění – vrásy F_1 jsou starší než vrásy F_2 (obr. 5.3e). Vrásy generace F_2 se od generace F_1 liší geometrií. Jsou mnohem méně výrazné, v konturových diagramech se projevují pouze větším rozptylem hlavní pásmové kružnice (např. obr. 5.3a). Vrásy F2 jsou zhruba kolmé k vrásám F1 (průměrné osy zhruba odpovídají bodům 2 v konturových diagramech vrásových os na obr. 5.1b, 5.3c, 5.4c), mají většinou mnohem větší vlnovou délku, bývají vzpřímené, rozevřené a symetrické. Jsou pozorovatelné jak v lomech Mokrá (obr. 5.3d, e, g, i) tak i v Lesním lomu (obr. 5.4e). Rýhování spojená s touto generací naznačují kompresi ve směru SSZ-JJV až SZ-JV (obr. 5.3b). Podle vzájemné orientace osních rovin a os vrás F_1 a F_2 se jedná o typ 2 (např. Ramsay & Huber 1989; obr. 5.1c).

Obr. 5.1: Vrásová deformace v jižní části Moravského krasu a) konturový diagram všech použitých vrstevních ploch; b) konturový diagram všech použitých vrásových os; c) vznik převrásněných vrás typu 2 (např.Ramsay & Huber 1989)

Obr. 5.3: Vrásová stavba lomů Mokrá. a) konturový diagram ploch vrstevnatosti; b) růžicový diagram rýhování na vrstevních plochách (pro kontrolu jsou vynesena i samotná měření); c) konturový diagram vrásových os; d) vrása F₁ převrásněná vrásou F₂, střední lom, etáž 420, spodní křtinské vápence; e) detail vrstevní plochy se dvojím rýhováním, potvrzujícím relativní stáří F₁ a F₂; f) vrásy F₁, střední lom, etáž 420, spodní křtinské vápence; g) vrásy F_1 převrásněné vrásou F_2 , střední lom, etáž 380, svrchní křtinské vápence; h) vrásy F_1 ve vilémovických vápencích, střední lom, západní stěna; i) vrása F_1 převrásněná vrásou F_2 , střední lom, etáž 395, svrchní hádsko-říčské vápence;

N = 16

Obr. 5.4: Vrásová stavba v Lesním lomu a na Hádech. Lesní lom: a) konturový diagram ploch vrstevnatosti; b) růžicový diagram rýhování na vrstevních plochách (pro kontrolu jsou vynesena i samotná měření); c) konturový diagram vrásových os; d) vrásy F_1 , etáž 335, spodní hádsko-říčské vápence; e) vrása F_1 převrásněná vrásou F_2 , etáž 335, spodní hádsko-říčské vápence; Hády: f) konturový diagram vrásových os; g) "klasický" pohled na horní etáž (380) "městského lomu", vrásy F_1 s osami ukloněnými k severu, spodní hádsko-říčské vápence, nad diskordancí jurské vápence.

5.2. Struktury odlepení

Struktury odlepení vznikají jak při vrásnění, jako důsledek mezivrstevního kluzu, tak při nasouvání příkrovů, jako doprovodné struktury, a jsou v jižní části Moravského krasu hojně zastoupeny. Tato kapitola je hlavně grafickou dokumentací nejzajímavějších příkladů těchto struktur.

Protože hlavním vrásovým mechanizmem je ohyb se skluzem, docházelo při deformaci často k přetržení kompetentnější vrstvy, vzniku drobné rampy a vzniku drobného násunu (obr. 5.5a). Někdy jsou tyto malé rampy doprovázeny vrásami zlomového ohybu (obr. 5.5b). Jak již bylo uvedeno v předchozí podkapitole, reologické vlastnosti hornin v jižní části Moravského krasu jsou značně variabilní. To mělo za následek časté odlepení nekompetentních hornin od kompetentnějších a s tím spojeným vznikem vrás odlepení. Tyto struktury jsou zastoupeny ve všech měřítcích, od vrás řádově metrových (obr. 5.5c) po vrásy velikosti desítek metrů (obr. 5.5d a 5.5f).

Obr. 5.5: Příklady struktur odlepení v jižní části Moravského krasu. a) Drobné rampy porušující vrstvu organodetritického vápence, březinské souvrství horákovského vývoje, střední lom Mokrá, etáž 395; b) Drobná rampa a přidružená vrása zlomového ohybu, svrchní hádsko-říčské vápence, východní lom Mokrá; c) Vrása odlepení, svrchní křtinské vápence, střední lom Mokrá, etáž 380; d) Vrása odlepení, spodní hádsko-říčské vápence odlepeny od podložních vilémovických vápenců, západní lom Mokrá; e) Vrstevní odlepení, spodní hádsko-říčské vápence, Lesní lom, etáž 335; f) Vrása odlepení, spodní hádsko-říčské vápence, lom V Džungli, Hády. Bílé šipky upozorňují na popisované struktury, bílé asymetrické šipky naznačují smysl střihu.

5.3. Násunové zlomy

Jak již bylo uvedeno výše, násunové zlomy sbližují dvě rozdílné, ale současé karbonátové facie - horákovský vývoj hlubšího svahu je nasunut na mělkovodní hostěnický vývoj podél několik desítek metrů mocné násunové zóny, velmi dobře odkryté v lomech Mokrá (obr. 5.8). Tato násunová zóna má poměrně složitou duplexovitou vnitřní stavbu. Jednotlivé šupiny jsou odděleny tmavě šedými až černými střižnými zónami - násunovými zlomy. Tyto střížné zóny prodělaly intenzivní deformaci jednoduchým střihem a tlakové rozpouštění. Černé zbarvení je způsobeno nabohacením grafitizovaného organického materiálu tlakovým rozpouštěním během deformace. V lomech Mokrá lze sledovat různá stádia jejich vývoje. V ranném stádiu se vyvinula břidličnatost, velmi často paralelní s původní vrstevnatostí a k ní kosá kliváž. Tlakové rozpouštění postupně "zaoblilo" jednotlivé litony a zvýraznilo tak asymetrii vzniklé stavby (obr. 5.6a). Postupně došlo z výrazné redukci původní mocnosti střižné zóny, nerozpustný materiál začal převažovat nad zbytky vápenců, které "plavou" v černé "břidličnaté" základní hmotě (obr. 5.6b). V nejpokročilejším stádiu má násunový zlom podobu černé břidlice (obr. 5.6c, 5.6d). Velmi časté jsou také tektonické šupiny zavlečené podél násunových zlomů (obr. 5.11). V drtivé většině se jedná o starší horniny tektonicky zapracované do hornin mladších. Dříve bývaly považovány za olistolity, nicméně jejich pozice ve střižných zónách, přítomnost výrazného rýhování na jejich povrchu a silná deformace jednoduchým střihem konzistentní s generelním směrem nasouvání mluví spíše pro jejich tektonický původ.

Geometrii násunů lze nejlépe demonstrovat na příkladu lomů Mokrá. Násuny se uklánějí k V až JV (obr. 5.7a) a mají tedy víceméně severojižní průběh (obr. 5.8), pouze ve východním lomu se uklánějí k západu. Rýhování na plochách násunů je orientováno převážně ve směru SV-JZ (obr 5.7b). Asymetrie struktur (obr. 5.6a, 5.10c, 5.10d, 5.10e) dokládá nasouvání k SV. Násuny jsou zvrásněné vrásami koaxiálními s vrásami F_1 (průměrná osa je 170/20; obr. 5.7a) i vrásami F_2 . Násuny však zároveň evidentně sečou vrásy F_1 (obr. 5.9). Časové vztahy mezi vrásami a násuny jsou diskutovány v kapitole 6.2.

Obr. 5.7: Geometrie násunů v lomech Mokrá a) konturový diagram násunových ploch; b) růžicový diagram rýhování na násunových plochách.

Obr. 5.6: Násunové zlomy ve východním lomu Mokrá a) počáteční fáze deformace; b) pokročilá fáze deformace s intenzivním tlakovým rozpouštěním; c) finální fáze deformace, násunová zóna je tvořena prakticky pouze grafitickým nerozpustným zbytkem; d) detail násunu, střední lom, etáž 380.

Obr. 5.8: Odkrytá geologická mapa lomů Mokrá. Prostor mezi lomy je překryt poloprůhledným pozadím.

Násuny v lomech Mokrá mají sice zhruba sj. průběh, avšak jsou zvrásněny do mírné antiformy (hostěnická antiforma, obr. 5.8, 1.2). Ačkoliv jsou násunové zlomy povětšinou subparalelní s vrstevnatostí, vytváří hlavní odlepení v lomech Mokrá mírně ukloněnou rampu. V západním lomu, v jižní části lomu středního a ve "starém lomu" u správní budovy jsou nasunuty vilémovické vápence horákovského vývoje na vilémovické vápence vývoje hostěnického (obr. 5.10b). Směrem k SV šplhají násuny do vyšších stratigrafických úrovní (obr. 5.8). Kromě lomů Mokrá a výše popsaných vrtů existují v jižní části Moravského krasu další dobře dokumentované příklady násunových zlomů. Velmi známá je šupina vilémovických a spodních hádsko-říčských vápenců zapracovaná do řačických slepenců u dopravníkového pásu mezi lomy Mokrá a cementárnou a nasunutí vilémovických vápenců na hádsko-říčské vápence při JV okraji obce Mokrá (obr. 1.2; Hladil 1987a).

Obr. 5.9: Pohled na západní stěnu etáže 420 ve středním lomu Mokrá. Spodní hádsko-říčské vápence jsou nasunuty na svrchní křtinské vápence, násunová plocha je z části maskována mladším zlomem. Násuny sečou vrásovou stavbu F_1 , ale zároveň jsou samy zvrásněné vrásami F_1 .

Obr. 5.10: Násunové zlomy v lomech Mokrá. a) drobný násun ve vilémovických vápencích, střední lom, etáž 395; b) násun ve vilémovických vápencích, západní lom; c) drobné duplexy v rámci násunové zóny, svrchní hádsko-říčské vápence, střední lom, etáž 380; d) antiklinála svrchních křtinských vápenců nasunutá na svrchní křtinské vápence, střední lom, etáž 395; e) asymetricky zvrásněný násun indikující sunutí k SV, svrchní hádsko-říčské vápence, střední lom, etáž 395; f) zvrásněný zlom ve východním lomu (ohyb je označen šipkou vlevo), spodní hádsko-říčské vápence.

Rutová (2009) zdokumentovala v údolí Říčky jižně od Bělkova mlýna profil v horákovském vývoji. Na bázi profilu jsou svrchní hádsko-říčské vápence a nad nimi spodní hádsko-říčské vápence. Vysvětlila to překocením vrstevního sledu, avšak četné gradace dokládají nepřekocený sled a tím pádem nasunutí svrchních hádskoříčských vápenců na spodní. Násunově řešil tuto strukturu i Dvořák (1997b).

Další notoricky známou strukturou je nasunutí brněnského masivu a bazálních klastik na hádsko-říčské vápence v Růženině lomu a lomu v Džungli (obr. 5.11f) na Hádech (např. Dvořák & Pták 1963, Hladil 1987a).

Obr. 5.11: Násunové zlomy v jižní části Moravského krasu. a) šupiny rozstáňských břidlic (označeny šipkami) ve spodních hádsko-říčských vápencích, východní lom Mokrá; b) šupina spodních hádsko-říčských vápenců v zóně duplexů ve svrchních křtinských vápencích, střední lom Mokrá, etáž 420; c) šupina svrchních hádsko-říčských vápenců na násunovém zlomu v rozstáňském souvrství, východní lom Mokrá; d) šupiny vilémovických vápenců na násunovém zlomu ve svrchních křtinských vápencích, střední lom Mokrá; d) šupiny vilémovických vápenců na násunovém zlomu ve svrchních křtinských vápencích, střední lom Mokrá; etáž 395; e) duplexy svrchních hádsko-říčských vápenců a rozstáňských břidlic, východní lom Mokrá; f) bazální klastika (vpravo) nasunutá na spodní hádsko-říčské vápence, na násunové ploše (bílá linie) jsou rozvlečeny šupiny vilémovických vápenců (označeny šipkami), lom v Džungli, Hády.

5.4. Zlomová stavba

Jižní část Moravského krasu je sítí zlomů rozdělena na řadu menších ker s rozdílnou erozní úrovní, což značně ztěžuje pochopení pozorované stavby. Nejdůležitější jsou dva vzájemně zhruba kolmé systémy zlomů: Z_1 - ssv.-jjz. poklesy až horizontální posuny uklánějící se k JV a Z_2 zsz.-vjv. horizontální posuny až poklesy uklánějící se k SV. Pozorovaná četná rýhování a dokonale rovné zlomové plochy mnohdy "vyleštěné" v tektonická zrcadla dokládají polyfázovou reaktivaci těchto zlomů. Tyto zlomy sečou vrásovou (obr. 5.12) i násunovou stavbu a jsou tedy mladší.

Oba systémy jsou velmi významné. Zlomy Z_1 vytvářejí na východě území zlomové pásmo oddělující západní a střední lom Mokrá, které postihuje i horákovskou antiformu (na východ od této zlomové zóny již v jádře antiformy nevystupují na povrch vápence). Zlomy Z_2 zase vytvářejí zlomové pásmo mezi Bělkovým mlýnem a jižním okrajem lomů Mokrá, které porušuje rameno megavrásy mezi hostěnickou antiformou a mokerskou synformou.

Data z lomů Mokrá a Lesního lomu získaná během terénních prací (Příloha 1, Tab. 5.1) byla použita pro napjatostní analýzu. Výsledky analýzy jsou shrnuty v obr. 5.13.

Výsledkem analýzy zlomů z lomů Mokrá jsou tři tenzory napjatosti (napjatostní fáze) umožňující separovat všechny zlomy, kromě jednoho, do homogenních souborů zlomů (tab. 5.2, obr. 5.13). Napjatostní fáze nejsou číslovány podle relativního stáří, ale podle množství zlomů, které jimi byly reaktivovány. Relativní stáří fází nebylo možné určit, protože nikde nebylo nalezeno křížení zlomů a byl nalezen pouze jeden zlom se dvěma rýhováními, jejichž relativní stáří však nebylo možno spolehlivě určit.

T/Nb	1	2	3	4	5	6	7	8	9
F.I	90	87.9	64.8	87.7	76	90	69.5	69	88.3
F.II	89.3	77.5	59.3	58.3	86.9	76.9	90	90	88.3
F.III	59.2	53.9	90	80.2	84.4	78.3	90	55.4	64.2
T/Nb	10	11	12	13	14	15	16	17	18
F.I	80.4	66.8	90	86.4	66.3	88.6	58.1	77.6	88.2
E.II	61.4	87.7	59.3	90	66.6	63.2	90	72	60.2
F.III	90	82.8	84.2	57.5	90	81.9	76.1	65.6	83.4
T/Nb	19	20	21	22	23	24	25	26	27
F.I	63.8	59.5	81.9	67.8	86.5	86.3	90	88.5	89.2
E.II	89.1	87.7	84.8	88.5	89.7	65.7	72	59.7	58.9
F.III	80.5	83.4	85	82.3	56.6	90	78.7	72.5	82.6
Tab	5 2.	ÍIL.		itat 1	C 1::	-1	•••	duct	:

Tab. 5.2: Uhly svírající C-linie zlomů s jednotlivými vektory tenzorů napjatosti; červeně tučně jsou vyznačeny zlomy reaktivované danou napjatostí, červeně jsou zlomy splňující kritérium max. odchylky 5°, které však nebyly zařazeny do homogenního souboru zlomů dané fáze.

V Lesním lomu byla identifikována jedna napjatostní fáze, která je schopna reaktivovat osm ze dvanácti změřených zlomů (tab. 5.3, obr. 5.13). Pro zbývající zlomy nelze nalézt stabilní řešení. Tyto zlomy pravděpodobně nebyly reaktivovány během jedné napjatostní fáze.

T/Nb	1	2	3	4	5	6	7	8	9
F.I	49.2	86.4	70.7	65.5	88.3	90	75.5	85.1	87.9
T/Nb	10	11	12						
F.I	90	90	90						

Tab. 5.3: Úhly svírající 9D vektory C-linií zlomů s nalezeným vektorem tenzoru napjatosti; červeně tučně jsou vyznačeny zlomy reaktivované napjatostí F.I (s odchylkou max. 5°).

Obr. 5.12: Zlomy zsz.-vjv. směrů sečou vrásovou stavbu. a) vrchol antiklinály spodních hádsko-říčských a vilémovických vápenců (vpravo) je amputován zlomem a je oddělen od svrchních křtinských vápenců (vlevo) etáž 395, střední lom Mokrá; b) vrchol vilémovických vápenců (vpravo) je amputován zlomem a oddělen od svrchních křtinských vápenců (vlevo) etáž 380, střední lom Mokrá.

n. plocha	rýhování smys	sl n.	plocha	rýhování	smysl
1 S 320/30	L 330/32 pokle	es 15	S 261/80	L 180/35	pokles
2 S 352/39	L 329/38 pokle	es 16	S 156/54	L 242/8	přesmyk
3 S 116/46	L 132/42 přesi	myk 17	S 108/20	L 50/11	přesmyk
4 S 116/46	L 176/20 neuro	čen 18	S 72/30	L 36/30	pokles
5 S 194/81	L 276/25 přesi	myk ¦19	S 306/36	L 246/20	pokles
6 S 74/70	L 92/68 pokle	es 20	S 112/40	L 64/31	pokles
7 S 176/68	L 253/50 neuro	čen 21	S 82/33	L 81/31	pokles
8 S 222/38	L 264/30 pokle	es 22	S 102/34	L 78/29	přesmyk
9 S 260/21	L 244/20 pokle	es 23	S 244/25	L 233/24	neurčen
10 S 46/64	L 345/41 přesi	myk 24	S 68/56	L 6/26	přesmyk
11 S 355/78	L 74/37 přesi	myk 25	S 215/56	L 139/20	neurčen
12 S 311/70	L 31/28 přesi	myk 26	S 274/74	L 188/15	přesmyk
13 S 254/85	L 332/66 pokle	es 27	S 100/42	L 177/13	pokles
14 S 46/45	L 75/32 neuro	čen 🗄			
1 S 162/46	L 158/46 pokle	es ¦ 7	S 302/53	L 288/52	pokles
2 S 318/52	L 230/10 pokle	es 8	S 302/53	L 14/29	přesmyk
3 S 300/75	L 360/67 pokle	es 9	S 338/76	L 251/18	přesmyk
4 S 300/75	L 32/35 pokle	es 10	S 328/61	L 241/3	přesmyk
5 S 300/75	L 244/44 neur	čen 11	S 245/32	L 178/17	přesmyk
6 S 222/44	L 167/30 přes	myk 12	S 191/71	L 106/21	neurčen

Tab. 5.1: Data použitá pro napjatostní analýzu, v horní části z lomů Mokrá, v dolní z Lesního lomu (n. je číslo zlomu, Nb v tab. 5.2 a 5.3)

Fáze F.I z Lesního lomu je do značné míry kompatibilní s fází F.II z lomů Mokrá, protože obě mají totožnou orientaci σ_3 a oba tenzory jsou v podstatě oblátní (parametr Φ blízký 1).

Čistě hypoteticky, za předpokladu homogenního napjatostního pole a za vyloučení mladší reorientace zlomů, lze zlomy z Lesního lomu číslo 1 a 7 přiřadit do fáze F.I z lomů Mokrá a zlom 3 do fáze F.III.

Obr. 5.13: Výsledky napjatostní analýzy zlomů. a) synoptický diagram vstupních dat z lomů Mokrá; b) hustotní diagramy orientace hlavních normálových napětí (červená maxima mohou indikovat jednotlivé napjatostní fáze); c) výsledné fáze a synoptické diagramy separovaných homogenních souborů dat; d) synoptický diagram vstupních dat z Lesního lomu; e) hustotní diagramy orientace hlavních normálových napětí (červená maxima mohou indikovat jednotlivé napjatostní fáze); f) výsledná fáze a synoptický diagram separovaného homogenního souboru dat.

5.5. Napjatostní analýza kalcitových dvojčat

Pro napjatostní analýzu založenou na dvojčatění kalcitu (teoretické pozadí viz Burkhard 1993, Ferrill 1998, Jamison & Spang 1976, Rez & Melichar 2010, Rowe & Rutter 1990, Turner 1953) byly vybrány čtyři výbrusy z orientovaných vzorků (OV1, OV8, Z4 a Z9). Vzorek OV1 zachytil křížení dvou kalcitových žil ve svrchních hádsko-říčských vápencích ve východním lomu. Starší žilka je 5-7 mm mocná, tvořená mléčně bílým silně zdvojčatělým kalciem a má orientaci 105/70. Přetíná ji mladší žilka šedobílého naprosto nezdvojčatělého kalcitu, asi 1 cm mocná. Má orientaci 130/47. Výbrus OV8, pocházející z vilémovických vápenců západního lomu, protnul 5 mm mocnou žilku bílého kalcitu s lehkým rezavým nádechem. Její orientace je 165/80. Vzorek Z4 je 2 cm mocná, poměrně hrubozrnná (obr. 5.14) žíla mléčně bílého až skoro čirého kalcitu ze spodních hádsko-říčských vápenců, středního lomu, etáže 420. Její orientace je 209/86. Vzorek Z9 pochází z vilémovických vápenců v západním lomu. Jedná se o 1,5 cm mocnou žílu žlutobílého kalcitu s orientací 282/28.

Procenta zvojčatění jednotlivých vzorků jsou v tab. 5.4, jejich zrnitost je uvedena v histogramu na obr. 5.14. Měření v souřadnicích výbrusů a ortogonalizovaná data v geografických souřadnicích jsou v příloze 3.

	OV1	OV8	Z4	Z9
Počet zrn	49	43	24	49
Nezdvojčatělá zrna	2.04%	6.98%	0%	0%
Zrna s jedním systémem lamel	46.94%	34.88%	37.50%	10.20%
Zrna se dvěma systémy lamel	44.90%	48.84%	54.17%	85.70%
Zrna se třemi systémy lamel	6.12%	9.30%	8.33%	4.08%
Tab. 5.4: Procentuální	zastoupení	nezdvo	jčatělých	n zrn a

zrn s jedním, dvěma a třemi zdvojčatělými systémy.

Morfologie dvojčatných lamel je závislá hlavně na teplotě deformace. Zjednodušeně, čím vyšší teplota, tím méně vzniká lamel, které mají ovšem větší mocnost. Ferril et al. (2004) navrhli jednoduchý termometr založený na tomto principu (obr. 5.15). Data z jižní části Moravského krasu neposkytla jednoznačné výsledky. Měření zasahují do všech tří polí, vzorky Z4 a Z9 spadají více do polí vyšších teplot, vzorky OV1 a OV8 do nížeteplotních polí. Celkově však získaná data ukazují na vyšší teploty deformace, než jiné metody. Franců et al. (2002) uvádějí na základě odraznosti vitrinitu a krystalinity illitu pro jižní část Moravského krasu teploty 80-130°C. Tuto nesrovnalost lze vysvětlit superpozicí více fází deformace, která mohla snadno zvýšit mocnost měřených dvojčatných lamel, a také celkově nízkou rozlišovací schopností termometru Ferrila et al. Ostatně sami autoři doporučují jeho použití hlavně pokud není k dispozici jiná metoda.

Výsledky napjatostní analýzy jsou uvedeny v tab. 5.5 a obr. 5.17 až 5.20, které mají jednotnou formu a také jednotnou legendu (obr. 5.16). Části *a*) a *b*) zobrazují vstupní data. V části *c*) jsou grafy dvou metod Rowa a Ruttera (1990) a v části *d*) graf Jamisona a Spanga (1976) obě pro určení velikosti diferenciálního napětí $\Delta \sigma$. V části *e*) je zobrazen výsledek modifikované metody klínů (Rez & Melichar 2010). V části *f*) je zobrazen diagram distribuce penalizační funkce f_R hlavní použité metody Laurenta a Lacomba (viz kapitola 3. Metodika). A v sekci *g*) jsou vynesena hlavní normálová napětí zjištěných tenzorů napjatosti a bodové diagramy vstupních dat po aplikaci tenzoru napjatosti. Barevně jsou rozlišeny zdvojčatělé a nezdvojčatělé plochy kompatibilní i nekompatibilní s danou napjatostí.

Tabulka 5.5 shrnuje směry a velikosti hlavních normálových napětí, tvarový parametr Φ ($\Phi = (\sigma_2 - \sigma_3)/(\sigma_1 - \sigma_3)$), počet zdvojčatělých lamel kompatibilních s danou napjatostí (1/1) a počet nezdvojčatělých ploch nekompatibilních s danou napjatostí (0/1, nezdvojčatělé plochy, které by daná napjatost měla zdvojčatět).

Obr. 5.14: Histogram zrnitosti vzorků použitých pro napjatostní analýzu kalcitových dvojčat.

Obr. 5.15: Graf závislosti mocnosti dvojčatných lamel a jejich hustoty na teplotě deformace (Ferrill et al. 2004).

Obr. 5.16: Jednotná legenda pro části a - g obrázků 5.17, 5.18, 5.19 a 5.20.

0.11		F.I		F.II	F	.III	F	IV	
UVI	α_L/φ_L	napětí	α_L/φ_L	napětí	α_L/φ_L	napětí	α_L/φ_L	napětí	
σ_1	136/69	366 MPa	140/19	62 MPa	249/38	42 MPa	19/16	34 MPa	
σ_2	32/5	106 MPa	40/27	31 MPa	123/37	17 MPa	288/71	24 MPa	
σ_3	300/20	0 MPa	260/56	0 MPa	6/30	0 MPa	112/9	0 MPa	
Φ		0.4		0.5	0.4		0.71		
1/1		45	37		17		16		
0/1	21		17		15		1	12	
OV8		F.I		F.II	F	.III	F.	IV	
0.00	α_L/φ_L	napětí	α_L/φ_L	napětí	α_L/φ_L	napětí	α_L/φ_L	napětí	
σ_1	62/39	185 MPa	177/25	45 MPa	36/29	40 MPa			
σ_2	293/38	56 MPa	43/56	31 MPa	300/11	28 MPa			
σ_3	178/29	0 MPa	278/22	0 MPa	191/58	0 MPa			
Φ		0.3		0.69	0.7				
1/1		43		28	16				
0/1		18	18		10				
74	F.I			F.II		F.III		.IV	
<i>L</i> 7	α_L/φ_L	napětí	α_L/φ_L	napětí	α_L/φ_L	napětí	α_L/φ_L	napětí	
σ_1	102/19	85 MPa	37/2	25 MPa	353/10	150 MPa			
σ_2	9/8	76 MPa	306/33	3 MPa	208/78	30 MPa			
σ_3	259/69	0 MPa	130/57	0 MPa	84/7	0 MPa			
Φ	(),89		0,12	0,2				
1/1		28		12		21			
0/1		-	1		14				
		1		1		11			
79		F.I		F.II	F	.III	F	.IV	
Z9	α_L/φ_L	F.I napětí	α_L/φ_L	F.II napětí	α_L/φ_L	.III napětí	Γ_L/φ_L	.IV napětí	
Ζ9 σ ₁	α _L /φ _L 247/48	F.I napětí 310 MPa	α _L /φ _L 63/10	F.II napětí 95 MPa	F α _L /φ _L 18/12	.III napětí 60 MPa	F . <i>α_L/φ_L</i> 270/16	IV napětí 36 MPa	
$\frac{\mathbf{Z9}}{\sigma_1}$	α _L /φ _L 247/48 25/34	F.I napětí 310 MPa 31 MPa	α _L /φ _L 63/10 166/53	F.II napětí 95 MPa 57 MPa	F α _L /φ _L 18/12 288/0	.III napětí 60 MPa 0 MPa	F . <i>α_L/φ_L</i> 270/16 9/28	IV napětí 36 MPa 7 MPa	
$\begin{array}{c} \textbf{Z9} \\ \hline \boldsymbol{\sigma}_1 \\ \boldsymbol{\sigma}_2 \\ \boldsymbol{\sigma}_3 \end{array}$	α _I /φ _L 247/48 25/34 130/22	F.I napětí 310 MPa 31 MPa 0 MPa	α _L /φ _L 63/10 166/53 326/35	F.II napětí 95 MPa 57 MPa 0 MPa	Γ α _L /φ _L 18/12 288/0 198/78	napětí 60 MPa 0 MPa 0 MPa	F. <u>α_L/φ_L</u> 270/16 9/28 154/57	IV napětí 36 MPa 7 MPa 0 MPa	
$\begin{array}{c} \textbf{Z9} \\ \hline \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \Phi \end{array}$	α_L/φ_L 247/48 25/34 130/22	F.I napětí 310 MPa 31 MPa 0 MPa 0,1	α _l /φ _L 63/10 166/53 326/35	F.II napětí 95 MPa 57 MPa 0 MPa 0,6	Γ α _L /φ _L 18/12 288/0 198/78	.III napětí 60 MPa 0 MPa 0 MPa 0	F. α_L/φ_L 270/16 9/28 154/57 0	IV napětí 36 MPa 7 MPa 0 MPa 0,2	
$\begin{array}{c} \textbf{Z9} \\ \hline \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \Phi \\ 1/1 \end{array}$	α _L /φ _L 247/48 25/34 130/22	F.I <u>napětí</u> 310 MPa 31 MPa 0 MPa 0,1 64	α_l/φ_L 63/10 166/53 326/35	F.II napětí 95 MPa 57 MPa 0 MPa 0,6 39	F α _L /φ _L 18/12 288/0 198/78	napětí 60 MPa 0 MPa 0 MPa 0 42	F. α _L /φ _L 270/16 9/28 154/57 0 2	IV <u>napětí</u> 36 MPa 7 MPa 0 MPa 0,2 14	

Tab. 5.5: Výsledky napjatostní analýzy založené na dvojčatění kalcitu. Podrobnosti v textu, kapitola 5.5, str.24.

Výsledkem analýzy vzorku OV1 jsou čtyři napjatostní fáze: OV1_F.I až OV1_F.IV (tab. 5.5, obr. 5.17). Velikosti diferenciálního napětí získané metodami Rowa a Ruttera (1990) se pohybují mezi 80–366 MPa (průměrně 152 MPa) a mezi 11-81 MPa (průměrně 44 MPa). Hodnota diferenciálního napětí metodou Jamisona a Spanga (1976)³ je 157 MPa. Je ovšem pravděpodobné, že jsou tyto hodnoty nadhodnoceny polyfázovou deformací. Velikosti diferenciálního napětí získané metodou Laurenta a Lacomba (Lacombe & Laurent 1996, Laurent et al. 1990) jsou v tab. 5.5. Pouze v případě fáze OV1_F.I byla hodnota diferenciálního napětí snížena na 366 MPa, tedy nejvyšší hodnotu podle grafu Rowa a Ruttera (1990), protože původní velikost 510 MPa se zdála být nepravděpodobná. Také množství nekompatibilních nezdvojčatělých ploch (viz výše) je vyšší, než u ostatních vrorků (tab. 5.5). To by se dalo vysvětlit celkově menší velikostí zrn (obr. 5.14) a tím pádem méně homogenní distribucí napětí (např. Burkhard 1993, Tullis 1980). Celkem 13 zdvojčatělých systémů se nepodařilo přiřadit žádné z napjatostních fází. Podle Laurenta a Lacomba (Laurent et al. 1981, Rocher et al. 2004) je určité množství těchto lamel normální, jedná se buď o primární růstové lamely (velmi vzácně) a nebo o důsledek nehomogenní distribuce napětí.

Vzorek **OV8** byl deformován třemi fázemi: OV8_F.I až OV8_F.III (tab.5.5, obr. 5.18). Velikosti diferenciálního napětí metodou Rowa a Ruttera (1990) se pohybují v rozmezí 51–256 MPa (průměrně 163 MPa) a 15–347 MPa (průměrně 48 MPa). Podle Jamisona a Spanga (1976) je velikost diferenciálního napětí 214 MPa. 12 zdvojčatělých systémů lamel nebylo přiřazeno žádné napjatostní fázi.

Vzorek **Z4** také poskytl tři napjatostní fáze: Z4_F.I až Z4_F.III (tab. 5.5, obr. 5.19), ovšem bylo změřeno pouze 24 zrn. Diferenciální napětí podle Rowa a Ruttera (1990) dosahují hodnot 34–272 MPa (průměrně 147 MPa) a 10– 105 MPa (průměrně 35 MPa), podle Jamisona a Spanga (1976) 196 MPa. 9 dvojčatných systémů nebylo přiřazeno žádné napjatostní fázi.

A konečně vzorek **Z9** byl deformován opět čtyřmi napjatostními fázemi: Z9_F.I až Z9_F.IV (tab. 5.5, obr. 5.20). Je ovšem nutno upozornit na fakt, že má výrazně vyšší přednostní orientaci optických os c, než ostatní vzorky. Diferenciální napětí se pohybují v rozmezí 46–295 MPa (průměrně 162 MPa), 12–165 MPa (průměrně 57 MPa; Rowe & Rutter 1990) a 124 MPa (Jamison & Spang 1976). 16 zdvojčatělých systémů lamel nebylo přiřazeno žádné napjatostní fázi.

Možné vztahy jednotlivých fází jsou stručně diskutovány v kapitole 6.3.

³ výsledkem této metody jsou v ideálním případě tři zhruba stejné hodnoty, avšak procentuální zastoupení zrn s jedním a dvěma zdvojčatělými systémy je tak veliké, že se ocitají mimo graf a vypočtené hodnoty diferenciálního napětí jsou nereálně vysoké.

Obr. 5.17: Výsledky napjatostní analýzy vzorku **OV1**. a) bodový diagram pólů dvojčatných ploch; b) bodový diagram os c; c) grafy závislosti hustoty dvojčatných lamel a celkové deformace na diferenciálmím napětí (Rowe & Rutter 1990); d) graf závislosti procentuálního zastoupení zdvojčatělých zrn s jedním, dvěma a třemi systémy na diferenciálním napětí ($\Delta \sigma = \tau_c / S_1$; $\tau_c \approx 10$ MPa; Jamison & Spang 1976); e) výstup modifikované metody klínů (Rez & Melichar 2010); f) diagram distribuce penalizační funkce f_R ; g) identifikované napjatostní fáze: směry hlavních normálových napětí a bodové diagramy pólů dvojčatných ploch. Legenda viz obr. 5.16.

Obr. 5.18: Výsledky napjatostní analýzy vzorku **OV8**. a) bodový diagram pólů dvojčatných ploch; b) bodový diagram os c; c) grafy závislosti hustoty dvojčatných lamel a celkové deformace na diferenciálmím napětí (Rowe & Rutter 1990); d) graf závislosti procentuálního zastoupení zdvojčatělých zrn s jedním, dvěma a třemi systémy na diferenciálním napětí ($\Delta \sigma = \tau_c / S_1$; $\tau_c \approx 10$ MPa; Jamison & Spang 1976); e) výstup modifikované metody klínů (Rez & Melichar 2010); f) diagram distribuce penalizační funkce f_R ; g) identifikované napjatostní fáze: směry hlavních normálových napětí a bodové diagramy pólů dvojčatných ploch. Legenda viz obr. 5.16.

Obr. 5.19: Výsledky napjatostní analýzy vzorku **Z4**. a) bodový diagram pólů dvojčatných ploch; b) bodový diagram os c; c) grafy závislosti hustoty dvojčatných lamel a celkové deformace na diferenciálmím napětí (Rowe & Rutter 1990); d) graf závislosti procentuálního zastoupení zdvojčatělých zrn s jedním, dvěma a třemi systémy na diferenciálním napětí ($\Delta \sigma = \tau_c / S_1$; $\tau_c \approx 10$ MPa; Jamison & Spang 1976); e) výstup modifikované metody klínů (Rez & Melichar 2010); f) diagram distribuce penalizační funkce f_R ; g) identifikované napjatostní fáze: směry hlavních normálových napětí a bodové diagramy pólů dvojčatných ploch. Legenda viz obr. 5.16.

Obr. 5.20: Výsledky napjatostní analýzy vzorku **Z9**. a) bodový diagram pólů dvojčatných ploch; b) bodový diagram os c; c) grafy závislosti hustoty dvojčatných lamel a celkové deformace na diferenciálmím napětí (Rowe & Rutter 1990); d) graf závislosti procentuálního zastoupení zdvojčatělých zrn s jedním, dvěma a třemi systémy na diferenciálním napětí ($\Delta \sigma = \tau_c / S_1$; $\tau_c \approx 10$ MPa; Jamison & Spang 1976); e) výstup modifikované metody klínů (Rez & Melichar 2010); f) diagram distribuce penalizační funkce f_R ; g) identifikované napjatostní fáze: směry hlavních normálových napětí a bodové diagramy pólů dvojčatných ploch. Legenda viz obr. 5.16.

6. Diskuse

6.1. Diskuse Dvořákovy koncepce

Tato diskuse probíhá již od konce osmdesátých let (Dvořák 1993, Hladil & Kalvoda 1993, Hladil et al. 1991). V následujících odstavcích se zaměříme na dva její hlavní aspekty: 1) vrásovou stavbu a 2) zlomovou stavbu, coby řídící prvek faciální variability.

Jak již bylo napsáno v kapitole 2, Dvořák považoval ssv.-vergentní převážně ležaté vrásy za projevy synsedimentárního gravitačního hrnutí nezpevněných sedimentů po ukloněných svazích jednotlivých ker v důsledku vyklenování horákovského hřbetu (např. Dvořák et al. 1987). Již Štelcl (1957) však doložil, že přednostní orientace kalcitu v ramenech vrás vznikla před vrásněním. Litifikace sedimentu musela tedy proběhnout před vrásněním. Ostatně sám Dvořák s touto informací zpočátku pracoval (Dvořák & Pták 1963). Navíc mají vrstvy konstantní pravou mocnost sledovatelnou na velkou vzdálenost, a to i když jsou intenzivně zvrásněny (obr. 5.3f, 5.4d). Vrásy spadají do kategorie 1B, vznikající ohybem se skluzem (Ramsay & Huber 1989). Pokud by byly tyto sedimenty vrásněny ještě nezpevněné gravitačními pohyby, výsledná vrásová stavba by byla celkově nesrovnatelně méně homogenní. Docházelo by u nich ke ztenčení až přetržení ramen, pravděpodobně by spíše spadaly do kategorie 2 až 3.

Zlomová stavba byla podle Dvořáka zásadním faktorem ovlivňujícím faciální vývoj oblasti (Dvořák 1967, Dvořák et al. 1987, Dvořák et al. 1984). Celá jižní část Moravského krasu byla předpaleozoicky založenými zlomy rozdělena na menší kry. Relativní vertikální pozice jednotlivých ker ovlivňovala sedimentaci vápenců. Nejdetailněji propracoval Dvořák tento model v lomech Mokrá. Oblast lomů rozdělil do šesti dílčích ker. Relativní vertikální pozice jednotlivých ker měnící se v čase (obr. 2.6) způsobila nejen faciální rozdíly mezi jednotlivými krami, ale i střídání mělkovodnější a hlubokovodnější sedimentace v rámci jednotlivých ker (Dvořák et al. 1987). Oblast lomů Mokrá byla v čase se měnícím systémem zátok

Obr. 6.1: Faciální schéma líšeňského souvrství ve středním tournai (Dvořák et al. 1987). 1-pobřežní linie; 2-hlíznaté vápence; 3-černé vápence s rohovci; 4-tmavě šedé organodetritické vápence; 5-směr regrese.

a poloostrovů (např. obr. 6.1). Některá fakta však hovoří proti tomuto modelu. (1) v rámci některých ker, které Dvořák vymezil (např. kra D, Dvořák et al. 1987), se nad sebou opakují celé sekvence stáří famen až tournai vyvinuté v rozdílných faciích (obr. 4.4b). Dvořákův model by šlo použít pouze pokud by tyto nad sebou ležící facie nebyly stejně staré. Superpozici stejně starých facií lze vysvětlit pouze tektonickým sblížením (2) zdá se jen těžko představitelné, že by v rámci ker o rozměrech zhruba 300x500 m mohlo docházet k tak velkým faciálním změnám (mělkovodní křtinské vápence svrchní části svahu

změnám (mělkovodní křtinské vápence svrchní části svahu vs. hádsko-říčské vápence, kalciturbidity uložené při bázi svahu pánve). Mnohem pravděpodobnější je, že horniny sedimentovaly na různých místech a byly tektonicky sblíženy. (3) okrajové zlomy jednotlivých Dvořákových ker lze v terénu pozorovat (obr. 5.8), avšak tyto zlomy jednoznačně sečou vrásovou i násunovou stavbu (obr. 5.12) a jsou proto mladší. Pro jejich předdevonské stáří nejsou důkazy.

6.2. Diskuse pozorované stavby

Profily popsané v kapitole 4.2, 4.3 a 4.4, které byly přiřazeny hostěnickému a horákovskému vývoji, umožnily rekonstruovat průběh násunů v mapě (obr. 2.1, obr. 6.2).

Násunová zóna zachycená lomy Mokrá, zvrásněná do hostěnické antiformy, velmi pravděpodobně pokračuje na západ do prostoru Kanického kopce, kde je zvrásněna v mokerskou synformu a odděluje vilémovické vápence 2. cyklu nasunuté na vilémovické vápence 3. cyklu. Rameno této megavrásy je porušeno zlomovým pásmem sz.-jv. směru, které se táhne od Bělkova mlýna k severnímu okraji Mokré (obr.6.2).

Obdobná násunová zóna jako v lomech Mokrá byla zachycena vrtem SV1 v horákovské antiformě. Na povrch vychází západně od ústí vrtu (mapa se zde nápadně podobá lomům Mokrá, obr.1.2). Násunová zóna se projevuje zdvojením a zvýšenou mocností křtinských vápenců (stejně duplikované křtinské vápence jsou odkryty ve středním lomu Mokrá). Odtud lze tento násun sledovat na JZ do oblasti mezi Lesním lomem a lomem Na Kopaninách. Dále je již složitější násun sledovat, protože stejně jako v lomech Mokrá vytváří násunová plocha mírně ukloněnou rampu, takže na JZ od Lesního lomu je hlavní odlepení ve vilémovických vápencích. Násun se pravděpodobně stáčí k západu pod Šumberu, která je vyvinuta v allochtonním horákovském vývoji. Od Šumbery se násun stáčí k jihu do oblasti hádské synformy podél západního úbočí Hádů do lomu V Džungli. Tento násun vychází na povrch v podloží přesunutého brněnského masivu severně od lomu V Habeši.

Litofaciální rozdíly horákovského a hostěnického vývoje naznačují nasouvání na vzdálenost větší než 5 km (Kalvoda 1989). Jedná se tedy v podstatě o příkrovy.

Násuny oddělující horákovský a hostěnický vývoj jsou zvrásněny generací vrás F_1 (sledují hlavní vrásovou stavbu – mají v mapě esovitý průběh) a je poměrně složité je sledovat. Tyto násuny náležejí generaci T_1 . Kromě nich však existují převážně nezvrásněné (postižené pouze mladší generací vrás F_2), v mapě víceméně přímé, sz.-jv. orientované násuny, které postihují nejen vápence, ale i kulm a brněnský masiv (obr. 1.2, obr. 6.2). Jedná se o násun brněnského masivu na Hádech a násun odkrytý v údolí Říčky jižně od Bělkova mlýna, který ohraničuje horákovskou antiformu ze severu. Tyto násuny generace T_2 , sečou násuny T_1 a jsou proto mladší. Tomu také napovídá fakt, že nejsou zvrásněny vrásami F_1 . Avšak i když nejsou zvrásněny vrásami F_1 , jsou paralelní s jejich osami (a tím pádem i s hlavními vrásovými strukturami, obr. 5.2, obr.

Obr. 6.2: Schématická mapa facií a násunové tektoniky v jižní části Moravského krasu (podle vlastních výzkumů a dat z Dvořák 1989, Hladil 1987a, Hladil et al. 1991, Kalvoda 1997, Rutová 2009)

6.2). Navíc nadložní kra má vždy antiformní a podložní kra synformní geometrii. Z těchto pozorování se dá dedukovat, že starší násuny generace T_1 byly porušeny násuny mladší generace T_2 a zvrásněny (vlečné vrásy? vrásy zlomového zalomení?; obr. 6.3). Toto vrásnění koaxiální s vrásami F_1 , avšak mnohem většího měřítka, si označme jako F_1 '.

Vztah násunů T_1 a vrás F_1 lze nejlépe pochopit v lomech Mokrá. Násuny T_1 sečou vrásy F_1 , ale zároveň jsou samy, často detailně, zvrásněny (obr. 5.9, 5.10e a 5.10f). Antiklinální charakter celého allochtonního tělesa interpretovaného v lomech Mokrá napovídá tomu, že se v podstatě jedná o vrásový příkrov. Sv.-jz. komprese se nejdříve akomodovala vrásněním, vznikly ležaté vrásy, jejichž překocená ramena byla v důsledku pokračující komprese přetržena, a vznikly násuny. Při lokálním "zamčení" násunu docházelo ke zvrásnění násunů (obr. 5.10e, f).

Stručný deformační scénář by mohl být následující: 1) fáze D_1 (F_1+T_1), která proběhla během nasouvání hlavních kulmských příkrovů; 2) fáze D_2 (T_2+F_1 '), která byla projevem pravostranných horitontálních pohybů podél moravské střižné zóny; 3) vrásy generace F_2 ; 4) mladší zlomová tektonika (Z_1 a Z_2).

Obr. 6.3: Ideový geologický řez jižní částí Moravského krasu. Lokalizace viz obr. 6.2.

Výše popsaná konfigurace dvou generací násunů byla popsána na sever od Moravského krasu v němčickovratíkovském pruhu (obr. 6.4; Buriánek & Melichar 1997, Melichar & Kalvoda 1997), kde jsou na horniny ludmírovského vývoje (bazální klastika, stínavskochabičovské souvrství, ekvivalenty macošského souvrství a ponikevské břidlice) nasunuty kulmské sledy protivanovského souvrství. Tento převážně severojižní násun sečou mladší sv.-jz. orientované násuny (obr 6.4), projevující se porušením jinak souvislého němčickovratíkovského pruhu a mylonitovými zónami v granitoidech brněnského masivu, které starší násunovou stavbu zvrásnily v ssv.-jjz. vrásy mírně se uklánějící k severu (blokdiagramy a konturový diagram na obr. 6.4). V němčickovratíkovském pruhu postihly obě generace násunů horniny brněnského masivu. Nasunutí brněnského masivu na horniny paleozoika je popsáno na dvou místech: ve vrtu V 1 u Melkova, který navrtal v podloží brněnského masivu kulmské horniny (Vocilka 1971) a v údolí potoka jižně od Vratíkova (vyznačeno písmenem K na obr. 6.4), kde Kettner (Kettner & Prantl 1942) popsal nasunutí brněnského masivu na bazální klastika devonu (dnes je bohužel lokalita zaniklá). Oba tyto výskyty náležejí mladší generaci násunů T2. Buriánek a Melichar zdokumentovali tenkou šupinu vápence tektonicky zapracovanou do brněnského masivu západně od Valchova (Buriánek & Melichar 1997, Melichar et al. 1999). Tato šupina se nachází v těsném podloží jednoho z násunů mladší generace a je zvrásněná (detail na obr. 6.4). Podobnou strukturu popsali Rez a Melichar (2002) východně od Adamova. Zde byla tektonicky zavlečena šupina bazálních klastik a vápenců do hornin brněnského masivu a během mladší fáze deformace zvrásněna. Tato šupina leží pravděpodobně v těsném nadloží jednoho násunu mladší generace. Obě tyto šupiny byly do brněnského masivu zapracovány během starší fáze násunů T1, leží v těsné blízkosti násunu mladší generace T_2 a jsou zvrásněny.

Ukazuje se, že celý východní okraj brněnského masivu má podobný stavební plán. Pouze v severní a hlavně střední části Moravského krasu nebyl zatím zcela potvrzen, a to hlavně z důvodů absence kontrastních facií, které pomohly odhalit stavbu jak němčicko-vratíkovského pruhu, tak i jižní části Moravského krasu.

6.3. Diskuse napjatostní analýzy

Výsledkem napjatostní analýzy zlomů z lomů jsou tři napjatostní fáze (obr. 5.13). Jediná napjatostní fáze rozeznaná v Lesním lomu je kompatibilní s fází F.II z lomů Mokrá (viz výše). Relativní stáří jednotlivých fází se nepodařilo zjistit. Fáze F.III odpovídá generaci zlomů Z₂, jednoho ze dvou hlavních zlomových systémů v oblasti.

Pro srovnání s napjatostními fázemi získanými analýzou dvojčatných lamel kalcitu si jednotlivé fáze označme indexem f (fault): $F_f I$, $F_f II a F_f III$.

Napjatostní fáze získané analýzou čtyř výbrusů karbonátových žil z lomů Mokrá (OV1 – 4 fáze, OV8 – 3 fáze, Z4 – 3 fáze a Z9 – 4 fáze) lze rozdělit do čtyř skupin – napjatostních fází (obr. 6.5). Hlavním kritériem byl vzájemný úhel 9D-vektorů tenzorů napjatosti (tab. 6.1). 9D-vektor se z tenzoru 3x3 vyrobí jednoduše seřazením jednotlivých řádků tenzoru do jednoho řádku (Melichar & Kernstocková 2010). Odchylky 9D-vektorů tenzorů napjatosti (každý s každým) jsou v tab. 6.1.

Fáze $F_t I$ slučuje fáze OV1_F.II, OV8_F.II, Z4_F.I a pravděpodobně také OV1_F.I. Jedná se o víceméně oblátní až trojosé tenzory napjatosti se σ_3 uklánějícím se k západu.

Obr. 6.4: Odkrytá geologická mapa severní části brněnského masivu a němčicko-vratíkovského pruhu (upraveno podle Buday 1996, Melichar & Kalvoda 1997). V konturovém diagramu jsou zpracovány vrstevnatosti, v bílém kruhu je zobrazen výchoz u Valchova (Melichar et al. 1999). Písmeno K označuje nasunutí brněnského masivu na horniny paleozoika popsané Kettnerem (Kettner & Prantl 1942).

Fáze $F_t II$ tvoří fáze OV1_F.III a Z9_F.I. Jedná se o fáze se σ_1 orientovaným zhruba ve směru SZ-JV a tvarovými parametry blízkými nule. K nim lze přiřadit i fázi Z9_F.IV, která má sice mírně odlišnou orientaci σ_1 , ale jinak je velmi podobná fázi Z9_F.I.

Fáze $F_t III$ zahrnuje fáze OV1_F.IV, Z4_F.III a Z9_F.II, se severojižně orientovaným σ_1 .

A konečně fáze $F_t IV$, která je tvořena fázemi OV8_F.III, Z4_F.II, Z9_F.II a OV8_F.I se SV-JZ orientovaným σ_1 . Fáze $F_t IV$ se podobná fázi $F_t III$, proto by fáze Z4_F.II mohla být přiřazena i fázi $F_t III$.

V poměrně vzácných případech lze ve výbrusech pozorovat křížení dvojčatných lamel, z jejichž asymetrie se dá odhadnout relativní stáří napjatostních fází. Protože však byla deformace polyfázová a některé dvojčatné systémy byly reaktivovány ve více fázích, bývají tato pozorování často protichůdná. Přesto byl učiněn pokus vzájemné stáří fází deformace určit (tab. 6.2). Relativní stáří by mohlo být následující (od nejstarší fáze k nejmladší): $F_t II - F_t III - F_t$ $IV - F_t I. Nicméně z tabulky 6.2 vyplývá, že důkazy pro$ toto pořadí fází nejsou jednoznačné, je proto do jisté míryspekulativní a pouze orientační.

	F.I	F.II	III.	٨Ŀ	F.I	F.II	III.	I.	II.	III	I.	II.	III	N
	0V1	0V1_J	OV1_F	OV1_F	0V8	0V8_]	OV8_F	Z4_F	Z4_F	Z4_F.	₹_6Z	Z9_F	Z9_F.	Z9_F.
OV1_F.I	0.00										•			
OV1_F.II	55.55	0.00												
OV1_F.III	57.04	69.76	0.00											
OV1_F.IV	44.73	61.95	60.50	0.00										
OV8_F.I	52.76	57.62	66.51	55.25	0.00									
OV8_F.II	31.49	39.39	66.73	33.23	60.07	0.00								
OV8_F.III	67.14	45.49	67.37	48.89	32.63	56.23	0.00							
Z4_F.I	60.79	21.64	65.02	56.44	46.24	45.38	29.60	0.00						
Z4_F.II	68.24	64.05	63.51	39.40	56.97	53.92	44.31	47.14	0.00					
Z4_F.III	66.82	45.89	79.36	41.04	74.14	38.76	50.59	49.04	56.16	0.00				
Z9_F.I	61.86	86.41	24.86	53.46	74.44	71.00	74.70	80.92	64.50	78.23	0.00			
Z9_F.II	43.40	51.36	44.67	51.35	41.77	8.16	49.56	40.46	41.62	73.30	59.36	0.00		
Z9_F.III	69.74	58.41	83.15	35.56	62.97	45.26	44.41	48.19	28.68	36.01	80.76	60.13	0.00	
Z9 F.IV	81 46	66 97	38.42	70 39	57 25	81.82	46 76	53 77	58 61	77 47	50.27	53 39	76 69	0.00

Tab. 6.1: Vzájemné úhly svírající 9D-vektory tenzorů jednotlivých napjatostních fází získaných analýzou kalcitových dvojčatných lamel.

Obr. 6.5: Výsledky napjatostní analýzy kalcitových dvojčatných lamel (kapitola 5.5), jejich zařazení do čtyř hlavních fází $F_t I - F_t IV$ a jejich srovnání s výsledky napjatostní analýzy zlomů (kapitola 5.4).

Napjatostní fáze získané analýzou zlomů a kalcitových dvojčat jsou velmi podobné (obr. 6.5): $F_f I \approx F_t II; F_f II \approx F_t III (případně i F_t IV)$, což nejenže zvyšuje věrohodnost identifikovaných fází deformace, ale také potvrzuje možnost použití dvojčatění kalcitu jako metody napjatostní analýzy, i když ani ve světě není tato metoda zcela běžná.

vztah fází	F _t I>F _t II	F _t II>F _t I	F _t II>F _t III	F _t III>F _t II
počet pozorování	4x	4x	4x	2x
vztah fází	F _t I>F _t III	F _t III>F _t I	F _t II>F _t IV	F _t IV>F _t II
počet pozorování	6x	6x		
vztah fází	F _t I>F _t IV	F _t IV>F _t I	F _t III>F _t IV	F _t IV>F _t III
počet pozorování	1x	4x	4x	2x

Tab. 6.2: Počty pozorování relativního stáří jednotlivých napjatostních fází (> znamená starší než).

6.4. Problém křtinských/hlíznatých vápenců

Tato kapitola je poněkud nad rámec této práce a přináší pohled strukturního geologa na problematiku hlíznatých vápenců.

Křtinské vápence definoval Zapletal (1922a). Dnešní definice pochází z roku 1962 (Chlupáč 1962). Křtinské vápence jsou: "Šedé, červenavé nebo zelenavé, převážně mikritické, zřetelně vrstevnaté hlíznaté vápence s kolísavým podílem pelitického materiálu koncentrovaného v laminách nebo vložkách. Faunistické nálezy dokládají stáří od svrchního frasnu přes famen do tournaie..." (Zukalová & Chlupáč 1982).

Hlíznatá textura vápenců může vznikat několika způsoby (např. Flügel 2004): 1) sedimentárními procesy (biogenní či chemogenní lokální cementace v sedimentu, nebo mechanické sklouzávání "kapek" sedimentu po svahu); 2) při diagenezi (díky rozdílům v tlakovém rozpouštění mezi polohami bohatšími a chudšími na nekarbonátové částice); 3) při deformaci (v kombinaci s tlakovým rozpouštěním).

V jižní části Moravského krasu jsou hlíznaté vápence nacházeny ve všech stratigrafických úrovních. Nejčastěji je zdůrazňován sedimentární (redepozice hlíz; např. Dvořák 1989, Hladil 1987a) a diagenetický původ hlíznatých vápenců (např. Dvořák 1972). Nelze si však nevšimnout, že hlíznaté vápence se velmi často vyskytují v blízkosti deformačních zón. Hlíznatá textura může vzniknout v podstatě z jakéhokoliv protolitu (i ve vilémovických a lažáneckých vápencích, obr. 6.7), jako projev tlakového rozpouštění a deformace. Tím pádem může být zavádějící používat hlíznatost křtinských vápenců jako hlavního znaku k jejich rozlišení.

Sám Dvořák má na mnoha místech svého terénního denníku u popisu křtinských vápenců uvedenu poznámku, že "…*hlízy jsou reorientované podle ploch kliváže*…". Hlíznatá textura velmi často vzniká v důsledku přednostního tlakového rozpouštění na plochách kliváže a vrstevních plochách (obr. 6.6a, 6.6b) v deformačních zónách. Nerozpustný zbytek pak vytváří dojem jílovité matrix., ve které hlízy "plavou". Čím více je ve vápencích siliciklastického materiálu, tím více této "matrix" vzniká. Jak již bylo uvedeno v kapitole 5.3, mylonitové násunové zlomy mají často charakter "černé břidlice", ve které "plavou valouny" vápenců. Jsou to nerozpuštěné zbytky vápenců (někdy je dokonce patrný původní průběh vrstev, obr. 6.7d).

Hlíznatá textura může vzniknout i ve vilémovických vápencích a to jako důsledek silné deformace a mezivrstevního prokluzu (obr. 6.7a, 6.7b a 6.7c). Štola v údolí Křtinského potoka u restaurace Švýcárna zachytila tektonický kontakt lažáneckých vápenců a brněnského masivu. V této štole lze sledovat postupný nárůst deformace směrem k tomuto kontaktu. Nejprve se deformují jednotlivé vrstvy, dochází ke vzniku kliváže, tlakovému rozpouštění a vzniku hlíznaté textury (obr. 6.7e). Postupně deformace postihuje celý objem horniny. Další nárůst deformace se projevuje vznikem foliace (obr. 6.7f). Podobný trend je pozorovatelný i v "lomu na mramor" západně od Jedovnic, který odkryl deformační zónu spojenou s násunem vápenců na kulm, pokračování násunu zachyceného na lokalitě "U zrcadla" v Ostrově u Macochy (Dvořák 1997a). Směrem na JV narůstá deformace (přibývá kliváž obr. 6.7g). Oproti štole u restaurace Švýcárna, kde mají nejvíce deformované partie planární stavbu se silně vyvinutou foliací, mají nejvíce deformované vápence stavbu víceméně lineární (v řezu kolmo na delší osy "hlíz" je hornina protkána sítí

Obr. 6.6: Hlíznatá textura vzniklá při deformaci přednostním tlakovým rozpouštěním na plochách kliváže a vrstevních plochách a) ve středním lomu Mokrá, b) v "městském lomu" na Hádech (oba příklady jsou padlé balvany).

stylolitů bez přednostního uspořádání; obr. 6.7h). V obou těchto případech byly deformovány velmi čisté vápence a proto "jílovitá matrix" skoro úplně chybí.

Není cílem této kapitoly tvrdit, že hlíznatá textura vzniká pouze deformací, cílem této kapitoly je upozornit na to, že hlíznaté vápence se vyskytují v celém sedimentárním sledu, velmi často poblíž důležitých tektonických linií a často nesou jasné znaky deformace jednoduchým střihem a tlakového rozpouštění.

Obr. 6.7: Příklady hlíznatých vápenců. a) střižná zóna ve vilémovických vápencích, západní lom Mokrá, etáž 385; b) střižná zóna ve vilémovických vápencích, západní lom Mokrá, etáž 375; c) střižná zóna ve vilémovických vápencích, viz obr.5.10a. d) střižná zóna ve východním lomu Mokrá, tektonické "valouny" plavou v jílovité "matrix"; e) hlíznatá textura v lažáneckých vápencích ve štole v údolí křtinského potoka za restaurací Švýcárna; f) foliace v lažáneckých vápencích tamtéž co e); g) počáteční fáze vzniku hlíznaté textury, brekciovité vápence v "lomu na mramor" u Jedovnic; h) hlíznaté vápence v "lomu na mramor" u Jedovnic (pohledy ze dvou stran, poloha kladiva nezměněna);

7. Závěry

• V jižní části Moravského krasu existují dva různé vývoje sedimentace devonu až spodního karbonu: **mělkovodní hostěnický vývoj**, typický velmi kondenzovanou sedimentací hlavně mikritických a mikrobrekciovitých vápenců, a **hlubokovodnější horákovský vývoj**, typický sedimentací mocných sledů kalciturbiditů – biodetritických vápenců.

• Tyto dva vývoje byly tektonicky sblíženy na velkou vzdálenost, pravděpodobně na více jak 5 km (Kalvoda 1989), což indikuje jejich značná litologická a faciální odlišnost.

• Byly rozlišeny dvě generace vrás. Starší vrásy F_1 mají osy ukloněny k JV, jsou často ležaté a mají sv. vergenci. Mladší vrásy F_2 jsou na starší zhruba kolmé, jsou přímé a symetrické.

• Byly identifikovány **dvě generace násunů**. Podél starší generace násunů T_1 došlo k nasunutí horákovského vývoje na hostěnický. Jedná se o násunovou zónu s velmi komplikovanou šupinovitou vnitřní stavbou. Tato zóna dosahuje mocnosti až 100 m a byla zachycena lomy Mokrá a vrty (např. SV1). Jednotlivé šupiny oddělují násunové zlomy, které se projevují jako černě zbarvené mylonitové zóny (připomínají černé břidlice). Rýhování na násunových

plochách a asymetrické struktury v těchto mylonitech potvrzují směr sunutí k SV. Násuny T_1 jsou úzce spjaty se starší generací vrás F_1 . Sečou tyto vrásy, ale zároveň jsou jimi zvrásněny. Násuny vznikly pravděpodobně jako vrásové příkrovy. Mladší násuny T_2 sečou násuny T_1 a způsobily jejich další zvrásnění koaxiální s F_1 (hostěnická a horákovská antiforma a mokerská a hádská synforma, obr. 1.2). Jedná se o násun brněnského masivu na Hádech a násun ohraničující horákovskou antiformu na severu.

• Násuny T_1 lze časově přiřadit hlavní fázi nasouvání kulmských příkrovů na konci visé. Mladší násuny T_2 lze přiřadit k pohybům podél moravské střižné zóny ve westphalu.

• Takto vzniklá vrásovo-násunová stavba byla později mírně zvrásněna vrásami F_2 .

• Mladší křehkou tektoniku reprezentují dvě hlavní generace zlomů Z_1 a Z_2 . Zlomy Z_2 jsou ssv.-jjz. poklesy až horizontální posuny uklánějící se k JV a Z_2 povětšinou zsz.-vjv. horizontální posuny až poklesy uklánějící se k SV.

• Napjatostní analýza zlomů identifikovala tři napjatostní fáze, které jsou kompatibilní se třemi ze čtyř napjatostních fází získaných napjatostní analýzou založenou na mechanickém dvojčatění kalcitu. Bohužel se nepodařilo zjistit relativní stáří zjištěných napjatostních fází.

8. Literatura

- Bábek, O. & Otava, J. 2006. Biostratigrafické doklady pro tence šupinovitou stavbu hranického paleozoika, moravskoslezská zóna. *Geologické výzkumy na Moravě a ve Slezsku v roce* 2005, 60-61.
- Bábek, O., Tomek, Č., Melichar, R., Kalvoda, J. & Otava, J. 2006. Structure of unmetamorphosed Variscan tectonic units of the southern Moravo-Silesian zone, Bohemian Massif: a review. *Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen* 239(1), 37-75.
- Buday, T. 1996. Geologická mapa ČR 1:200 000, list Brno.
- Buriánek, D. & Melichar, R. 1997. Devonské vápence zvrásněné s granodiority brněnského masivu v okolí Valchova. *Sborník II. semináře České tektonické skupiny*, 50-51.
- Burkhard, M. 1993. Calcite twins, their geometry, appearance and significance as stress-strain markers and indicators of tectonic regime: a review. *Journal of Structural Geology* 15, 351–368.
- Čížek, P. & Tomek, Č. 1991. Large scale thin-skinned tectonics in the eastern boundary of the Bohemian Massif. *Tectonics* **10**, 273-286.
- Dvořák, J. 1957. Nové poznatky o geologii devonu severní části Moravského krasu. Věstník Ústředního ústavu geologického 32, 353-356.
- Dvořák, J. 1958. Předběžná zpráva o nálezu valounů spodnokarbonských vápenců ve spodnokarbonských slepencích Drahanské vysočiny u Brna. Věstník Ústředního ústavu geologického **33**, 384-385.
- Dvořák, J. 1963. Paleogeografický vývoj a formační analýza paleozoika jižní části Drahanské vysočiny. In: XIV. sjezd Společnosti pro mineralogii a geologii, 43-55.
- Dvořák, J. 1967. Vývoj synsedimentárních struktur v jižní části Moravského krasu. *Časopis pro mineralogii a geologii* **12**(3), 237-246.
- Dvořák, J. 1972. Shallow-water character of nodular limestones and their paleogeographic interpretation. *Neues Jahrbuch für Geologie und Paläontologie, Monatshefte* **1972**, 509-511.
- Dvořák, J. 1973. Synsedimentary tectonics of the Palaeozoic of the Drahany Upland (Sudeticum, Moravia, Czechoslovakia). *Tectonophysics* 17, 359-391.
- Dvořák, J. 1989. Geologie souvrství líšeňského a jeho nadloží v jižní části Moravského krasu (vyhodnocení tří strukturních vrtů Horákov). Archiv ČGS.
- Dvořák, J. 1993. Diskuse k práci Hladil, J., Krejčí, Z., Kalvoda, J., Ginter, M., Galle, A. & Berousek, P. 1991. Carbonate ramp environment of Kellwasser time-interval, Lesní lom, Moravia, Czechoslovakia. Bulletin de la Societe geologique de Belgique, 100, 57-119. Věstník Českého geologického ústavu 68(3), 42-44.
- Dvořák, J. 1997a. Geologie paleozoika v okolí Ostrova u Macochy (Moravský kras, Morava). Journal of Czech Geological Society 42, 105-110.
- Dvořák, J. 1997b. Základní geologická mapa ČR 24-413 Mokrá-Horákov. Česká geologická služba.
- Dvořák, J., Friáková, O., Hladil, J., Kalvoda, J. & Kukal, Z. 1987. Geology of the Palaeozoic rocks in the vicinity of the Mokrá Cement Factory quarries, Moravian Karst. Sborník geologických věd, Geologie 42, 41-88.
- Dvořák, J., Friáková, O., Mitrenga, P. & Rejl, L. 1984. Vliv stavby východní části brněnského masívu na vývoj nadložních sedimentárních formací. Věstník Ústředního ústavu geologického 59(1), 21-28.
- Dvořák, J. & Pták, J. 1963. Geologický vývoj a tektonika devonu a spodního karbonu moravského krasu. *Sborník geologických věd, Geologie* **12**, 237-246.
- Dvořák, L. 2005. Konodontová fauna famenu z profilu na Hádech u Brna. MS, Bakalářská práce, Ústav geologických věd, Přírodovědecká fakulta Masarykovy univerzity.
- Dvořák, V., Kalvoda, J. & Melichar, R. 2005. Variské deformace ve vybraných vrtech v paleozoiku u hranic. *Geologické* výzkumy na Moravě a ve Slezsku v roce **2004**, 52-54.
- Fediuk, F. 1961. Fjodorovova mikroskopická metoda. Nakladatelství Československé akademie věd, Praha.

- estimates from calcite twins in coarse-grained limestone. *Tectonophysics* 285, 77–86.
- Ferrill, D. A., Morris, A. P., Evans, M. A., Burkhard, M., Groshong, R. H. & Onasch, C. M. 2004. Calcite twin morphology: a low-temperature deformation geothermometer. *Journal of Structural Geology* 26, 1521– 1529.
- Flügel, E. 2004. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer.
- Franců, E., Franců, J., Kalvoda, J., Poelchau, H. S. & Otava, J. 2002. Burial and uplift history of the Palaeozoic Flysch in the Variscan foreland basin (SE Bohemian Massif, Czech Republic). In: *Continental collision and the tectonosedimentary evolution of forelands* (edited by Bertotti, G., Schulmann, K. & Cloetingh, S.) 1. European Geoscience Union, 167-179.
- Hanžl, P. & Melichar, R. 1995. Variské poruchové zóny brněnského masívu. In: *Poruchové zóny v zemské kůže a jejich projevy na povrchu*. ČGÚ Praha, Praha, 93-100.
- Hladil, J. 1983. Cyklická sedimentace v devonských karbonátech macošského souvrství. *Zemní plyn a nafta* **28**, 1-15.
- Hladil, J. 1987a. Vysvětlivky k základní geologické mapě ČSSR 24-413 Mokrá-Horákov. Česká geologická služba.
- Hladil, J. 1987b. Základní geologická mapa ČSSR 24-413 Mokrá-Horákov. Česká geologická služba.
- Hladil, J. 1991a. Násunové struktury jižního uzávěru Moravského krasu, 24-413 Mokrá-Horákov. Zprávy o geologických výzkumech v roce 1989, 80-81.
- Hladil, J. 1991b. Nové a kontroverzní jevy vyplývající z faciálních map paleozoického karbonátového komplexu na Moravě. *Zprávy o geologických výzkumech v roce* **1989**, 78-80.
- Hladil, J. 1994. Moravian Middle and Late Devonian buildups evolution in time and space with respect to Laurussian shelf. *Courier Forschungsinstitut Senckenberg* 172, 111-125.
- Hladil, J. 1995. Argumenty pro pravostrannou rotaci bloků ve variscidech Moravy - analýza faciálních disjunkcí. *Geologické výzkumy na Moravě a ve Slezsku v roce* **1994**, 44-48.
- Hladil, J. 1998. Nástin variské tektonické rotace na Moravě při hlubokém porušení kůry. *Geologické výzkumy na Moravě a ve Slezsku v roce* **1997**, 46-49.
- Hladil, J. & Kalvoda, J. 1993. Odpověď na recenzi Jaroslava Dvořáka (Carbonate ramp environment of Kellwasser time interval). Věstník Českého geologického ústavu 68(3), 44-45.
- Hladil, J., Krejčí, Z., Kalvoda, J., Ginter, M., Galle, A. & Berousek, P. 1991. Carbonate ramp environment of Kellwasser time-interval, Lesní lom, Moravia, Czechoslovakia. Bulletin de la Societe geologique de Belgique 100, 57-119.
- Hladil, J. & Melichar, R. 1999. Two explanations of curvature in variscan orogen of Moravia - terrane segmentation with clockwise rotation vs. strong effect of the Moravian Shear Zone. In: *Old Crust New Problems, Terra Nostra* (edited by Dietrich, P. G., Franke, W., Merkel, B. & Herzig, P.) 99, 106-107.
- Hladil, J., Melichar, R., Otava, J., Galle, A., Krs, M., Man, O., Pruner, P., Cejchman, P. & Orel, P. 1999a. The Devonian in the easternmost Variscides, Moravia: a holistic analysis directed towards comprehension of the original context. In: *North Gondwana Mid-Palaeozoic Terranes, Stratigraphy and Biota, Abhandlungen der Geologischen Bundesanstalt* (edited by Feist, R., Talent, J. A. & Daurer, A.) 54, 27-47.
- Hladil, J., Pruner, P. & Krs, M. 1999b. Diagenesis, magnetic overprint and tectonics near Mokrá, E of Brno. *Exploration Geophysics, Remote Sensing and Environment* **4**, 24-28.
- Chadima, M. & Melichar, R. 1998. Tektonika paleozoika střední části Drahanské vrchoviny. *Přírodovědné studie Muzea Prostějovska* 1, 39-46.
- Chlupáč, I. 1962. Zur Biostratigraphie und Faziesentwicklung der Devo/Karbon-Grentzschichten im M\u00e4hrischen Karst. Geologie 11(9), 1001-1017.

- Chlupáč, I., Hladil, J. & Lukeš, P. 1986. *Barrandian Moravian Karst*. Guidebook of the Field Conference of the International Subcommission on the Devonian Stratigraphy, Ústřední ústav geologický, Praha.
- Jamison, W. R. & Spang, J. H. 1976. Use of calcite twin lamellae to infer differential stress. *Geological Society of America Bulletin* 87, 868–872.
- Jarka, J. 1948. Geologie jižní části Moravského krasu mezi Křtinami a Mokrou. Rozpravy Československé Akademie Věd a Umění, Třida II 58(14), 1-21.
- Kalvoda, J. 1989. Foraminiferová zonace svrchního devonu a spodního karbonu moravskoslezského paleozoika. MS, Kandidátská Dizertační práce, Ústav geologických věd, Přírodovědecká fakulta Masarykovy univerzity.
- Kalvoda, J. 1997. Přechod karbonátové a kulmské sedimentace v širším okolí Mokré. MS, Ústav geologických věd, Přírodovědecká fakulta Masarykovy univerzity, Brno.
- Kalvoda, J., Bábek, O., Fatka, O., Leichmann, J., Melichar, R., Nehyba, S. & Špaček, P. 2007. Brunovistulian terrane (Bohemian Massif, Central Europe) from late proterozoic to late Paleozoic: a review. *International Journal of Earth Sciences* 97(3), 497-518.
- Kalvoda, J., Devuyst, F. X., Bábek, O., Dvořák, L., Rak, Š. & Rez, J. 2010. High-resolution biostratigraphy of the Tournaisian-Visean (Carboniferous) boundary interval, Mokrá quarry, Czech Republic. *Geobios* 43, 317-331.
- Kalvoda, J. & Kukal, Z. 1987. Devonian-Carboniferous boundary in the Moravian Karst at Lesní lom Quarry, Brno-Líšeň, Czechoslovakia. *Courier Forschundinstitut Senckenberg* 98, 95-117.
- Kernstocková, M. & Melichar, R. 2010. Numerical Paleostress Analysis - Limits of Automation. *Trabajos De Geología* 29, 439-443.
- Kettner, R. 1949. Geologická stavba severní části Moravského krasu a oblastí přilehlých. Rozpravy Československé Akademie Věd a Umění, Třida II 59, 1-29.
- Kettner, R. 1967. Problém tektoniky Moravského krasu. Československý kras 18, 69-90.
- Kettner, R. & Prantl, F. 1942. O novém nalezišti zkamenělin v břidlicích moravského devonu u Vratíkova sv. od Boskovic. Věstník Královské české společnosti nauk, třída matematickopřírodovědná, 1-19.
- Krs, M., Hladil, J., Krsová, M. & Pruner, P. 1995. Paleomagnetický doklad pro variskou paleotektonickou rotaci moravských devonských hornin. *Geologické výzkumy na Moravě a ve Slezsku v roce* **1994**, 53-57.
- Lacombe, O. & Laurent, P. 1996. Determination of deviatoric stress tensors based on inversion of calcite twin data from experimentally deformed monophase samples: preliminary results. *Tectonophysics* 255, 189–202.
- Laurent, P., Bernard, P., Vasseur, G. & Etchecopar, A. 1981. Stress tensor determination from the study of e-twins in calcite. A linear programming method. *Tectonophysics* 78, 651–66.
- Laurent, P., Tourneret, C. & Laborde, O. 1990. Determining deviatoric stress tensors from calcite twins: applications to monophased synthetic and natural polycrystals. *Tectonics* 9, 79–389.
- Melichar, R. 1991. *Metody strukturní geologie orientační analýza*. Masarykova univerzita, Brno.
- Melichar, R., Hladil, J. & Leichmann, J. 1999. Valchov. *Geolines* 8, 90-91.
- Melichar, R. & Kalvoda, J. 1997. Strukturně-geologická charakteristika němčicko-vratíkovského pruhu. Sborník II. semináře České tektonické skupiny, 51-52.
- Melichar, R. & Kernstocková, M. 2010. 9D Space The Best Way to Understand Paleostress Analysis. *Trabajos De Geologia* 29, 557-562.
- Pokorný, M. 1949. Zpráva o geologických poměrech jižní části moravského krasu v prostoru Hády-Mokrá. Časopis Zemského musea (Brno), Přírodověda 32, 88-96.
- Pokorný, M. 1950. Vysvětlivky ke geologické mapě jižní části devonu a kulmu v prostoru Hády-Mokrá. Časopis Zemského musea (Brno), Přírodověda **36**, 5-14.

- Prantl, F. 1948. Stratigraficko-paleontologický výzkum devonu na Hádech u Brna. Věstník Státního Geologického Ústavu ČSR 23, 173-180.
- Rajlich, P. 1990. Strain and tectonic styles related to Variscan transpression and transtension in the Moravo-Silesian Culmian basin, Bohemian Massif, Czechoslovakia. *Tectonophysics* 173(3/4), 351-367.
- Ramsay, J. G. & Huber, M. I. 1989. The techniques of modern structural geology, volume 2: folds and fractures. Academic Press.
- Rez, J. & Melichar, R. 2002. Tektonika výskytu devonu u Adamova. Geologické výzkumy na Moravě a ve Slezsku v roce 2001, 57-61.
- Rez, J. & Melichar, R. 2010. Peek Inside the Black Box of Calcite Twinning Paleostress Analysis. *Trabajos De Geologia* 29, 657-662.
- Rez, J., Melichar, R. & Kalvoda, J. v tisku. Polyphase deformation of the Variscan accretionary wedge: an example from the southern part of the Moravian Karst (Bohemian Massif, Czech Republic). In: *Kinematic Evolution and Structural Styles of Fold-and-Thrust Belts* (edited by Poblet, J. & Lisle, R. J.). *Geological Society Special publications* 349. Geological Society, London, 223–235.
- Rocher, M., Cushing, M., Lemeille, F., Lozac'h, Y. & Angelier, J. 2004. Intraplate paleostresses reconstructed with calcite twinning and faulting: improved method and application to the eastern Paris Basin (Lorraine, France). *Tectonophysics* 387, 1–21.
- Rowe, K. J. & Rutter, E. H. 1990. Paleostress estimation using calcite twinning: experimental calibration and application to nature. *Journal of Structural Geology* 12, 1–17.
- Rutová, M. 2009. Konodontová fauna famenu a spodního tournai ve výchozech v údolí Říčky. MS, Diplomová práce, Ústav geologických věd, Přírodovědecká fakulta Masarykovy univerzity.
- Slezák, L. 1956. Geologický výzkum devonských vápenců v okolí Mokré. MS, Diplomová práce, PřF MU.
- Štelcl, J. 1957. K povaze vrás z moravského a slezského devonu (mikrostrukturní analysa). Sborník k osmdesátinám akad. F. Slavíka, 435-451.
- Tourneret, C. & Laurent, P. 1990. Paleo-stress orientations from calcite twins in the North Pyrenean foreland, determined by the Etchecopar inverse method. *Tectonophysics* 180, 287– 302.
- Tullis, T. E. 1980. The use of mechanical twinning in minerals as a measure of shear stress magnitudes. *Journal of Geophysical Research* 85 B, 6263–6268.
- Turner, F. J. 1953. Nature and dynamic interpretation of deformation lamellae in calcite of three marbles. *American Journal of Science* 251, 276–298.
- Turner, F. J., Griggs, D. T. & Heard, H. C. 1954. Experimental deformation of calcite crystals. *Geological Society of America Bulletin* 6, 883–934.
- Vocilka, M. 1971. Souhrnná závěrečná zpráva Drahanská vysočina. MS, Geofond Praha.
- Zapletal, K. 1922a. Geotektonická stavba Moravského krasu. Časopis Moravského Zemského musea **20**, 220-256.
- Zapletal, K. 1922b. Přehledná geologicko-tektonická mapa Moravského krasu mezi Sloupem a Brnem. Příloha ku Ročníku XX Časopisu Moravského Zemského Musea.
- Zapletal, K. 1927. Geologická mapa okolí brněnského. Moravské Zemské Muzeum.
- Zukalová, V. 1971. Stromatoporoidea from the Middle and Upper Devonian of the Moravian Karst. Rozpravy Ústředního Ústavu Geologického 37, 5-143.
- Zukalová, V. & Chlupáč, I. 1982. Stratigrafická klasifikace nemetamorfovaného devonu moravskoslezské oblasti. Časopis pro mineralogii a geologii 9, 225-247.

Přílohy

Použité značky a zkratky v příloze 1:

- č. db. číslo dokumentačního bodu
- *x*, *y* souřadnice S-JTSK
- $\boldsymbol{\alpha}_{s(l)}$ azimut sklonu plochy či lineace
- $\boldsymbol{\varphi}_{s(l)}$ velikost sklonu plochy či lineace
- *typ* typ měření vrst – vrstevnatost osa vr – osa vrásy zlom – plocha zlomu
 - striace rýhování na ploše zlomu
 - násun ryh rýhování na ploše násunu
- poznámka u zlomů se jedná o smysl pohybu
- Po pokles
 - Př přesmyk
 - D pravostranný horizontální posun
 - S levostranný horizontální posun

Příloha 1	: Seznam d	okumentačr	ních bodů	å – data z lor	nů Mokrá								41
č. db.	x	v	$\alpha_{s(l)}$	$\boldsymbol{O}_{\mathbf{s}(l)}$	typ	poznámka	č. db.	x	v	$\boldsymbol{\alpha}_{\mathbf{x}(l)}$	$\boldsymbol{O}_{\mathbf{x}(I)}$	typ	poznámka
1ab1	586295	1158234	42	52	vrst	1 -	1fg12	586280	1157878	82	10	vrst	1 -
1ab2	586293	1158220	65	29	vrst		1fg12	586280	1157878	298	36	vrst	
1bc1	586299	1158207	18	25	vrst		1fg12	586280	1157878	21	5	osa vr	
1bc1	586299	1158207	128	74	vrst		1fg13	586283	1157873	346	4	vrst	
1bc1 1bc2	586299	1158207	45 75	23 72	osa vr		11g13 1fg13	586283	1157873	278	43	vrst	
1bc2 1bc3	586318	1158196	227	70	vrst		1g15	586286	1157860	4 72	48	vrst	
1bc3	586318	1158196	230	42	vrst		1gh2	586286	1157848	72	47	vrst	
1bc3	586318	1158196	316	4	osa vr		1gh3	586281	1157839	121	43	vrst	
1bc4	586327	1158197	62	41	zlom		1gh4	586284	1157838	84	49	násun	
1bc5	586326	1158193	226	85 50	vrst		1gh4	586284	1157838	110	43	násun r	yh
10C0	586330 586337	1158197	0 324	20 13	vrst		1gh7	586287	1157832	85	48 60	vrst	
1de1	586361	1158157	85	55	vrst		1gh8	586291	1157831	163	59	násun	
1de2	586350	1158146	100	25	vrst		1gh9	586296	1157828	118	50	vrst	
1de2	586350	1158146	262	60	vrst		1gh10	586293	1157828	106	64	násun	
1de2	586350	1158146	176	7	osa vr		1gh11	586320	1157803	116	55	násun	
Ide3	586341	1158136	17	20	vrst		lghll 1ab12	586320	1157803	67 106	43	násun r	yh
1de3	586341	1158136	47	11	vist osa vr		1gh12	586333	1157802	190 98	38	vist	
1de4	586342	1158133	77	20	vrst		1gh12	586333	1157802	149	26	osa vr	
1de4	586342	1158133	150	63	vrst		1gh13	586336	1157802	128	78	vrst	
1de4	586342	1158133	71	20	osa vr		1gh13	586336	1157802	48	51	vrst ryh	
1de5	586339	1158129	46	45	zlom		1gh14	586343	1157810	126	44	vrst	
Ide5	586339	1158129	75	32	striace		1h11 1h:1	586387	1157833	85	71 29	vrst	
1de6	586341	1158130	240 38	30	vist		1111 1hi1	586387	1157833	254 161	36	vist osa vr	
1de6	586341	1158130	327	15	osa vr		1hi2	586391	1157836	202	44	vrst	
1de7	586332	1158119	38	62	vrst		1hi2	586391	1157836	240	66	vrst	
1de7	586332	1158119	183	59	vrst		1hi2	586391	1157836	172	40	osa vr	
1de7	586332	1158119	112	28	osa vr		1hi3	586395	1157819	79	87	vrst	
Ide8	586330	1158116	183	59 20	vrst		1 h14 1 hi4	586395	1157814	234	46 24	vrst	
1de8	586330	1158116	04 117	39	osa vr		11114 11114	586395	1157814	169	24	osa vr	
1de9	586327	1158114	92	43	vrst		1hi5	586398	1157810	200	27	vrst	
1de9	586327	1158114	37	82	vrst		1hi5	586398	1157810	252	54	vrst	
1de9	586327	1158114	120	39	osa vr		1hi5	586398	1157810	183	26	osa vr	
1de10	586323	1158110	32	85	vrst		1hi6	586395	1157807	252	54	vrst	
Ide10	586323	1158110	235	/4	vrst		1h16 1h16	586395	1157807	247	56 68	vrst ryh	
1de11	586319	1158107	307 106	47 50	vrst		1110 1hi6	586395	1157807	101	34	vist osa vr	
1de12	586315	1158102	240	30	vrst		1hi7	586396	1157803	250	75	vrst	
1de12	586315	1158102	256	54	vrst		1hi7	586396	1157803	118	47	vrst	
1de12	586315	1158102	177	15	osa vr		1hi7	586396	1157803	170	33	osa vr	
1de13	586312	1158098	256	54	vrst		1hi8	586401	1157800	239	52	vrst	
1de13	586312	1158098	130	35	vrst		1118	586401 586401	1157800	158	4/	vrst	
1de13	586308	1158098	130	23 35	vrst		1110 1hi9	586402	1157793	240	71	vrst	
1de14	586308	1158094	198	30	vrst		1hi9	586402	1157793	218	69	vrst	
1de14	586308	1158094	172	27	osa vr		1hi9	586402	1157793	213	69	osa vr	
1de15	586320	1158112	23	20	zlom		1ij1	586411	1157763	302	32	vrst	
1de15	586320	1158112	46	19	striace		1ij1	586411	1157763	199	42	vrst	
1de16	586271	1158077	254	30	vrst		11j1 1552	586411 586400	1157760	259	24 42	osa vr	
1de16	586271	1158077	170	5	osa vr		1ij2 1ij2	586409	1157769	156	8	vrst	
1de18	586279	1158077	222	37	vrst		1ij2	586409	1157769	116	6	osa vr	
1ef1	586256	1158058	85	55	násun		1ij3	586404	1157773	156	8	vrst	
1ef2	586257	1158055	101	13	násun		1ij3	586404	1157773	137	16	vrst	
lef3	586254	1158052	261	80	ziom	D	11]3	586404 586412	1157750	210	5 10	osa vr	
lef4	586251	1158052	202	36	vrst	D	1ij4 1ii5	586410	1157737	218	39	vist	
1ef5	586251	1158048	149	36	vrst		1ij5	586410	1157737	20	89	vrst	
1ef6	586252	1158045	105	12	vrst		1ij5	586410	1157737	290	14	osa vr	
1ef7	586247	1157989	220	17	násun		1ij6	586414	1157732	20	89	vrst	
1ef10	586252	1157978	89	16	vrst		1ij6	586414	1157732	162	67	vrst	
lef]]	586258	1157971	36	32	vrst		11J6 1337	586414	1157732	109	55	osa vr	
11g2 1fg2	586263	1157965	43 139	58 11	vist		1ij7 1ii7	586412	1157709	72 243	65	vist	
1fg2	586263	1157965	128	11	osa vr		1ij7	586412	1157709	158	10	osa vr	
1fg3	586261	1157962	74	57	vrst		1ij8	586415	1157700	228	64	vrst	
1fg3	586261	1157962	43	53	vrst ryh		1ij8	586415	1157700	104	63	vrst	
1fg4	586260	1157956	64	36	vrst		1ij8	586415	1157700	158	10	osa vr	
lfg5	586261	1157937	257	71	vrst		1ij9	586414	1157688	94 119	68 27	vrst	
11g5 1fo7	586261 586264	115/93/	304 60	75 50	vrst ryh vrst		11J9 1ii0	380414 586414	1157688	118 174	31 23	VISU OS2 Vr	
1fg8	586267	1157913	208	48	vrst		1ii10	586411	1157664	98	57	vrst	
1fg8	586267	1157913	78	41	vrst		1ij10	586411	1157664	124	76	vrst	
1fg8	586267	1157913	140	22	osa vr		1ij10	586411	1157664	48	45	osa vr	
1fg9	586272	1157902	74	40	vrst		1ij11	586410	1157658	258	87	vrst	
1tg10	586268	1157901	89	37	násun		1ij11	586410	1157658	41	83	vrst	
11911	500277	113/092	100	15	v18t		11)11	500410	1137038	551	/+	USa VI	

Příloha	1.	Seznam	dokument	ačních	hodů –	data z	lomů Mokrá
1 mona	1.	Sezham	uokument	acmen	oouu –	uata z	IOIIIU MOKIA

Příloha 1:	Seznam do	kumentačn	ích bodů –	– data z lon	nů Mokrá								42
č dh	r	v	A	A	tvn	poznámka	č dh	r	v	a	O	tvn	poznámka
1.1121	586/16	J 1157646	264	$\frac{\Psi s(l)}{74}$	vret	роглатка	$\frac{c.ub}{2ab14}$	586358	J 1158305	110	$\frac{\Psi s(l)}{74}$	vret	рознанка
1jk1	586/16	1157646	204	34	vist		2ab14 2ab14	586358	1158305	27	22	VISU OCD VT	
1jK1 1jk1	586416	1157646	345	30	VISt		2a014 2ab15	586364	1158303	62	33	USa VI	
13122	586412	1157647	72	30	USa VI		2a015 2af1	586372	1158208	135	14	vist	
1jk2 1jk2	586/12	1157647	264	74	vist		2a11 2af1	586372	1158298	126	51	vist	
1jk2 1jk2	586/12	1157647	352	8	osa vr		2a11 2af1	586372	1158298	214	3	osa vr	
1112	586421	1157643	100	38	USa VI		2a11 2af2	586370	1158207	214	15	USa VI	
1jkJ	586427	1157640	316	20 87	vist		2a12 2af2	586379	1158207	126	63	vist	
1jk4 1jk5	586/3/	1157637	131	82 77	vist		2a12 2af2	586379	1158207	210	12	VISt	
1jk5 1jk6	596427	1157622	200	59	vist		2a12 2af2	586383	1158202	126	62	USa VI	
1:1-6	506427	1157622	299	J0	vist		2a13	596292	1158292	212	20	VISt	
1 JKO 1 :1-6	506437	1157622	74	19	VISU		2a15	596292	1158292	212	29	VISU	
1 JKO 1 :1-7	50(427	1157052	102	42			2a15	596201	1158292	100	20	osa vr	
1 JK /	580457	115/035	102	34 20	ziom	Dž	2a14	586391	1158295	122	40	vrst	
1jK/	586437	115/635	/8	29	striace	Pr	2a14	586391	1158293	124	14	vrst	
1jk8	586442	115/634	162	22	vrst		2af4	586391	1158293	211	l	osa vr	
1jk8	586442	115/634	17	63	vrst		2af5	586397	1158289	156	26	vrst	
ljk8	586442	1157634	92	26	osa vr		2af5	586397	1158289	142	42	vrst	
Ijk9	586445	1157628	186	/6	vrst		2af5	586397	1158289	217	13	osa vr	
1jk9	586445	1157628	55	87	vrst		2af6	586399	1158286	142	42	vrst	
1jk9	586445	1157628	137	69	osa vr		2af6	586399	1158286	173	24	vrst	
1jk10	586449	1157629	164	84	vrst		2af6	586399	1158286	208	20	osa vr	
1jk10	586449	1157629	228	84	vrst		2af7	586408	1158285	190	13	vrst	
1jk10	586449	1157629	196	83	osa vr		2af7	586408	1158285	333	66	vrst	
1jk11	586447	1157629	161	53	vrst		2af7	586408	1158285	246	7	osa vr	
1jk11	586447	1157629	188	63	vrst		2af8	586411	1158282	115	65	vrst	
1jk11	586447	1157629	136	50	osa vr		2af8	586411	1158282	290	31	vrst	
1jk12	586454	1157632	127	50	vrst		2af8	586411	1158282	204	2	osa vr	
1jk12	586454	1157632	221	82	vrst		2af9	586396	1158287	274	76	kliváž	
1jk12	586454	1157632	140	49	osa vr		2af10	586424	1158261	204	63	vrst	
1jk13	586458	1157632	182	69	vrst		2af10	586424	1158261	120	44	vrst	
1jk14	586463	1157648	158	57	vrst		2af10	586424	1158261	141	42	osa vr	
1jk15	586465	1157651	150	70	vrst		2af11	586424	1158258	32	88	vrst	
1jk16	586469	1157661	150	56	vrst		2af11	586424	1158258	188	50	vrst	
1ik17	586471	1157665	158	54	vrst		2af11	586424	1158258	121	25	osa vr	
1ik17	586471	1157665	276	88	vrst		2af11	586424	1158258	112	25	vrst rvh	
lik17	586471	1157665	188	50	osa vr		2bc1	586309	1158337	240	48	vrst	
lik18	586476	1157676	167	56	vrst		2bc1	586309	1158337	6	32	vrst	
lik18	586476	1157676	14	80	vrst		2bc1	586309	1158337	311	20	osa vr	
lik18	586476	1157676	99	29	osa vr		2bc1	586309	1158337	232	56	vrst ryh	
lik19	586478	1157681	205	58	vrst		2bc2	586311	1158336	238	63	vrst	
lik20	586483	1157687	246	80	vrst		2bc2	586311	1158336	13	21	vrst	
1kl1	586514	1157664	95	59	vrst		2662 2bc2	586311	1158336	321	13	osa vr	
1k12	586507	1157651	74	65	vrst		2bc3	586314	1158335	235	40	vrst	
1k12 1k12	586507	1157651	63	69	vrst		2603	586314	1158335	36	36	vrst	
11/12	586507	1157651	114	50	osa vr		2603	586314	1158335	316	7	osa vr	
1k12	586502	1157639	256	86	vrst		2603 2bc4	586316	1158335	102	12	vrst	
11/14	586502	1157621	81	63	vrst		2bc4	586316	1158335	236	59	vrst	
11/15	586512	1157612	110	80	vrst		2604 2bc4	586316	1158335	151	8	osa vr	
11/16	586521	1157607	67	38	vrst		2604 2bc5	586317	1158332	151	31	vret	
11/17	586558	1157588	66	51	vist		2605 2665	586317	1158332	7J 246	12	vist	
2ab2	586325	1158323	275	51 66	vist		2005 2bc5	586317	1158332	328	42 7		
2a02 2ab2	586225	1150323	66	20	vist		2005 20d1	586210	1150352	526	7	USa VI	
2a02 2ab2	586225	1150323	257	39 16			2cd1	586210	1150344	222	65	vist	
2a02	586525	1158323	04	20	USa VI		2cd1	596210	1150344	147	10	VISU	
2a05	596245	1150307	94 294	50 55	vist		2cd1	586210	1150344	147	10 64	USa VI	
2a05	506245	1150207	204	55	VISU		2001	596212	1150344	100	62	vist fyff	
2a03	596240	1150207	10	ג רר	OSa VI		2002	596212	1150549	14	02	vist	
2a00	596249	1150300	232	11 5(vist		2002	59(212	1150549	280	21	vist	
2006	586349	1158306	149	50	vrst		2cd2	586312	1158349	289	10	osa vr	
2000	586349	1158306	1/9	52	osa vr		2cd3	586309	1158350	32	29	vrst	
2ab7	586554	1158306	210	32	vrst		2003	586309	1158550	42	15	vrst	
2ab7	586354	1158306	188	69	vrst		2cd3	586309	1158350	314	6	osa vr	
2ab/	586354	1158306	2/1	17	osa vr		2cd4	586312	1158357	36	35	vrst	
2ab7	586354	1158306	261	44	vrst ryh		2cd4	586312	1158357	9	86	vrst	
2ab8	586340	1158313	22	25	vrst		2cd4	586312	1158357	98	18	osa vr	
2ab8	586340	1158313	248	44	vrst		2cd5	586314	1158363	0	70	vrst	
Zab8	586340	1158313	323	14	osa vr		2cd5	586314	1158363	212	15	vrst	
2ab9	586343	1158313	46	3	vrst		2cd5	586314	1158363	273	7	osa vr	
Zab9	586343	1158313	246	46	vrst		2cd5	586314	1158363	91	20	vrst ryh	
2ab9	586343	1158313	335	1	osa vr		2cd6	586312	1158364	251	5	vrst	
2ab10	586335	1158314	104	6	vrst		2cd6	586312	1158364	11	71	vrst	
2ab10	586335	1158314	21	5	vrst		2cd6	586312	1158364	282	4	osa vr	
2ab11	586331	1158320	9	60	vrst		2de1	586315	1158371	30	45	vrst	
2ab11	586331	1158320	186	64	vrst		2de1	586315	1158371	234	71	vrst	
2ab11	586331	1158320	97	3	osa vr		2de1	586315	1158371	318	17	osa vr	
2ab12	586332	1158318	212	31	vrst		2de1	586315	1158371	72	38	vrst ryh	
2ab12	586332	1158318	346	68	vrst		2de2	586322	1158370	231	64	vrst	
2ab12	586332	1158318	264	20	osa vr		2de2	586322	1158370	346	30	vrst	
2ab13	586360	1158302	20	40	vrst		2de2	586322	1158370	308	25	osa vr	
2ab13	586360	1158302	268	65	vrst		2de2	586322	1158370	50	14	vrst ryh	
2ab13	586360	1158302	340	33	osa vr		2de3	586332	1158381	81	40	zlom	
2ab14	586358	1158305	79	34	vrst		2de4	586337	1158383	44	70	zlom	

Příloha 1: Seznan	dokumentačních	bodů – data z	lomů Mokr
-------------------	----------------	---------------	-----------

č. db.	x	у	$\pmb{\alpha}_{s(l)}$	$\varphi_{s(l)}$	typ po	známka	č. db.	x	у	$\pmb{\alpha}_{s(l)}$	$\varphi_{s(l)}$	typ	poznámka
2de5	586345	1158390	70	60	vrst		2jk15	586421	1158126	240	82	vrst	
2de5	586345 586245	1158390	310 354	30	vrst		2jk15	586421	1158126	54 320	58	vrst	
2de5 2de5	586345	1158390	554 76	23 60	vrst rvh		2jk15 2ik16	586422	1158120	200	o 28	vrst	
2de6	586354	1158392	320	30	zlom I	Po	2jk16	586422	1158130	59	80	vrst	
2de6	586354	1158392	330	32	striace		2jk16	586422	1158130	146	17	osa vr	
2de7	586314	1158366	278	37	vrst		2jk18	586418	1158126	38	69	vrst	
2de7	586314	1158366	216	76	vrst		2jk18	586418	1158126	36	28	vrst	
$2de^{7}$	586314	1158366	296	36	osa vr		2jk18	586418	1158126	309	1	osa vr	
2de7 2de7	586314	1158366	10	88 38	VISL		2jk18 2jk10	586418 586410	1158120	330 72	33 44	vrst ryn zlom	
2de7 2de7	586314	1158366	282	38	osa vr		2jk1) 2jk20	586416	1158125	72	20	násun	
2de7	586314	1158366	216	85	vrst		2kl1	586400	1158107	355	78	zlom	
2de7	586314	1158366	196	34	vrst		2kl1	586400	1158107	74	37	striace	Př
2de7	586314	1158366	127	14	osa vr		2kl2	586396	1158108	311	70	zlom	
2de7	586314	1158366	166	63	vrst		2kl2	586396	1158108	31	28	striace	D
2de/ 2do7	586314	1158366	322	48	vrst		2k13 21/14	586392	1158108	14	25	vrst	
2de7 2de7	586314	1158366	322	10	USA VI		2k14 2k15	586389	1158104	94 254	32 85	zlom	
2de7 2de7	586314	1158366	152	75	vrst		2k15 2k15	586389	1158104	332	66	striace	Ро
2de7	586314	1158366	240	8	osa vr		2kl6	586388	1158106	255	90	zlom	mylonit
2de7	586314	1158366	40	36	vrst ryh		21m1	586386	1158099	200	60	vrst	-
2de7	586314	1158366	348	40	vrst ryh		21m2	586381	1158098	80	54	vrst	
2gh1	586442	1158248	80	40	vrst		21m2	586381	1158098	142	40	vrst	
2ghl 2gh1	586442	1158248	216	28	vrst		21m2	586381	1158098	133	40	osa vr	
2gh1 2gh2	586442 586438	1158248	153 216	14	osa vr		21m3 21m3	586376	1158095	140 70	45 72	Vrst	
2g112 2gh2	586438	1158250	144	28	vist		21m3	586376	1158095	141	45	osa vr	
2gh2	586438	1158250	175	22	osa vr		21m3 21m4	586369	1158075	178	36	vrst	
2gh3	586447	1158247	194	47	vrst		21m4	586369	1158075	91	73	vrst	
2gh3	586447	1158247	234	82	vrst		21m4	586369	1158075	168	36	osa vr	
2gh3	586447	1158247	150	38	osa vr		21m5	586366	1158073	69	78	vrst	
2gh4	586451	1158245	166	32	vrst		21m5	586366	1158073	178	53	vrst	
2gh4 2gh4	586451 586451	1158245	66 110	35	vrst		21m5	586366	1158073	145	48	osa vr	
2g114 2gh4	586451	1158245	139	23	vrst ryh		21110 21m6	586362	1158070	65	73	vist	
2gh5	586454	1158243	188	27	vrst		21m6	586362	1158070	145	28	osa vr	
2gh5	586454	1158243	50	42	vrst		21m7	586361	1158070	65	73	vrst	
2gh5	586454	1158243	125	13	osa vr		21m7	586361	1158070	82	55	vrst	
2hi1	586469	1158224	174	32	vrst		21m7	586361	1158070	143	35	osa vr	
2ij1	586475	1158213	90	55	vrst		21m8	586359	1158067	182	9	vrst	
21J I 2111	586475	1158213	116	30	vrst		21m8	586359	1158067	49	62	vrst	
21j I 2;;2	586475 586474	1158213	104	21 46	osa vr zlom		21m8 21m9	586359	1158067	136	6 62	osa vr	
21j2 2ii2	586474	1158193	132	40	striace I	Př	21119 21m9	586358	1158064	139	57	vist	
2ij2	586474	1158193	176	20	striace		21m9	586358	1158064	100	50	osa vr	
2ij3	586468	1158187	137	55	vrst		21m10	586357	1158064	139	57	vrst	
2jk1	586447	1158162	135	42	vrst		21m10	586357	1158064	38	72	vrst	
2jk1	586447	1158162	65	48	vrst		21m10	586357	1158064	104	52	osa vr	
2jkl	586447	1158162	108	39	osa vr		2lm11	586356	1158063	30 52	76 56	vrst	
2JK2 23122	586440	1158160	194 276	81 25	ziom strince I	n	2 Im 1 I 2 Im 1 I	280320 586356	1158063	52 108	30 40	VISt	
2ik3	586444	1158160	270 74	70	zlom	D	21m11 21m12	586353	1158062	37	40 86	vrst	
2jk3	586444	1158160	92	68	striace I	Po	2lm12	586353	1158062	58	55	vrst	
2jk4	586445	1158158	176	68	zlom		2lm12	586353	1158062	125	29	osa vr	
2jk4	586445	1158158	253	50	striace		21m13	586350	1158057	84	72	vrst	
2jk5	586444	1158158	116	62	vrst		2lm14	586348	1158050	82	74	vrst	
2jk6 2ik6	586442	1158157	222	38	zlom	Po	2lm15	586344	1158047	03 320	65 85	vrst	
∠j⊼0 2ik7	586435	1158144	260	21	zlom	. 0	2 Im 10 2 Im 17	586330	1158042	552 74	33	vrst	
2ik7	586435	1158144	244	20	striace I	Po	21m17	586339	1158038	66	38	vrst	
2jk8	586430	1158137	162	23	vrst		2lm18	586339	1158038	45	56	vrst	
2jk8	586430	1158137	82	89	vrst		2lm18	586339	1158038	115	27	osa vr	
2jk8	586430	1158137	172	23	osa vr		21m21	586335	1158031	209	75	vrst	
2jk9	586429	1158137	258	15	vrst		21m21	586335	1158031	47	45	vrst	
2jk9	586429	1158137	246	64	vrst		2lm21	586335	1158031	123	14	osa vr	
∠jk9 2ik10	586429	115813/	354 246	4 64	osa vr		21m22	380333 586222	1158030	54 152	30 45	vrst	
2jk10	586426	1158138	120	50	vist		$2 \ln 22$ $2 \ln 22$	586333	1158030	90	25	vist Osa vr	
2jk10	586426	1158138	175	34	osa vr		21m22	586331	1158028	174	60	vrst	
2jk11	586429	1158136	146	54	vrst		21m23	586331	1158028	90	47	vrst	
2jk11	586429	1158136	36	25	vrst		21m23	586331	1158028	117	44	osa vr	
2jk11	586429	1158136	72	21	osa vr		21m24	586329	1158026	72	49	vrst	
2jk12	586427	1158136	146	54	vrst		21m24	586329	1158026	140	44	vrst	
2jk12	586427	1158136	258	15	vrst		2lm24	586329	1158026	113	41	osa vr	
2JK12	586427	1158136	226	13	osa vr		21m25	586328	1158023	120	38	vrst	
2JKI3 2ik12	586426	1158130	40 345	04 1	ziom	Dř	21m25	380328 586220	1158023	00	38 35	vrst	
2jk13 2jk14	586423	1158128	66	86	vrst		21m25 21m26	586320	1158015	133	38	vrst	
2jk14	586423	1158128	134	42	vrst		21m27	586322	1158014	175	62	vrst	
2jk14	586423	1158128	153	40	osa vr		21m29	586322	1158010	138	38	násun	

Příloha 1:	Seznam do	okumentačn	ích bodů	ù – data z loi	mů Mokrá								44
č. db.	x	у	$\pmb{\alpha}_{\mathrm{s}(l)}$	$\boldsymbol{\varphi}_{s(l)}$	typ po	známka	č. db.	x	у	$\alpha_{s(l)}$	$\boldsymbol{\varphi}_{s(l)}$	typ	poznámka
21m30	586316	1158007	140	51	vrst		2no9	586440	1157807	99	36	osa vr	
21m31	586317	1158004	156	54	vrst		2no10	586440	1157807	82	73	vrst	
2lm32	586315	1157999	114	55	vrst		2no11	586443	1157802	93	52	vrst	
2lm32	586315	1157999	188	65 52	vrst		2no12 2no13	586444	1157792	90 102	66 74	násun	
2mn1	586306	1157985	262	48	vrst		2n013 2n014	586447	1157779	98	64	vist	
2mn1	586306	1157985	200	49	vrst		2no14	586447	1157779	302	78	vrst	
2mn1	586306	1157985	233	44	osa vr		2no14	586447	1157779	25	31	osa vr	
2mn2	586308	1157982	262	48	vrst		2no15	586444	1157777	302	78	vrst	
2mn2	586308	1157982	135	88	vrst		2no15	586444	1157777	95 20	43	vrst	
2mn2 2mn3	586308	1157982	223	41 40	osa vr		2no15 2no17	586444 586447	1157774	28	20 52	osa vr	
2mn3 2mn4	586321	1157961	258	40 84	vrst		2no18	586447	1157770	164	52 74	vrst	
2mn4	586321	1157961	115	58	vrst		2no18	586447	1157770	94	50	osa vr	
2mn4	586321	1157961	173	40	osa vr		2no19	586448	1157764	8	51	vrst	
2mn5	586324	1157956	172	34	vrst		2no19	586448	1157764	108	32	vrst	
2mn5	586324	1157956	174	55	vrst		2no19	586448	1157764	73	27	osa vr	
2mn5 2mn6	586324 586324	1157950	80 08	3 81	osa vr		2no20 2no21	586449 586449	1157754	206	47 61	VISU	
2mn6	586324	1157952	120	60	vrst		2no21 2no21	586449	1157754	111	36	vrst	
2mn6	586324	1157952	180	41	osa vr		2no21	586449	1157754	137	33	osa vr	
2mn7	586348	1157954	91	37	vrst		2no22	586450	1157752	111	36	vrst	
2mn8	586369	1157928	136	43	vrst		2no22	586450	1157752	214	80	vrst	
2mn8	586369	1157928	198	68 42	vrst		2no22	586450	1157752	131	34	osa vr	
2mn8	586373	1157928	130	43	osa vr		20p1 20p1	586455	1157749	190	52 75	vrst	
2mm^2 2mm^2	586379	1157922	220	66	vrst		20p1 20p1	586455	1157749	209	31	osa vr	
2mn10	586379	1157922	56	64	vrst		2op2	586460	1157750	247	75	vrst	
2mn10	586379	1157922	138	17	osa vr		2op2	586460	1157750	156	28	vrst	
2mn11	586394	1157912	68	88	vrst		2op2	586460	1157750	165	28	osa vr	
2mn11	586394	1157912	100	20	vrst		2op3	586464	1157750	120	45	vrst	
2mn11 2mn12	586394	1157912	158	11	osa vr		20p3	586464 586464	1157750	130	12	vrst	
2mm12 2mm12	586389	1157916	193	86	vrst		20p3 20p4	586468	1157751	207	78	vrst	
2mn12	586389	1157916	105	25	osa vr		2op5	586473	1157752	235	73	vrst	
2mn13	586406	1157910	132	81	vrst		2op6	586477	1157753	236	54	vrst	
2mn14	586414	1157903	90	76	vrst		2op6	586477	1157753	224	56	vrst ryh	
2mn14	586414	1157903	96	48	vrst		20p6	586477	1157753	204	71	vrst	
2mn14 2mn15	586414 586417	1157808	1/8	9 52	osa vr		20p6 20p7	586477 586488	1157755	271	48	osa vr	
2mn15	586417	1157898	251	58	vrst		20p7 20p7	586488	1157755	213	76	vrst	
2mn15	586417	1157898	169	12	osa vr		2op7	586488	1157755	135	39	osa vr	
2mn16	586417	1157896	251	58	vrst		2op8	586494	1157758	142	33	vrst	
2mn16	586417	1157896	121	50	vrst		2op8	586494	1157758	79	73	vrst	
2mn16	586417	1157896	182	30	osa vr		20p9 20p9	586503	1157759	68 225	82 53	vrst	
2 mn 17	586419 586419	1157892	258	58 40	vist		20p9 20p9	586503	1157759	154	55 24	vist osa vr	
2mn17 2mn17	586419	1157892	183	13	osa vr		20p)	586510	1157760	225	53	vrst	
2mn18	586424	1157890	258	40	vrst		2op10	586510	1157760	81	54	vrst	
2mn18	586424	1157890	123	6	vrst		2op10	586510	1157760	153	23	osa vr	
2mn18	586424	1157890	173	4	osa vr		2pq1	586532	1157740	77	68	vrst	
2mn19 2mn20	586426 586425	1157886	198	25	vrst		2pq2 2pq3	586542 586530	1157678	78 86	61 58	vrst	
2mn21	586425	1157884	305	83	kliváž		2pq3 2pq4	586594	1157655	80 72	29	vist	
2mn22	586427	1157879	70	10	násun		2pq5	586625	1157728	96	26	vrst	
2mn23	586427	1157872	78	86	vrst		3ab1	586103	1158317	58	50	vrst	
2mn24	586425	1157884	78	76	vrst		3ab1	586103	1158317	241	56	vrst	
2mn24	586425	1157884	166	10	vrst		3ab1	586103	1158317	330	2	osa vr	
2mn24 2mn25	586425 586427	1157870	105	10	osa vr		Sab2	586104 586104	1158315	225 02	20 38	VISL	
2mn25	586427	1157879	200 70	45	vrst		3ab2	586104	1158315	151	22	osa vr	
2mn25	586427	1157879	345	5	osa vr		3ab3	586105	1158316	244	56	vrst	
2no1	586430	1157863	82	71	vrst		3ab3	586105	1158316	150	14	vrst	
2no2	586432	1157858	98	69	vrst		3ab3	586105	1158316	163	14	osa vr	
2no3	586437	1157847	240	58	vrst		3ab4	586100	1158293	212	58	vrst	
2no3	586437	1157847	116	33	vrst		3ab4	586100	1158293	104	20	vrst	
2no4	586437	1157840	265	23 76	vrst		3ab5	586099	1158282	226	61	vrst	
2no5	586437	1157832	133	22	vrst		3ab5	586099	1158282	234	45	vrst	
2no5	586437	1157832	10	88	vrst		3ab5	586099	1158282	257	46	vrst	
2no5	586437	1157832	99	19	osa vr		3ab6	586097	1158274	181	57	vrst	
2no6	586436	1157827	184	71	násun		3bc1	586102	1158263	274	82	vrst	
∠1100 2no6	300430 586/36	1157827	130 265	03 24	nasun ryn		SDC2 Sbc2	586106	1158259	230 98	59 83	VISU	
2no6	586436	1157827	177	61	násun		3bc2	586106	1158259	183	33	osa vr	
2no7	586436	1157820	66	53	vrst		3bc3	586113	1158259	352	39	zlom	
2no7	586436	1157820	92	58	vrst		3bc3	586113	1158259	329	38	striace	Ро
2no7	586436	1157820	57	53	osa vr		3bc4	586111	1158257	268	70	vrst	
2no8	586437	1157814	69 10	61 00	nasun		3bc5 3bc0	586121	1158259	236	65 64	vrst	
2no9	586440	1157807	111	37	vist		3bc14	586108	1158258	136	04 76	visi kliváž	
		5.507	-										

Příloha 1: Seznan	n dokumentačních	bodů – data z	lomů Mokr
-------------------	------------------	---------------	-----------

- 1	5
4	•
	~

č. dh.	<i>x</i>	V	a m	O _0	typ poznámk	a č. dh.	x	v	a	0	tvn	poznámka
3bc15	586128	1158260	249	51	odlepení	3ef9	586154	1158108	123	<u>ys(i)</u> 56	násun	poznanna
3bc16	586131	1158259	356	59	kliváž	3ef10	586155	1158104	166	52	vrst	
3bc18	586149	1158257	233	56	vrst	3ef11	586152	1158097	166	20	násun	
3bc18	586149	1158257	178	65	vrst	3ef12	586153	1158093	176	40	násun	
3bc18	586149	1158257	225	56	osa vr	3ef13	586149	1158093	105	27	zlom	
3bc19	586151	1158255	178	65	vrst	3ef13	586149	1158093	54	16	striace	Př
3bc19	586151	1158255	210	68	vrst	3ef14	586148	1158089	126	51	zlom	Dž
3bc19 3bc20	586151	1158255	180	65 52	osa vr	3ef14	586148	1158089	42	11	striace	Pr
3bc20	586155	1158255	230	55 62	vist	3ef15	586150	1158087	50	20	striace	Dř
3bc20	586155	1158255	194	53	osa vr	3ef16	586155	1158007	247	48	kliváž	11
3bc21	586158	1158254	280	89	kliváž	3ef17	586145	1158086	276	20	kliváž	
3bc22	586169	1158252	189	54	vrst	3ef18	586147	1158086	72	30	zlom	
3bc22	586169	1158252	218	81	vrst	3ef18	586147	1158086	36	30	striace	Př
3bc22	586169	1158252	135	39	osa vr	3ef19	586145	1158082	206	64	vrst	
3bc23	586173	1158250	248	69	vrst	3ef20	586142	1158080	258	44	kliváž	
3bc23	586173	1158250	90	77	vrst	3ef21	586142	1158072	240	84	vrst	
3bc23	586173	1158250	172	32	osa vr	3ef22	586149	1158076	238	56	vrst	
3cd1	586177	1158248	226	63	vrst	3ef22	586149	1158076	222	36	vrst	
30d2	586170	1158241	242	28	vrst	3e122 2fg1	586127	11580/0	102	20	osa vr	
3cd3	586179	1158244	218	69 60	vist	31g1 3fg2	586141	1158061	252	50 61	vist	
3cd3	586179	1158244	308	0	osa vr	3fø3	586141	1158038	306	36	zlom	
3cd4	586180	1158236	220	56	vrst	3fg3	586141	1158038	246	20	striace	Po
3cd4	586180	1158236	50	75	vrst	3fg6	586142	1158013	250	70	vrst	
3cd4	586180	1158236	137	10	osa vr	3fg6	586142	1158013	226	71	vrst	
3cd5	586182	1158222	90	46	vrst	3fg6	586142	1158013	245	70	osa vr	
3cd5	586182	1158222	244	76	vrst	3fg7	586144	1158006	112	40	zlom	
3cd5	586182	1158222	159	20	osa vr	3fg7	586144	1158006	64	31	striace	Ро
3cd6	586183	1158214	256	84	vrst	3fg8	586144	1158006	312	70	vrst	
3cd6	586183	1158214	68	63	vrst	3fg9	586138	1157984	82	33	zlom	D
30d6	586183	1158214	345	13	osa vr	31g9 2fg10	586138	1157082	81 65	31	striace	Po
3cd7	586185	1158214	68	63	vistiyn	31g10 3fg11	586130	1157983	236	85 70	odlenení	
3cd7	586185	1158216	239	57	vrst	3fg12	586126	1157983	230	76	odlepení	
3cd7	586185	1158216	154	8	osa vr	3gh1	586105	1157963	112	29	násun	
3cd8	586184	1158208	170	63	vrst	3gh2	586111	1157950	210	47	kliváž	
3cd8	586184	1158208	352	64	vrst	3gh2	586111	1157950	240	41	kliváž	
3cd8	586184	1158208	81	2	osa vr	3gh2	586111	1157950	4	79	kliváž	
3cd9	586181	1158214	132	44	vrst	3gh3	586114	1157950	223	43	násun	
3cd9	586181	1158214	259	72	vrst	3gh5	586074	1157972	107	30	vrst	
3cd9	586181	1158214	181	32	osa vr	3gh6	586071	1157976	132	34	vrst	
3cd10	586183	1158203	130	70	vrst	3gh7	586064	1157976	107	33	vrst	
3cd11	586184	1158199	106	44	vrst	3gh8	586055	1158000	174	21	vrst	
3de1	586153	1158192	124	38 46	VISL	3gh10	586082	1157985	128	62 50	nasun	
3de2	586153	1158170	138	+0 50	vrst	3gh11	586077	1157923	104	54	vrst	
3de2	586153	1158170	108	46	osa vr	3gh12	586079	1157921	86	48	násun	
3de3	586156	1158174	138	50	vrst	3gh13	586084	1157921	118	20	násun	
3de3	586156	1158174	96	20	vrst	3gh14	586051	1157883	224	41	vrst	
3de3	586156	1158174	63	17	osa vr	3gh15	586049	1157907	184	49	vrst	
3de4	586140	1158154	82	80	vrst	3gh16	586040	1157904	181	51	vrst	
3de4	586140	1158154	129	46	vrst	3gh17	586026	1158003	93	47	vrst	
3de4	586140	1158154	163	41	osa vr	3hi1	586027	1157897	246	42	násun	
3de5	586137	1158154	129	46	vrst	3hi2	586032	1157899	260	20	násun	
Sues 3de5	38013/ 586127	1150154	110 202	81 15	VISU OSA VE	3013 26:4	586030 586027	1157805	∠17 222	24 1	násun	
3de6	586131	115814	1203	46	vrst	31114 3hi5	586027	1157892	223	43	vrst	
3de6	586131	1158148	152	74	vrst	3hi6	586031	1157866	256	48	pásun	
3de6	586131	1158148	71	29	osa vr	3hi7	586042	1157868	246	74	násun	
3de7	586123	1158143	238	81	vrst	3hi8	586036	1157866	233	18	násun	
3de7	586123	1158143	105	63	vrst	3hi9	586042	1157861	249	62	vrst	
3de7	586123	1158143	159	49	osa vr	3hi10	586040	1157853	239	20	vrst	
3ef1	586116	1158131	156	54	zlom	3hi11	586047	1157850	270	52	vrst	
3ef1	586116	1158131	242	8	striace Př	3hi12	586047	1157841	116	64	vrst	
3ef2	586116	1158131	160	42	zlom	3hi13	586054	1157845	114	32	vrst	
3ef2	586116	1158131	251	7	striace Př	3hi14	586058	1157849	237	43	vrst	
3ef3	380110 596116	1158131	1// 250	40	ziom strinco Dž	3h115 2h116	380U/4	1157820	110	3/ 21	vrst	
3ef/	586122	1158151	∠38 104	9 66	surace Pr	30110 36116	380009 586060	1157821	125	51 17	VISL vret rub	
3ef4	586122	1158126	296	86	visi	31110	586087	1157820	104	46	visi i yii vret	
3ef4	586122	1158126	24	22	osa vr	3112	586080	1157814	98	44	vrst	
3ef5	586128	1158126	221	76	zlom	3ii3	586075	1157807	102	71	násun	
3ef5	586128	1158126	244	72	striace Po	3ii3	586075	1157807	182	10	násun rvl	h
3ef6	586132	1158124	302	78	vrst	3ij4	586100	1157811	136	55	vrst	
3ef6	586132	1158124	121	58	vrst	3ij5	586110	1157812	227	28	vrst	
3ef6	586132	1158124	32	1	osa vr	3ij6	586132	1157790	238	60	vrst	
3ef7	586140	1158123	238	81	vrst	3ij7	586144	1157778	227	38	vrst	
3ef7	586140	1158123	105	63	vrst	3ij8	586155	1157764	221	46	vrst	
3ef7	586140	1158123	159	49	osa vr	3ij9	586186	1157707	193	15	vrst	
3ef8	586148	1158118	118	57	vrst	3ij9	586186	1157707	193	58	vrst	

Příloha 1: Se	eznam dokumen	tačních bodů –	data z lomů	Mokrá
i mona i. o	ezham uokumen	tuemen bouu	uutu 2 ioinu	withtit

4	6

	r	v	0	uu – uata z 1011		oznámka	č dh	r	v	N a	0 a	typ	noznámka
2::0	л 596196	<u>y</u> 1157707	282	$\Psi_{s(l)}$	iyp p	білитки	5. uv.	x 596521	y 1159224	200	$\frac{\boldsymbol{\varphi}_{s(l)}}{56}$	uret	рознанка
31J9 31/1	585080	1157588	100	52	USa VI		5cd3	586521	1158324	132	18	VISt OSA VE	
3k11	585980	1157588	138	42	vrst		5cd4	586514	1158312	12	68	vrst	
3k11	585980	1157588	146	42	osa vr		5cd4	586514	1158312	194	84	vrst	
3k12	585973	1157586	138	42	vrst		5cd4	586514	1158312	284	4	osa vr	
3kl2	585973	1157586	78	48	vrst		5cd5	586510	1158307	34	58	vrst	
3k12	585973	1157586	118	40	osa vr		5cd5	586510	1158307	125	54	vrst	
3k13	585995	1157595	119	43	vrst		5cd5	586510	1158307	84	46	osa vr	
3kl4	586021	1157604	86	54	vrst		5cd6	586509	1158301	12	68	vrst	
3k15	585948	1157582	84	71	vrst		5cd6	586509	1158301	202	54	vrst	
3lm1	585913	1157593	230	40	vrst		5cd6	586509	1158301	286	9	osa vr	
3lm1	585913	1157593	103	49	vrst		5cd7	586511	1158267	16	55	vrst	
3lm1	585913	1157593	171	23	osa vr		5cd8	586513	1158249	352	73	vrst	
3lm3	585902	1157596	98	49	vrst		5cd9	586517	1158212	191	46	vrst	
3lm3	585902	1157596	184	46	vrst		5cd9	586517	1158212	236	69	vrst	
31m3	585902	1157596	144	39	osa vr		5-111	586517	1158212	16/	43	osa vr	
31m4 21m5	282893 585897	1157604	230	80	nasun		5cd12	586522 586522	11501/5	240	01 45	vrst	
21m5	JOJOO/ 505007	1157604	234	62 60	vist		5do2	586510	1150101	204	43	vist	
31m5	585887	1157604	158	60	osa vr		5de3	586514	1158153	280	83	vist	
31m6	585876	1157610	82	76	vrst		5de4	586501	1158136	200	73	zlom	
31m7	585923	1157587	119	67	vrst		5de5	586501	1158131	6	82	vrst	
3mn1	585854	1157862	83	25	vrst		5de6	586498	1158129	28	53	vrst	
3mn2	585854	1157884	82	60	vrst		5de6	586498	1158129	203	63	vrst	
3mn3	586069	1158215	120	70	vrst		5de6	586498	1158129	115	4	osa vr	
4bc1	586675	1158222	88	56	vrst		5de7	586496	1158128	203	63	vrst	
4bc2	586682	1158211	105	41	vrst		5de7	586496	1158128	28	53	vrst	
4bc3	586689	1158205	88	56	vrst		5de7	586496	1158128	115	4	osa vr	
4cd1	586682	1158087	94	56	vrst		5de8	586492	1158126	115	76	vrst	
4de1	586681	1157965	84	52	vrst		5de8	586492	1158126	118	22	vrst	
4de2	586678	1157936	88	35	vrst		5de8	586492	1158126	205	1	osa vr	
4de3	586675	1157913	96	63	vrst		5de9	586495	1158123	184	64	vrst	
4de3	586675	1157913	10	9	osa vr		5de9	586495	1158123	128	38	vrst	
4fh1	586727	1157888	56	69 52	vrst		5de9	586495	1158123	116	37	osa vr	
4In2	586/19	1157900	12	53	vrst		5de10	586493	1158120	100	4/	vrst	
4102 4fb2	586702	1157900	151	33	osa vr		5de10	586495	1158120	190	28 22	vrst	
4103 4fb4	586803	1157981	232 178	08 80	vrst		5de10	586495 586402	1158120	123	32 73	osa vr	
41114 Afb4	586803	1157978	00	58	vist		5de11	586/02	1158118	1/13	13	vist	
41114 4fh4	586803	1157978	90	58			5de11	586492	1158118	175	37	osa vr	
4fh5	586816	1157978	99	58	vrst		5de12	586490	1158118	143	42	vrst	
4fh5	586816	1157978	161	31	vrst		5de12	586490	1158118	30	75	vrst	
4fh5	586816	1157978	167	31	osa vr		5de12	586490	1158118	109	37	osa vr	
5ab1	586620	1158385	184	66	vrst		5de13	586490	1158117	178	43	vrst	
5ab1	586620	1158385	242	38	vrst		5de14	586490	1158114	217	56	vrst	
5ab1	586620	1158385	254	37	osa vr		5de14	586490	1158114	71	77	vrst	
5ab2	586601	1158373	218	82	vrst		5de14	586490	1158114	153	33	osa vr	
5ab2	586601	1158373	150	44	vrst		5de15	586487	1158112	215	56	zlom	
5ab2	586601	1158373	136	43	osa vr		5de15	586487	1158112	139	20	striace	?
5ab3	586596	1158354	126	25	vrst		5de16	586485	1158112	178	38	vrst	
5ab3	586596	1158354	37	68	vrst		5de17	586480	1158109	40	80	vrst	
5ab3	586596	1158354	116	25	osa vr		5de17	586480	1158109	125	25	osa vr	
Sab4	586595	1158349	244	25	zlom	0	Set1	586475	1158109	185	39	vrst	
5ab4	586595	1158349	233	24	striace	?	Set 1	586475	1158109	203	60	vrst	
5405 5ho1	586587	1150540	219	40	vist		Sel1	586470	1158109	120	24 51	Usa VI	
5bc1	586587	1158345	200 142	49 56	vist		Jei2 Sef3	586466	1158100	∠10 214	50	vist	
5bc1	586587	1158345	186	47	osa vr		5ef4	586461	1158098	225	79	vrst	
5bc2	586580	1158342	225	66	vrst		5ef4	586461	1158098	168	64	vrst	
5bc3	586578	1158342	225	38	vrst		5ef4	586461	1158098	158	64	osa vr	
5bc4	586574	1158339	226	30	vrst		5ef5	586457	1158094	152	36	vrst	
5bc5	586570	1158338	250	83	vrst		5ef6	586453	1158091	146	35	vrst	
5bc5	586570	1158338	94	76	vrst		5ef7	586448	1158086	97	32	vrst	
5bc5	586570	1158338	168	48	osa vr		5ef8	586446	1158085	208	36	vrst	
5bc6	586564	1158335	246	38	vrst		5ef9	586442	1158082	196	49	zlom	
5bc7	586560	1158335	211	39	vrst		5ef10	586441	1158081	215	48	zlom	
5bc7	586560	1158335	138	66	vrst		5ef11	586437	1158079	84	43	vrst	
5bc7	586560	1158335	207	39	osa vr		5ef12	586436	1158078	189	45	vrst	
5bc8	586557	1158332	68	56	zlom		5ef12	586436	1158078	51	62	vrst	
5bc8	586557	1158332	6	26	striace	Př	5ef12	586436	1158078	127	25	osa vr	
5bc9	586548	1158328	159	43	vrst		5ef13	586434	1158075	144	34	vrst	
5bc9	586548	1158328	86	49	vrst		5ef14	586424	1158066	150	34	vrst	
5bc9	586548	1158328	131	39	osa vr		5ef15	586416	1158057	139	57	vrst	
5bc10	586544	1158328	78	64	vrst		5et16	586412	1158051	168	51	vrst	
5cd1	586534	1158332	219	84 62	vrst		Set17	586407	1158044	190	51	vrst	
Scd1	586534	1158552	50 121	02	VISU		5 of 10	3804U3	1158038	154	33 55	vrst	
5cd2	200234 586527	1158552	131	1/	usa vr		5of20	200400 586206	1150033	142	25 25	vrst	
5cd2	586527	1158327	213 230	80 85	vist		Je120 5ef21	586303	1158017	107	55 58	vist	
5cd2	586527	1158327	154	70	089 Vr		5fo1	58630/	1158002	43	12	visi	
5cd2	586521	1158324	47	74	vrst		6ab1	586002	1157839	85	45	vrst	

Příloha 1	: Seznam d	okumentačr	ıích bodů	– data z lo	omů Mokrá	
č. db.	x	у	$\pmb{\alpha}_{\!\!s(l)}$	$\varphi_{s(l)}$	typ poznámka	
6ab2	586001	1157819	64	38	vrst	
6ab2	586001	1157819	353	15	vrst ryh	
6ab2	586001 586000	1157819	51 100	36 50	vrst ryh	
6ab2	586010	1157802	222	30 44	vist	
6ab3	586010	1157802	63	83	vrst	
6ab3	586010	1157802	151	17	osa vr	
6ab4	586014	1157790	65	75	vrst	
6ab4	586014	1157790	88	27	vrst	
6ab5	586021	1157790	200	15 30	OSA VI	
6ab6	586029	1157740	58	80	vrst	
6bc	586007	1157718	114	60	vrst	
6dc1	585960	1157738	47	44	vrst	
6dc2	585953	1157772	140	23	vrst	
6de1	585949	1157819	70 94	54 54	vist	
6de2	585945	1157824	104	35	kliváž	
6de3	585944	1157831	120	45	kliváž	
6de4	585945	1157840	88	30	vrst	
7ab1	587072	1157707	108	21	vrst	
7ab2 7ab2	587063	1157650	274	/4 15	ziom strince Př	
7ab2 7ab3	587062	1157630	115	20	vrst	
7ab4	587059	1157588	90	31	vrst	
7bc1	587083	1157505	52	33	vrst	
7bc2	587260	1157463	113	13	vrst	
7del	587500	1157817	88	10	vrst	
7de2 7de3	587297	1157998	132	10	vist	
8ab1	587104	1157729	160	20	vrst	
8ab2	587101	1157578	284	21	vrst	
8bc1	587112	1157548	102	33	vrst	
8bc2	587194	1157516	94 124	27	vrst	
8cd2	587301 587306	1157565	134	10	Vrst	
8cd2	587318	1157505	92	36	vrst	
8cd4	587334	1157624	76	38	vrst	
8cd5	587359	1157659	65	25	vrst	
8cd6	587475	1157683	70	33	vrst	
8cd/ Oab1	587567 587037	1157000	68 86	31 10	vrst	
9ab2	587037	1157895	100	42	zlom	
9ab2	587047	1157895	177	13	striace Po	
9ab3	587092	1157858	77	34	vrst	
9ab4	587122	1157813	101	28	vrst	
9ab5 9cd1	58/13/	1157555	106	32 8	vrst	
9cd1	587241	1157555	92	7	vrst rvh	
9cd2	587298	1157679	304	23	vrst	
9cd3	587394	1157740	96	38	vrst	
9cd4	587431	1157898	132	16	vrst	
DB1a	586122	1157787	245	38	násun pásup rub	
DB1a DB1b	586122	1157787	220	33 45	násun	
DB1c	586122	1157787	262	58	násun	
DB1c	586122	1157787	168	8	násun ryh	
Xab1	587066	1158052	96	27	vrst	
xab2	587076	1158020	31	14	násun	
xab3	587134	1157968	84 100	18	Vrst	
xab4	587163	1157821	73	30	vrst	
xab6	587175	1157764	93	32	vrst	
xab7	587180	1157698	89	34	vrst	
xbc1	587241	1157748	134	35	vrst	
xbc2	587253	1157766	130	18	nasun	
xbc3	587327	1157862	297	9	násun	
xbc5	587354	1157904	179	26	vrst	
xcd1	587347	1158007	89	27	vrst	
xcd2	587256	1158004	124	26	vrst	
xcd3	587211	1157984	140	25 25	vrst	
xcd4 xcd5	587144 587246	1158011	82 199	25 34	vrst	
xcd6	587240	1158058	78	62	vist	
xcd6	587210	1158055	137	66	vrst	
xcd6	587210	1158055	99	60	osa vr	

PIIIOIIa I	: Sezhani u	lokumentaci	nen bo	du – data z Le	siino ioinu								48
č. db.	x	v	$\alpha_{s(l)}$	$\boldsymbol{\mathcal{O}}_{\mathbf{x}(l)}$	typ p	oznámka	č. db.	x	v	$\mathbf{\alpha}_{\mathbf{s}(l)}$	$\boldsymbol{\mathcal{O}}_{\mathbf{s}(l)}$	typ	poznámka
11ab1	591624	1158401	143	15	vrst		11de2	591785	1158565	226	9	osa vr	1 -
11ab2	591636	1158405	155	36	vrst		11de3	591776	1158562	137	11	vrst	
11ab2	591641	1158407	148	30	vrst		11de4	591768	1158560	318	52	zlom	
11ab3	591641	1158407	95	23	vrst rvh		11de4	591768	1158560	230	10	striace	D
11ab4	591651	1158413	168	37	vrst		11de5	591761	1158558	173	2	vrst	D
11ab/	501651	1158/13	126	85	vrst		11de6	501757	1158557	1/6	34	vrst	
11a04 11ab4	501651	1158/13	213	28			11de7	501743	1158557	167	12	vist	
11a04	501656	1150413	121	20	USA VI		114.9	501724	1150550	200	12	vist	
11ab5	501664	1150413	131	22	VISt		1140	501724	1150550	260	13	ZIOIII	Da
11.1.6	501664	1150415	252	52	vist		114-0	591754	1150550	20	07	striace	PO
111100	591004	1158413	352	/9	vrst		11068	591734	1158558	32	35	striace	2
11ab6	591664	1158413	79	17	osa vr		11de9	591719	1158555	223	14	vrst	
11ab7	591666	1158416	183	50	vrst		11de9	591719	1158555	84	41	vrst	
11ab8	591676	1158418	150	31	vrst		11de9	591719	1158555	165	8	osa vr	
11ab9	591679	1158417	178	81	vrst		11de10	591709	1158555	84	41	vrst	
11ab9	591679	1158417	166	59	vrst		11de10	591709	1158555	230	24	vrst	
11ab9	591679	1158417	92	25	osa vr		11de10	591709	1158555	163	10	osa vr	
11ab10	591681	1158422	359	58	vrst		11de12	591699	1158550	234	36	vrst	
11ab11	591687	1158423	163	40	vrst		11de13	591691	1158546	230	14	vrst	
11ab11	591687	1158423	346	82	vrst		11de14	591681	1158537	108	69	vrst	
11ab11	591687	1158423	76	2	osa vr		11de14	591681	1158537	284	35	vrst	
11ab12	591697	1158432	350	69	vrst		11de14	591681	1158537	197	2	osa vr	
11ab13	591700	1158432	348	13	vrst		11ef1	591658	1158525	208	38	vrst	
11ab13	591700	1158432	216	47	vrst		11ef1	591658	1158525	74	86	vrst	
11ab13	591700	1158432	298	8	osa vr		11ef1	591658	1158525	162	28	osa vr	
11ab14	591706	1158435	216	47	vrst		11ef2	591657	1158523	74	86	vrst	
11ab14	591706	1158435	341	48	vrst		11ef2	591657	1158523	222	67	vrst	
11ab14	591706	1158435	278	27	osa vr		11ef2	591657	1158523	160	48	osa vr	
11ab15	591712	1158438	54	14	vrst		11ef3	591652	1158523	245	11	vrst	
11ab15	591712	1158440	12	67	vrst		11ef4	591647	1158522	222	44	zlom	
11ab16	501718	1158///0	203	59	vret		11ef/	5916/7	1158522	167	30	striace	Pr
11ab16	501710	1158///0	203	11	VISL OSA VE		11ef5	501647	1158510	03	25	vret	11
11ab17	501721	1158444	207	29	USA VI		11015	501647	1158519	93 79	25	vist	
11a01/	501725	1150444	70	30 70	VISU		11ef5	501647	1150519	167	82 7	VISU	
11001	501725	1150455	/0	/9	vist		11el5	591047	1150519	107	/	osa vr	
11001	591725	1158455	182	41	vrst		11elo	591643	1158519	/8	82	vrst	
	591725	1158455	159	39	osa vr		11616	591643	1158519	198	15	vrst	
11bc2	591725	1158463	/6	48	vrst		11et6	591643	1158519	166	13	osa vr	
11bc2	591725	1158463	170	41	vrst		llef/	591637	1158516	193	18	zlom	
11bc2	591725	1158463	129	33	osa vr		11ef8	591629	1158511	185	61	vrst	
11bc3	591725	1158449	7	38	vrst		11ef8	591629	1158511	40	38	vrst	
11bc3	591725	1158449	230	90	vrst		11ef8	591629	1158511	105	18	osa vr	
11bc3	591725	1158449	320	28	osa vr		11ef9	591626	1158511	40	38	vrst	
11bc3	591725	1158449	230	90	vrst		11ef9	591626	1158511	152	35	vrst	
11bc3	591725	1158449	217	41	vrst		11ef9	591626	1158511	98	22	osa vr	
11bc3	591725	1158449	140	11	osa vr		11ef10	591623	1158507	142	31	vrst	
11bc3	591725	1158449	217	41	vrst		11ef10	591623	1158507	186	41	vrst	
11bc3	591725	1158449	92	63	vrst		11ef10	591623	1158507	140	31	osa vr	
11bc3	591725	1158449	166	29	osa vr		11ef11	591613	1158500	190	24	vrst	
11bc3	591725	1158449	92	63	vrst		11ef12	591599	1158493	162	25	vrst	
11bc3	591725	1158449	246	29	vrst		11ef12	591599	1158493	248	89	vrst	
11bc3	591725	1158449	176	11	osa vr		11ef12	591599	1158493	158	25	osa vr	
11bc3	591725	1158449	246	29	vrst		11ef13	591599	1158491	248	89	vrst	
11bc3	591725	1158449	76	55	vrst		11ef13	591599	1158491	126	74	vrst	
11bc3	591725	1158449	163	4	osa vr		11ef13	591599	1158491	161	71	osa vr	
11bc4	591732	1158482	141	26	vrst		11ef14	591596	1158492	126	74	vrst	
11bc5	591742	1158493	44	56	vrst		11ef14	591596	1158492	51	89	vrst	
11bc5	591742	1158493	170	85	vrst		11ef14	591596	1158492	138	74	osa vr	
11bc5	591742	1158493	86	48	osa vr		11ef15	591596	1158489	51	89	vrst	
11bc6	591748	1158492	118	52	vrst		11ef15	591596	1158489	58	9	vrst	
11bc6	591748	1158492	30	53	vrst		11ef15	591596	1158489	141	1	osa vr	
11bc6	591748	1158492	75	43	osa vr		11ef16	591590	1158484	128	28	vrst	
11bc7	591762	1158498	61	49	vrst		11ef17	591577	1158474	150	42	vrst	
11bc8	591771	1158504	85	77	vrst		11ef18	591575	1158471	136	21	vrst	
11bc9	591778	1158502	162	46	zlom		11ef18	591575	1158471	202	69	vrst	
11bc9	591778	1158502	158	43	striace	Po	11ef18	591575	1158471	120	20	089 Vr	
11bc10	591787	1158502	92	67	vret		11ef10	591567	1158/61	186	77	vret	
11bc10	591787	1158507	4	19	vrst ryh		11ef10	591567	1158/61	154	48	vrst	
11bc10	501707	1158507	120	15	visciyii		11of10	501567	1159/61	106	27	v13t	
11bc10	501707	1158507	161	4.5	VISL		110119	501550	1158/10	100	21	USA VI	
11bo11	501707	115050/	101	40	Usa VI		120k1	501621	1150240	154	20	vist	
110011 11bo11	501707	1120212	122 54	42 70	vist		12a01 12ab2	501605	1150250	154	50 42	vist	
110C11	501707	1150515	122	/0	VISU		12a02	501405	1150352	102	43	VISU	
110C11 11bo12	501702	1150515	133	41	osa vr		12aD2	501405	1150352	128	01	vrst	
110012	501702	1150515	34 174	/8	vist		12a02	501(10	1158352	190	34	osa vr	
110012	591/92	1158515	1/4	25	vrst		12ab3	591610	1158347	15/	30	vrst	
11bc12	591792	1158515	139	21	osa vr		12ab3	591610	1158347	196	46	vrst	
11bc13	591793	1158523	182	23	vrst		12ab3	591610	1158347	149	35	osa vr	
11bc13	591793	1158523	/1	45	vrst		12ab4	591608	1158343	196	46	vrst	
11bc13	591793	1158523	142	18	osa vr		12ab4	591608	1158343	125	31	vrst	
11bc14	591804	1158530	198	17	odlepení		12ab4	591608	1158343	140	30	osa vr	
11de1	591793	1158565	149	34	vrst		12ab5	591586	1158340	100	56	vrst	
11de2	591785	1158565	150	34	vrst		12ab5	591586	1158340	126	31	vrst	
11de2	591785	1158565	177	14	vrst		12ab5	591586	1158340	174	22	osa vr	

Příloha 1: Seznam	dokumentačních	bodů – data z	Lesního lomu
-------------------	----------------	---------------	--------------

č. db.	x	у	$\pmb{\alpha}_{s(l)}$	$\boldsymbol{\varphi}_{s(l)}$	typ	poznámka	č. db.	x	у	$\pmb{\alpha}_{s(l)}$	$\boldsymbol{\varphi}_{s(l)}$	typ	poznámka
12ab6	591578	1158329	180	15	vrst		13bc1	591417	1158267	156	37	vrst	
12ab6	591578	1158329	108	44	vrst		13bc2	591402	1158275	136	65	vrst	
12ab6	591578	1158329	182	15	osa vr		13bc2	591402	1158275	18	23	vrst	
12ab6	591578	1158329	136	48	vrst ryh		13bc2	591402	1158275	55	19	osa vr	
12aD/ 12ab7	591570	1158528	108	44 25	vrst		13DC3 12bo2	501399	1158275	1/1	89 67	vrst	
12a07 12ab7	591570	1158328	171	33 24	osa vr		13bc3	591399	1158275	83	67	osa vr	
12ab8	591557	1158321	209	43	vrst		13bc4	591387	1158290	73	54	vrst	
12ab8	591557	1158321	98	47	vrst		13bc4	591387	1158290	240	48	vrst	
12ab8	591557	1158321	156	29	osa vr		13bc4	591387	1158290	157	8	osa vr	
12ab9	591550	1158316	163	35	vrst		13bc5	591385	1158302	219	51	vrst	
12ab9	591550	1158316	102	50	vrst		13bc5	591385	1158302	42	60	vrst	
12ab9	591550	1158316	156	35	osa vr		13bc5	591385	1158302	131	2	osa vr	
12ab10	501544	1158318	102	50 20	vrst		13000	591390	1158309	41	60 10	vrst	
12ab10	591544 501544	1158318	208	39 30	VISU		13000 13bc6	591390	1158309	251	19 8	VISU	
12ab10 12ab11	591527	1158314	171	37	vrst		13bc7	591400	1158344	167	54	vrst	
12ab12	591493	1158314	168	31	vrst		13bc7	591400	1158344	64	28	vrst	
12ab12	591493	1158314	106	70	vrst		13bc7	591400	1158344	96	24	osa vr	
12ab12	591493	1158314	184	30	osa vr		13bc8	591421	1158371	337	73	vrst	
12cd1	591452	1158372	302	53	zlom		13bc8	591421	1158371	101	47	vrst	
12cd1	591452	1158372	288	52	striace	Po	13bc8	591421	1158371	54	36	osa vr	
12cd1	591452	1158372	244	44	striace	?	13bc9	591424	1158377	101	47	vrst	
12cd1	591452	11583/2	14	20	striace	Pr	13bc9 12bc0	591424	1158377	116	71	vrst	
12cd2	501457	1158375	209	00 18	vrst		13bc10	501424	1158387	54 05	25 71	USa VI	
12cd2	591457	1158375	324 18	10	visi		130010 13cd1	591429	1158428	202	34	vist	
12cd3	591459	1158379	158	37	vrst		13cd1	591434	1158428	188	48	vrst	
12cd4	591465	1158392	184	42	vrst		13cd1	591434	1158428	258	21	osa vr	
12cd4	591465	1158392	322	31	vrst		13cd2	591429	1158438	188	48	vrst	
12cd4	591465	1158392	257	14	osa vr		13cd2	591429	1158438	232	37	vrst	
12cd5	591466	1158394	322	31	vrst		13cd2	591429	1158438	235	37	osa vr	
12cd5	591466	1158394	201	39	vrst		13cd3	591425	1158447	230	10	vrst	
12cd5	591466	1158394	266	19	osa vr		13cd3	591425	1158447	160	71	vrst	
12cd0	501478	1158417	138	18	vrst		13cd3	591425 501461	1158447	247	10	osa vr	
12cd7	501/181	1158422	221	3/	vist		13cd4	501/61	1158474	21	07 28	vist	
12cd7	591481	1158422	267	25	osa vr		13cd4	591461	1158474	292	17	osa vr	
12cd8	591487	1158431	221	34	vrst		13cd5	591464	1158476	245	32	zlom	
12cd8	591487	1158431	102	17	vrst		13cd5	591464	1158476	178	17	striace	Pr
12cd8	591487	1158431	149	12	osa vr		13cd6	591471	1158478	223	62	vrst	
12cd9	591489	1158436	102	17	vrst		13cd6	591471	1158478	257	30	vrst	
12cd9	591489	1158436	199	36	vrst		13cd6	591471	1158478	300	23	osa vr	
12cd9	591489	1158436	131	15	osa vr		14ab1	591526	1158257	84	88	vrst	
12cd10	591491	1158440	338	/0	ziom	D.	14ab1 14ab1	591526 501526	1158257	114	50 20	vrst	
12cd11	591491 501707	1158440	231	10 37	vret	PI	14a01 1/ab1	591520	1158257	175 58	52 56	vrst ryh	
12cd11	591494	1158444	30	80	vrst		14ab1	591526	1158257	188	27	vrst rvh	
12cd11	591494	1158444	303	14	osa vr		14ab3	591522	1158256	134	44	vrst	
12cd12	591501	1158458	256	27	vrst		14ab3	591522	1158256	280	44	vrst	
12cd12	591501	1158458	223	72	vrst		14ab3	591522	1158256	207	16	osa vr	
12cd12	591501	1158458	307	18	osa vr		14ab4	591509	1158248	186	21	vrst	
12cd13	591498	1158451	228	67	vrst		14ab4	591509	1158248	87	88	vrst	
12cd13	591498	1158451	210	22	vrst		14ab4 14ab5	591509 501401	1158248	1/0	21	osa vr	
12cu15 12de1	591498	1158468	142	0 27	USA VI		14a05 14ab5	591491	1158234	273	63	vist	
12de1 12de2	591551	1158484	166	39	vrst		14ab5	591491	1158234	343	8	osa vr	
12de2	591551	1158484	103	36	vrst		14ab6	591485	1158234	274	19	vrst	
12de2	591551	1158484	129	33	osa vr		14ab6	591485	1158234	250	72	vrst	
12de3	591586	1158529	188	27	vrst		14ab6	591485	1158234	337	9	osa vr	
12de3	591586	1158529	104	81	vrst		14ab7	591467	1158230	152	41	vrst	
12de3	591586	1158529	174	39	vrst		14ab7	591467	1158230	180	36	vrst	
12de3	501586	1158529	189	27	osa vr		14ab/	591467	1158230	186	36	osa vr	
12de/	591560	1158544	168	25 25	USa VI		14a00 1/ab8	501/61	1158231	148	30 42	vist	
12de4	591614	1158544	234	29	vrst		14ab8	591461	1158231	184	36	osa vr	
12de4	591614	1158544	193	23	osa vr		14ab9	591437	1158232	327	26	vrst	
12de5	591631	1158550	123	25	vrst		14bc1	591367	1158229	113	19	vrst	
12de5	591631	1158550	96	66	vrst		14bc2	591352	1158244	150	24	vrst	
12de5	591631	1158550	135	21	vrst		14bc3	591318	1158311	148	29	vrst	
12de5	591631	1158550	179	15	osa vr		14bc3	591318	1158311	160	45	vrst	
12de/	501655	1158559	94 70	34 0	vrst		14bc3	501221	1158311	84 01	14	osa vr	
12de0	5910/1	1158570	14 166	o 18	vist		14cd2	5913/1	1158357	21 287	23 23	vist	
12de10	591711	1158575	328	61	zlom		14cd3	591355	1158365	119	47	vrst	
12de10	591711	1158575	241	3	striace	S	14cd4	591400	1158415	152	44	vrst	
11de11	591715	1158577	146	53	vrst		14cd5	591385	1158440	346	26	vrst	
11de11	591715	1158577	158	30	vrst		14cd6	591388	1158452	328	3	násun	
11de11	591715	1158577	227	12	osa vr		14de1	591400	1158465	28	62	vrst	
11de12	591732	1158577	142	27	vrst		14de1	591400	1158465	161	38	vrst	
13ab1	591455	1158271	188	29	vrst		14de1	591400	1158465	105	23	osa vr	

	Příloha 1: Seznam	dokumentačních	bodů – data	z Lesního	lom
--	-------------------	----------------	-------------	-----------	-----

Příloha 1: Seznam dokumentačních bodů – data z Lesního lomu										
č. db.	x	у	$\pmb{\alpha}_{s(l)}$	$\boldsymbol{\varphi}_{s(l)}$	typ	poznámka				
14de2	591417	1158483	222	48	vrst					
14de2	591417	1158483	30	63	vrst					
14de2	591417	1158483	304	8	osa vr					
14de3	591420	1158487	204	48	vrst					
14de3	591420	1158487	40	76	vrst					
14de3	591420	1158487	127	14	osa vr					
14de4	591414	1158479	8	18	vrst					
14de4	591414	1158479	206	58	vrst					
14de4	591414	1158479	293	5	osa vr					
14de5	591422	1158492	198	35	vrst					
14de5	591422	1158492	199	73	vrst					
14de5	591422	1158492	109	1	osa vr					
14de6	591426	1158502	340	70	vrst					
14de6	591426	1158502	272	45	vrst ryh					
14de6	591426	1158502	14	9	vrst					
14de6	591426	1158502	68	5	osa vr					
14de7	591430	1158506	165	56	vrst					
14de7	591430	1158506	170	18	vrst					
14de7	591430	1158506	254	2	osa vr					
14de8	591430	1158513	178	72	zlom					
14de9	591439	1158520	150	65	vrst					
14de9	591439	1158520	144	18	vrst					
14de9	591439	1158520	61	2	osa vr					
14de10	591444	1158522	255	59	vrst					
14de10	591444	1158522	311	13	vrst					
14de10	591444	1158522	338	12	osa vr					
14de11	591465	1158529	259	39	vrst					
14de12	591473	1158532	200	21	vrst					
14de15	591492	1158541	160	22	vrst					
14de13	591532	1158569	86	44	vrst					
14de13	591532	1158569	208	12	vrst					
14de13	591532	1158569	167	9	osa vr					
14de14	591537	1158569	208	12	vrst					
14de14	591537	1158569	112	23	vrst					
14de14	591537	1158569	177	10	osa vr					
14de16	591580	1158588	223	16	vrst					
14de17	591645	1158604	50	87	vrst					
14de17	591645	1158604	182	54	vrst					
14de17	591645	1158604	137	44	osa vr					
14de18	591650	1158606	141	39	vrst					
14de18	591650	1158606	216	24	vrst					
14de18	591650	1158606	199	23	osa vr					
15ab1	591480	1158182	143	29	vrst					
15ab2	591472	1158185	191	71	zlom					
15ab2	591472	1158185	106	21	striace	?				
15ab3	591432	1158185	149	24	vrst					
15ab4	591404	1158182	242	65	vrst					
15ab4	591404	1158182	1/8	25	vrst					
15ab4	591404	1158182	164	24	osa vr					
15ab5	591382	1158179	222	26	odlepeni	I				
15ab6	591323	1158193	178	38	vrst					
15bc1	591287	1158255	84	19	vrst					
15bc2	591285	1158267	131	16	zlom	2				
15bc2	591285	1158267	131	16	striace	?				
15bc2	591285	1158267	311	74	striace	. ?				
15bc3	591283	1158268	129	31	odlepeni	l				
15003	591283	1158268	129	31	vrst					
15bc4	591276	1158283	163	10	vrst					
15005	591273	1158283	182	38 52	vrst					
15006	591270	1158306	100	53	vrst					
15000	591270	1158306	1/6	52	vrst					
15000	591270	1158306	24/	11	osa vr					
15bc/	591270	1158326	192	20	vrst					
150C/	501270	1158320	211	30 20	vist					
15007	391270	1136320	200	20	USa VI					

Příloha 1: Seznam dokument	ačních bodů –	data poskytnutá ČGS
----------------------------	---------------	---------------------

ă dh	r	v	<i>N</i>	<i>(</i>)	tun	ă dh	r	v	0	<i>(</i>)	tun
<i>c. ab.</i>	J.	<i>y</i>		$\Psi_{s(l)}$	typ	<i>c. av.</i>	J	y 11502(0	U _{s(l)}	$\Psi_{s(l)}$	iyp
301	591993	1158843	98	34	vrst	340	591482	1158260	190	38	vrst
302	591940	1158/14	65	22	vrst	340	591482	1158260	123	48	vrst
303	592025	1158644	160	43	vrst	340	591482	1158260	135	25	vrst
304	592413	1158438	270	48	vrst	341	591308	1158327	175	25	vrst
304	592413	1158438	/8	80	vrst	341	591308	1158327	190	50	vrst
304	592413	1158438	350	11	osa vr	341	591308	1158327	109	11	osa vr
306	593041	1158503	285	80	vrst	342	591210	11584/1	115	34	vrst
300	593041	1158505	294	38 80	VISL	343 242	501256	1150514	125	20	vrst
206	502041	1158503	245	00	vist	242	501256	1150514	530	15	
206	502041	1150505	270	90 40	vist	243	500117	1150514	34 150	/	Osa VI
206	502041	1158503	200	40		344	500117	1150711	170	20	vist
200	502174	1150000	20	21	Uset	244	500117	1150711	170	20	vist
310	502367	1150077	30 70	23 45	vrst	344	590117	1158711	86	35	vist
311	5922507	1150176	212	85	vret	3//	590117	1158711	68	11	vrst
312	592530	1158986	68	80	vrst	346	580060	1158674	96	30	vrst
313	592771	1158507	90	10	vrst	347	589844	1158714	80	22	vrst
314	592864	1158498	135	45	vrst	349	589935	1158560	100	50	vrst
315	592639	1158232	210	20	vrst	355	589712	1158819	60	20	vrst
316	593049	1157905	125	35	vrst	357	589554	1158606	16	25	vrst
318	592826	1157669	110	30	vrst	359	589619	1158609	0	15	vrst
319	592627	1157611	170	25	vrst	361	589732	1158692	70	30	vrst
319	592627	1157611	150	30	vrst	363	589847	1158447	40	13	vrst
319	592627	1157611	191	24	osa vr	363	589847	1158447	320	20	vrst
321	592419	1158177	265	10	vrst	363	589847	1158447	15	12	osa vr
322	590725	1158449	165	27	vrst	364	589942	1158249	88	35	vrst
323	590785	1158498	300	25	vrst	364	589942	1158249	290	25	vrst
324	592904	1158678	50	35	vrst	364	589942	1158249	7	6	osa vr
324	592903	1158688	300	18	vrst	364	589942	1158249	295	68	vrst
324	592901	1158698	38	60	vrst	364	589942	1158249	276	20	vrst
324	592897	1158709	90	60	vrst	364	589942	1158249	208	8	osa vr
324	592894	1158719	90	90	vrst	365	589952	1158178	60	67	vrst
324	592890	1158729	105	35	vrst	365	589952	1158178	274	55	vrst
324	592886	1158740	125	15	vrst	365	589952	1158178	124	45	vrst
324	592882	1158750	82	75	vrst	365	589952	1158178	324	56	vrst
324	592878	1158760	70	28	vrst	365	589952	1158178	343	27	osa vr
324	592880	1158755	150	20	vrst	365	589952	1158178	196	8	osa vr
324	592909	1158648	341	14	osa vr	365	589952	1158178	45	5	osa vr
324	592897	1158679	64	57	osa vr	366	590004	1158170	70	90	vrst
324	592885	1158710	180	10	osa vr	367	590392	1158047	235	50	vrst
324	592873	1158741	169	11	osa vr	368	590488	1158013	190	25	vrst
324	592880	1158755	123	18	osa vr	368	590488	1158013	240	20	vrst
325	593070	1158542	255	34	kliváž	368	590488	1158013	230	20	osa vr
325	593070	1158542	70	33	vrst	369	590631	1157981	116	50	vrst
327	593189	1158461	94	80	vrst	369	590631	1157981	180	48	vrst
327	593189	1158461	85 5	30	vrst	369	590631	115/981	151	44	osa vr
327	593189	1158401	5 120	0	osa vr	3/1	590690	11582/1	104	/0	vrst
225	500207	1150200	212	54 10	vist	272	500542	1150002	123	13	vist
227	501275	1150150	100	10	vist	271	500624	1157010	150	20	vist
337	501375	1158158	250	40 80	vist	374	500666	1157910	133	30 27	vist
337	501375	1158158	168	38		376	500468	1157734	100	40	vist
338	591575	1158//0	170	30	vret	370	58007/	1157877	70	50	vist
338	501601	1158//0	322	85	vret	370	580037	1157772	220	20	vrst
338	591601	1158449	79	2		379	589937	1157722	240	5	vrst
339	591643	1158572	180	25	vrst	379	589937	1157722	304	2	osa vr
339	591630	1158568	128	60	vrst	380	589779	1157688	20	25	vrst
339	591622	1158564	210	30	vrst	381	590484	1157702	310	55	vrst
339	591612	1158560	220	20	vrst	382	590621	1157696	120	25	vrst
339	591601	1158556	240	25	vrst	383	590579	1157606	120	13	vrst
339	591591	1158552	180	20	vrst	385	590214	1158612	150	35	vrst
339	591581	1158548	236	18	vrst	387	589982	1158752	110	40	vrst
339	591570	1158545	150	20	vrst	388	589913	1158814	190	18	vrst
339	591560	1158541	68	20	vrst	389	589826	1158885	90	15	vrst
339	591550	1158537	163	25	vrst	390	589858	1158287	70	30	vrst
339	591539	1158533	187	18	vrst	391	589832	1158095	140	27	vrst
339	591529	1158529	200	65	vrst	391	589832	1158095	270	40	vrst
339	591516	1158525	186	30	vrst	391	589832	1158095	198	15	osa vr
339	591503	1158519	162	42	vrst	392	589811	1158060	270	10	vrst
339	591490	1158513	270	78	vrst	392	589794	1158042	200	12	vrst
339	591477	1158507	145	50	vrst	392	589778	1158024	110	32	vrst
339	591464	1158500	185	38	vrst	392	589761	1158006	82	28	vrst
339	591451	1158494	175	54	vrst	392	589744	1157987	138	12	vrst
339	591438	1158488	74	75	vrst	392	589727	1157969	113	28	vrst
339	591425	1158482	160	25	vrst	392	589711	1157951	140	15	vrst
339	591410	1158461	160	18	vrst	392	589694	1157933	130	30	vrst
339	591643	1158572	204	23	osa vr	392	589677	1157914	160	20	vrst
339	591550	1158537	115	11	osa vr	392	589660	1157896	108	15	vrst
239 240	591425 501482	1158482	188	34 24	USA VI	392 202	580629	1157878	140	13	VISL
340 340	501482	1158260	150	34 20	vist	392 302	J09028 580547	1157002	100	23 20	VISU
340	371482	1136200	100	20	vist	373	509541	113/902	100	20	VISU

Příloha 1: Seznam dokumentačních bodů – data poskytnutá Č	ĠS
---	----

č. db.	x	у	$\pmb{\alpha}_{s(l)}$	$\boldsymbol{\varphi}_{\mathrm{s}(l)}$	typ	č. db.	x	у	$\pmb{\alpha}_{s(l)}$	$\boldsymbol{\varphi}_{s(l)}$	typ
394	589473	1157882	230	25	vrst	479	589401	1157541	55	20	vrst
394	589473	1157882	26	10	vrst	479	589401	1157541	170	22	vrst
395	589440	1157930	110	20	vrst	479	589401	1157541	155	24	vrst
206	580522	1157064	120	10	vist	470	580401	1157541	165	24	V130
390	509555	115/904	130	10	VISt	4/9	597204	1157541	105	24	Osa vi
397	589/55	1158269	330	10	vrst	481	587294	1158509	230	20	vrst
400	589682	1159113	210	27	vrst	481	587294	1158509	315	35	vrst
401	589676	1159225	130	6	vrst	481	587294	1158509	253	18	osa vr
405	588905	1158429	286	80	vrst	482	587215	1158366	270	30	vrst
405	588905	1158429	40	50	vrst	483	587162	1158261	210	30	vrst
405	588905	1158429	6	45	osa vr	484	587196	1158221	175	28	vrst
407	588879	1158521	65	20	vrst	488	587160	1158184	170	50	vrst
409	580110	1158380	10	12	vret	188	587160	1158184	200	60	vret
409	580110	1150300	210	12	vist	400	597100	1150104	150	49	VISU
409	589119	1158380	210	33	vrst	488	58/160	1158184	150	48	osa vr
409	589119	1158380	295	3	osa vr	489	586882	1158598	325	27	vrst
411	589302	1158039	245	30	vrst	489	586882	1158598	175	50	vrst
412	589406	1157892	260	20	vrst	489	586882	1158598	256	10	osa vr
413	589356	1157882	170	10	vrst	490	586815	1158619	255	20	vrst
413	589356	1157882	140	30	vrst	497	586356	1158836	200	38	vrst
413	589356	1157882	218	7	osa vr	499	587578	1159294	355	80	vrst
414	589306	1157862	210	80	vrst	801	586505	1156882	90	46	vrst
415	580208	1157822	100	20	vist	815	596954	1157842	275	15	vrot
415	589298	1157825	100	30	vist	813	500034	1157642	273	13	vist
416	589299	115//88	110	10	vrst	819	58/015	115/609	103	20	vrst
417	589630	1157812	250	18	vrst	820	586899	1158061	70	23	vrst
421	589930	1159506	120	85	vrst	821	586412	1157799	204	75	vrst
423	590126	1159355	210	20	vrst	821	586412	1157799	115	60	vrst
426	590037	1157205	183	30	vrst	821	586412	1157799	139	58	osa vr
428	590187	1157036	100	30	vrst	822	586339	1157881	132	44	vrst
420	500134	1157081	110	33	vret	822	586330	1157881	150	52	vret
429	590552	1156012	122	20	vist	822	596221	1157831	256	19	vist
430	389333	1150812	122	30	vist	822	580551	1157879	230	40	vist
430	589553	1156812	160	45	vrst	822	586331	115/8/9	132	45	vrst
430	589553	1156812	170	73	vrst	822	586326	1157877	206	75	vrst
430	589553	1156812	84	14	osa vr	822	586326	1157877	113	55	vrst
432	589745	1157525	140	35	vrst	822	586321	1157875	126	40	vrst
433	589445	1156975	110	20	vrst	822	586321	1157875	126	50	vrst
434	589375	1156947	123	37	vrst	822	586318	1157873	120	60	vrst
135	580087	1158107	175	20	vret	822	586318	1157873	240	80	vret
425	500007	1150107	175	20	vist	822	596215	1157075	104	60	vist
435	589987	1158107	120	30	vrst	822	586515	1157870	194	60	vrst
435	589987	1158107	25	80	vrst	822	586315	115/8/0	126	50	vrst
435	589987	1158107	238	30	vrst	822	586312	1157868	102	46	vrst
435	589987	1158107	244	75	vrst	822	586312	1157868	70	80	vrst
435	589987	1158107	140	10	vrst	822	586339	1157881	100	39	osa vr
435	589987	1158107	250	70	vrst	822	586331	1157879	192	26	osa vr
435	589987	1158107	109	30	osa vr	822	586326	1157877	137	53	osa vr
435	589987	1158107	155	4	osa vr	822	586321	1157875	163	52	osa vr
425	580087	1158107	162	0		822	586215	1157075	145	19	050 VT
433	500052	1150107	103	9	USA VI	822	59(212	1157075	143	40	Osa vi
438	389933	1157285	150	33	vrst	822	380313	115/8/1	155	33	osa vr
440	589687	1157588	140	30	vrst	823	586279	1157909	195	70	vrst
440	589687	1157588	270	30	vrst	823	586279	1157909	110	52	vrst
440	589687	1157588	205	14	osa vr	823	586279	1157909	131	50	osa vr
441	589553	1157588	195	45	vrst	823	586276	1157907	216	52	vrst
441	589553	1157588	270	20	vrst	823	586276	1157907	200	46	vrst
441	580553	1157588	264	20	osa vr	823	586274	1157904	108	60	vret
442	580505	1157540	155	34	vret	823	586274	1157004	00	75	vret
442	500507	1157540	155	J 4	vist	823	59(274	1157904	220	75	vist
443	589527	115/655	305	45	vrst	823	586271	1157902	230	70	vrst
447	589899	1158064	230	15	vrst	823	5862/1	115/902	150	54	vrst
450	589448	1157484	180	45	vrst	823	586268	1157900	204	63	vrst
453	589453	1157385	35	40	vrst	823	586268	1157900	106	50	vrst
454	589568	1157368	205	49	vrst	823	586276	1157907	168	41	osa vr
455	589332	1157394	115	45	vrst	823	586274	1157904	163	47	osa vr
456	589440	1157281	82	55	vrst	823	586271	1157902	151	27	osa vr
460	589200	1157342	90	35	vret	824	586174	1157070	9/	53	vret
462	580272	1157646	80	25	vist	824	586174	1157070	100	30	vist
403	500273	1157640	0 0	23	vist	024	505079	1157979	100	30	vist
464	589237	115/590	28	23	vrst	827	585978	115/862	250	80	vrst
464	589237	1157590	100	8	vrst	828	585994	1157793	210	40	vrst
464	589237	1157590	99	8	osa vr	828	585994	1157793	110	50	vrst
467	587814	1159460	140	32	vrst	828	585994	1157793	168	32	osa vr
468	587919	1159415	22	55	vrst	829	585990	1157701	102	50	vrst
471	588240	1159296	245	65	vrst	832	585828	1157996	180	20	osa vr
471	588240	1159296	30	35	vrst	833	585013	1158057	255	55	vret
/71	588240	1150206	307	17	Oca Vr	833	585012	1158057	125	63	vret
470	500104	1150205	347 219	1/	Usa VI	000	505010	1150057	123	25	v15t
4/2	388196	1159325	218	80	vrst	833	383913	1158057	194	33	osa vr
473	588237	1159368	250	43	vrst	834	585949	1158138	230	56	vrst
473	588237	1159368	235	80	vrst	835	586002	1158250	250	33	vrst
473	588237	1159368	322	16	osa vr	835	586002	1158250	98	44	vrst
475	588440	1159079	238	65	vrst	835	586002	1158250	162	45	vrst
475	588440	1159079	220	24	vrst	835	586002	1158250	200	33	vrst
475	588///0	1150070	153	10	Osa vr	835	586002	1158250	177	11	089 10
479	500440	1157100	100	22	vent	035	586002	1150250	212	22	000 11
+/0	500401	1157541	123	33 (0	v15t	033	500002	1150230	21J 50	92 90	USa VI
4/9	589401	115/541	90	60	vrst	836	586131	1158217	50	80	vrst
479	589401	1157541	150	25	vrst	837	586044	1158323	180	40	vrst
479	589401	1157541	140	13	vrst	838	586339	1158313	146	30	vrst

Příloha 1	: Seznam	dokumenta	čních	bodů –	data	poskytnutá	ČGS
-----------	----------	-----------	-------	--------	------	------------	-----

č. db.	x	v	a	O ₂ (1)	tvn	č. db.	x	v	A	0 .0	tvn
840	586467	1158425	310	$\frac{\varphi_{S(l)}}{10}$	vrst	883	589023	1159365	<u>93</u>	Y s(<i>t</i>)	osa vr
840	586467	1158425	230	80	vrst	887	501184	1159505	160	18	USa VI
840	586467	1158425	318	10		888	501722	1158664	18	30	vist
841	586528	1158330	210 20	70	Usa vi	880	501611	1158652	142	35	vist
842	586361	115813/	40	70	vrst	880	501611	1158652	142	35 40	vist
842	586361	1158134	175	60	vist	880	501611	1158652	121	33	
042 842	586361	1158134	113	30		801	500070	1150052	60	55 60	USa VI
842	586361	1158134	115	54	Usa vi	802	500106	1160653	85	35	vist
842	586361	1158134	113	50	vrst	892	590190	1160470	80	50	vist
842	586361	1158134	144	50		000	500003	1160405	210	70	vist
042	596606	1150154	145	50 95	Usa VI	900	500095	1160495	210	10	vist
045 944	586680	1158041	100	65 65	vist	900	500095	1160495	200	45	VISU
044	59(017	1158122	102	00	vist	900	590095	1100495	120	10	osa vi
845	580917	1158501	255	22	VISL	931	587041	1150594	24	10	Vrst
040	501515	1158501	55 015	50 70	vist	940	507495	1159584	208	27	vist
840	58/3/3	1158501	215	70	vrst	940	58/495	1159584	540 50	23	vrst
040	507200	1158501	125	22	osa vi	942	507410	1159202	30	30	vist
047 850	507700	1158140	100	20	vist	940	507440	1150457	80 175	20	vist
830 854	500017	1157200	190	40	VISU	934	507721	1150172	200	10	VISU
854	505725	115/390	/5	20	vrst	930	5877920	1158105	200	28	vrst
859	585/35	1156466	308	24	vrst	901	500170	1158507	72	20	vrst
859	383/33 585725	1156466	33 242	50 20	vrst	905	505(00	11584/9	94	23	vrst
859	585755	1150400	343	20	osa vr	9//	505461	1160208	160	25	vrst
860	585707	1157078	146	40	vrst	981	585461	1161286	140	25	vrst
861	585795	1157845	96	20	vrst	988	584604	1160550	58	35	vrst
802	585797	1157738	145	20	vrst	989	584/0/	1160964	03	50	vrst
862	585797	1157738	90	45	vrst	994	584338	1160276	80	53	vrst
862	585/9/	1157/38	159	19	osa vr	995	588162	1159485	80	35	vrst
863	585853	1157603	220	30	vrst	1014	585439	1160392	134	30	vrst
863	585853	1157603	218	45	vrst	1015	585392	1160790	120	20	vrst
863	585853	1157603	305	3	osa vr	1023	589700	1159392	115	15	vrst
863	585853	1157603	146	33	vrst	1026	589645	1160091	252	72	vrst
863	585853	1157603	100	50	vrst	1028	589727	1160190	250	60	vrst
863	585853	1157603	105	60	vrst	1029	589791	1160256	242	68	vrst
863	585853	1157603	88	63	vrst	1029	589791	1160256	285	40	vrst
863	585853	1157603	98	50	vrst	1029	589791	1160256	215	36	osa vr
863	585853	1157603	99	57	vrst	1030	589860	1160281	75	38	vrst
863	585853	1157603	90	60	vrst	1031	589830	1160207	286	63	vrst
863	585853	1157603	95	40	vrst	1032	589556	1160075	240	18	vrst
863	585853	1157603	158	32	osa vr	1033	589160	1159694	335	15	vrst
864	585773	1157944	215	55	vrst	1036	589129	1159735	300	8	vrst
865	586963	1158587	194	45	vrst	1037	589305	1159854	344	12	vrst
866	587027	1158524	270	70	vrst	1040	590273	1159910	146	35	vrst
867	587113	1158537	218	30	vrst	1040	590273	1159910	146	55	vrst
868	593204	1158489	90	37	vrst	1040	590273	1159910	305	28	vrst
868	593204	1158489	120	55	vrst	1040	590273	1159910	227	6	osa vr
868	593204	1158489	56	32	osa vr	1041	590313	1159679	230	52	vrst
869	593146	1158535	65	37	vrst	1041	590313	1159679	126	10	vrst
869	593146	1158535	82	88	vrst	1041	590313	1159679	147	9	osa vr
869	593146	1158535	24	30	vrst	1042	590157	1159613	240	45	vrst
869	593146	1158535	75	65	vrst	1044	589913	1159682	250	70	vrst
869	593146	1158535	67	38	vrst	1051	589863	1160361	46	70	vrst
869	593146	1158535	353	26	osa vr	1051	589863	1160361	75	40	vrst
869	593146	1158535	359	28	osa vr	1051	589863	1160361	125	29	osa vr
870	593096	1158602	65	60	vrst	1052	589890	1160455	25	90	vrst
871	593338	1158483	126	35	vrst	1053	589930	1160508	50	70	vrst
871	593338	1158483	305	20	vrst	1053	589930	1160508	248	48	vrst
871	593338	1158483	300	36	kliváž	1053	589930	1160508	25	62	vrst
871	593338	1158483	216	0	osa vr	1053	589930	1160508	242	70	vrst
872	593232	1158548	236	37	vrst	1053	589930	1160508	325	14	osa vr
872	593232	1158548	53	30	vrst	1053	589930	1160508	317	35	osa vr
872	593232	1158548	80	40	vrst	1054	590006	1160600	18	67	vrst
872	593232	1158548	355	18	vrst	1055	590053	1160690	165	25	vrst
872	593232	1158548	351	1	osa vr	1055	590053	1160690	288	12	vrst
872	593232	1158548	12	17	osa vr	1055	590053	1160690	238	8	osa vr
873	593168	1158582	110	75	vrst	1056	589938	1160637	100	40	vrst
873	593168	1158582	35	78	vrst	1057	589880	1160630	12	22	vrst
873	593168	1158582	40	25	vrst	1057	589880	1160630	111	12	vrst
873	593168	1158582	255	30	vrst	1057	589880	1160630	76	10	osa vr
873	593168	1158582	81	73	osa vr	1061	590027	1161459	292	38	vrst
873	593168	1158582	329	9	osa vr	1061	590027	1161459	98	76	vrst
875	593028	1158919	180	25	vrst	1061	590014	1161477	45	38	vrst
876	592961	1158871	20	30	vrst	1061	590014	1161477	96	68	vrst
877	592918	1158791	247	30	vrst	1061	590027	1161459	10	9	osa vr
878	593111	1158707	142	45	vrst	1061	590014	1161477	23	36	osa vr
878	593111	1158707	150	70	vrst	1061	589990	1161515	50	30	vrst
878	593111	1158707	65	12	osa vr	1061	589990	1161515	104	53	vrst
879	593181	1158810	245	60	vrst	1061	590017	1161512	39	30	osa vr
880	593147	1158918	150	20	vrst	1062	589992	1161303	328	25	vrst
882	588054	1159546	110	20	vrst	1062	589992	1161303	96	10	vrst
883	589023	1159365	175	10	vrst	1062	589992	1161303	44	6	osa vr
883	589023	1159365	10	12	vrst	1063	590023	1160865	30	15	vrst
	-						-				

Příloha 1: Seznam dokumentačních bodů – data poskytnutá ČGS											
č. db.	x	у	$\pmb{\alpha}_{\!\!\!s(l)}$	$\varphi_{s(l)}$	typ						
1063	590020	1160862	134	42	vrst						
1063	590017	1160860	30	20	vrst						
1063	590015	1160858	166	20	vrst						
1063	590012	1160856	216	17	vrst						
1063	590021	1160852	59	13	osa vr						
1073	587397	1161529	100	17	vrst						
1151	590340	1160075	150	15	vrst						
1157	590551	1159753	170	20	vrst						
1161	590420	1159631	230	73	vrst						
1165	590175	1160944	80	40	vrst						
1166	590103	1161245	290	13	vrst						
1167	590137	1161219	95	45	vrst						
1170	589984	1161525	80	38	vrst						
1171	593452	1158382	96	40	vrst						
1171	593452	1158382	315	12	kliváž						
1172	593464	1158530	120	20	vrst						
1173	593538	1158421	280	60	vrst						
1174	593432	1158330	110	40	vrst						
1174	593432	1158330	260	63	kliváž						
1176	590410	1160055	320	22	vrst						
1178	587713	1159547	190	45	vrst						
1178	587713	1159547	220	18	vrst						
1178	587713	1159547	267	12	osa vr						
1179	587592	1159656	16	15	vrst						
1180	587542	1159726	50	63	vrst						
1180	587542	1159726	240	45	vrst						
1180	587542	1159726	55	23	vrst						
1180	587542	1159726	323	7	osa vr						
1180	587542	1159726	329	1	osa vr						
1181	587523	1159765	150	50	vrst						
1183	586113	1158965	130	50	vrst						
DV1	590903	1156288	10	30	vrst						
DV2	590626	1156226	165	20	vrst						
DV3	590541	1156175	160	30	vrst						
DV4	590407	1156394	250	10	vrst						
DV5	590208	1156272	200	1	vrst						
DV6	590648	1156450	70	20	vrst						
DV7	590309	1156693	190	5	vrst						
DV8	589666	1156580	210	23	vrst						
DV9	589429	1156666	180	45	vrst						

Příloha 2: Seznam stratigrafických vzorků

č. db.	x	у	stáří
SV1	586299	1158207	famen
SV2	586271	1158077	svrchní famen
SV3	586128	1158257	svrchní famen
SV4	586339	1158041	spodní tournai
SV5	586317	1158004	spodní tournai
SV6	586126	1157983	spodní tournai
SV7	586145	1158086	střední famen
SV8	586184	1158199	střední famen
SV9	586183	1158203	střední famen
SV10	586177	1158248	negativní
SV11	586128	1158260	svrchní famen
SV12	586442	1158157	negativní
SV13	586422	1158130	negativní
SV14	586315	1157999	tournai
SV15	586310	1157981	negativní
SV16	586468	1158187	famen
SV17	586454	1158243	svrchní famen
SV18	586424	1158258	svrchní famen
SV19	586317	1158332	svrchní famen
SV20	586295	1158234	svrchní famen
SV21	586361	1158157	negativní
SV22	586332	1158119	neprůkazné
SV23	586323	1158110	neprůkazné
SV24	586308	1158094	spodní tournai
SV25	586280	1158087	svrchní famen
SV26	586279	1158077	neprůkazné
SV27	586257	1158055	negativní
SV28	586254	1158052	svrchní famen
SV29	586400	1158107	svrchní famen
SV30	586447	1158247	famen
SV31	586359	1158067	svrchní famen
SV32	586247	1157989	svrchní famen
SV33	586418	1158126	svrchní famen
SV34	586026	1158003	svrchní tournai-spodní visé
SV35	-	-	-
SV36	586058	1157849	svrchní tournai
SV37	586087	1157820	negativní
SV38	586080	1157814	negativní
SV39	586155	1157764	svrchní famen
SV40	-	-	-
SV41	-	-	-
SV42	586268	115/901	negativni
SV43	586286	115/860	negativni
SV44	586293	115/864	negativni
SV45	586281	1157839	negativni
SV40	586287	115/838	tournai
SV4/	-	-	-
5V48	380290	115/828	negativni
SV49	-	-	-
SV 50 SV 51	596411	1157664	svicinii tournai
SV51 SV52	586465	1157651	spadní tournai
SV52 SV52	596514	1157664	spouli touliai
SV54	586502	1157621	neprůkozná
SV55	586/37	1157832	neprůkozné
SV56	586444	1157052	negotivní
SV50 SV57	586449	1157759	spodní tournai
SV58	586494	1157758	negativní
SV59	586490	1157688	neprůkazné
SV60	-	-	-
SV61	-	-	-
SV62	586620	1158385	spodní famen
SV63	-	-	-
SV64	-	-	-
SV65	586548	1158328	svrchní famen
SV66	586511	1158267	neprůkazný
SV67	586501	1158131	negativní
SV68	586480	1158109	spodní tournai
SV69	586457	1158094	neprůkazný
SV70	586393	1158017	střední – svrchní tournai
SV71	586680	1158211	famen
SV72	586680	1158211	famen

vzorek	vzorek OV 1 – data změřená na Fjodorovově stolku						x 586101					y 1158260						
	osa	С		dvojčata e_1					dvojčata e_2						(dvojčata e	23	
и	h	e/p	velikost zrna [mm]	ц	h	tloušťka [µm]	hustota [ks/mm]	t/s	ц	h	tloušťka [µm]	hustota [ks/mm]	t/s	u	Ч	tloušťka [µm]	hustota [ks/mm]	t/s
311	-11	e	2.3	292	-19	2	47	t	302	22	0.6	14	t					
85	22	e	1.6	288	-21	0.3	14	t										
359	-15	e	0.42	32	-17.5	1.3	10	t	341	-35	0.8	16	t					
34	2	e	0.25	29	-24	0.8	14	t	63	12.5	0.6	21	t					
9	-10	e	1.6	27	-32	0.5	24	t	349	-1	1.2	15	t					
55	11	e	0.45	80	32	0.9	28	t	64	-13	0.5	16	t					
9	-15	e	1.8	27	-41	3	60	t										
53	-38.5	e	0.34	24	-50	0.3	24	t	10	24	0.0	-						
42	-31	e	0.28	59	-2	1.5	18	t	18	-24	0.3	1	t					
99 -	-11	e	0.35	101	23	0.4	12	t										
200	-41	e	0.5	337	-42.5	0.4	22	t	220	12	25	15						
298	-12	e	0.42	202	-22	2 1	20 16	ι +	550	-15	2.3	15	ι					
86	2.5 3.4	e	0.30	290 75	30	0.4	10	t	118	40	0.7	26	t					
102	1	e	0.5	79	11	0.4	25	t t	123	15	0.7	36	t t					
77	23	e	1.8	56	20	1.5	8	t	105	22	2.2	6	t					
341	-24	e	0.56	324	0	0.4	8	t	355	-43	0.5	19	t					
20	-32	e	0.32	358	-31	1	7	t	59	-41	1.4	17	t					
65	-25	e	0.56	78	6	0.8	30	t	43	-24.5	1.5	3	t					
29	-3	e	0.42	8	-10	0.9	14	t	60	-15	1.2	16	t					
6	-40	e	0.5	338	-44	0.3	21	t										
48	-20	e	0.42	31	-42.5	0.6	21	t										
83	34	e	0.35	76	14	0.5	28	t	123	40	0.8	21	t					
105	22	e	0.42	138	37.5	0.7	21	t	103	-1	0.4	17	t					
58	-29	e	0.56	43	-42	0.3	42	t										
352	14	e	0.7	20	32	1.1	18	t	345	0	0.4	20	t	320	32	0.7	13	t
39	-36	e	0.84	1	-46	0.5	16	t										
315	36	e	1.8	296	12.5	1.7	13	t										
60	-17	e	0.56	92	2	0.8	32	t										
37	13	e	1.5	70	20	1.2	49	t										
16	-1	e	1.7	54	0	1.1	30	t	26	-35	0.3	11	t					
341	-36	e	2.1	8	-11	0.7	36	t										
26	0	e	2.5	13	-15	0.9	17	t	56	-3	1.3	27	t					
35	-34	e	0.21	20	-23	0.5	10	t	70	-21	0.3	12	t					
346	-8	e	0.65	325	-1	0.8	9	t	357	-38	0.6	8	t					
298	-20	e	0.5	298	0	0.3	12	t										
346	2	e	0.21	330	-13	1	21	t										
333	-29	e	1.5	527	-48	0.5	21	t										
4	20.5	e	0.50	221	41	0.5	10	\$ +	256	24	0.7	16	÷					
149	-11.5	e	0.03	306	1	0.5	14	t	330	-34	0.7	10	ι					
140	20	e	0.21	200	-4	0.0	14	t										
34	20	e	1.8	65	25	1.6	29	t	12	40	04	3	t	28	-8	04	13	t
96	12	e	0.84	117	40	0.7	26	t	12	ru	U. T	2	ı	20	0	U. T	15	·
109	2	e	1.7	90	-9	0.3	8	t	98	43			s					
31	-32	e	0.77	60	-12	0.4	23	t	13	-15	0.3	12	t	35	-54	0.3	6	t
24	-4	e	1.6	26	-46			s	57	-4	1.2	10	t					
10	11	e	0.56	40	7	0.3	19	t	354	0	0.4	24	t					
164	-6	e	0.34	322	17	0.6	53	t										

0.84

1.7

0.77

1.6

0.56

0.34

0.7

0.3

0.4

1.2

0.3

0.6

0.3

0.4

0.3

vzorek (OV 1 – o	ortogonali	izovaná a	lata v ge	ografický	ch souřa	dnicích	x 5861	01				y 1158.	260			
	osa c			(lvojčata e	1			dvojčata e_2 dvojčata e_2								
αr	φL	velikost zrna [mm]	αL	φL	zdvojčatěné [0 ne, 1 ano]	tloušťka [µm]	hustota [ks/mm]	σr	η	zdvojčatěné [0 ne, 1 ano]	tloušťka [µm]	hustota [ks/mm]	αL	φL	zdvojčatěné [0 ne, 1 ano]	tloušťka [μm]	hustota [ks/mm]
136	53	2.3	315	55	1	2	47	261	1	1	0.6	14	11	2	0	0	0
332	79	1.6	142	75	1	0.3	14	283	58	0	0	0	12	56	0	0	0
160	11	0.42	96	58	1	1.3	10	301	46	1	0.8	16	227	5	0	0	0
339	28	0.25	1	12	1	0.8	14	342	55	1	0.6	21	315	15	0	0	0
339	0	1.6	78	10	1	0.5	24	46	68	1	1.2	15	236	49	0	0	0
339	51	0.45	304	72	1	0.9	28	322	28	1	0.5	16	15	42	0	0	0
166	2	1.8	192	0	1	3	60	153	25	0	0	0	332	20	0	0	0
26	18	0.34	202	8	1	0.3	24	3	33	0	0	0	54	24	0	0	0
14	15	0.28	212	40	1	1.5	18	314	19	1	0.3	7	71	47	0	0	0
65	51	0.35	182	82	1	0.4	12	98	16	0	0	0	20	24	0	0	0
188	12	0.5	185	38	1	0.4	2	347	3	0	0	0	212	0	0	0	0
125	65	0.42	296	48	1	2	26	66	12	1	2.5	15	173	8	0	0	0
96	29	0.56	85	54	1	1	16	123	20	0	0	0	77	10	0	0	0
267	77	0.3	347	65	1	0.4	11	162	70	1	0.7	26	258	51	0	0	0
78	66	0.4	3	70	1	0.9	25	70	40	1	0.6	36	137	61	0	0	0
325	75	1.8	326	48	1	1.5	8	52	68	1	2.2	6	240	67	0	0	0
164	29	0.56	50	11	1	0.4	8	12	74	1	0.5	19	288	23	0	0	0
183	1	0.32	138	57	1	1	7	311	48	1	1.4	17	70	5	0	0	0
26	32	0.56	213	22	1	0.8	30	319	34	1	1.5	3	97	47	0	0	0
341	21	0.42	151	55	1	0.9	14	252	38	1	1.2	16	66	27	0	0	0
187	11	0.5	188	37	1	0.3	21	344	2	0	0	0	29	3	0	0	0
9	27	0.2	18	2	1	0.6	21	339	28	0	0	0	32	45	0	0	0
274	75	0.35	13	70	1	0.5	28	196	65	1	0.8	21	282	49	0	0	0
146	80	0.42	178	55	1	0.7	21	299	73	1	0.4	17	87	60	0	0	0
23	31	0.56	23	4	1	1.1	18	353	41	0	0	0	53	40	0	0	0
125	5	0.7	282	9	1	1.1	18	125	31	1	0.4	20	328	9	1	0.7	13
16	9	1.8	192	17	1	0.5	16	353	24	0	0	0	41	17	0	0	0
91	20	1.8	91	46	1	1.7	13	114	6	0	0	0	69	5	0	0	0
13	32	0.56	65	71	1	0.8	32	222	7	0	0	0	325	14	0	0	0
328	38	1.5	331	64	1	1.2	49	303	23	0	0	0	352	22	0	0	0
332	9	1.7	139	20	1	1.1	30	309	34	1	0.3	11	5	12	0	0	0
175	28	2.1	162	5	1	0.7	36	204	25	0	0	0	156	50	0	0	0
337	21	2.5	168	3	1	0.9	17	356	41	1	1.3	27	309	20	0	0	0
12	8	0.21	131	9	1	0.5	10	49	66	1	0.3	12	241	35	0	0	0
148	20	0.65	53	52	1	0.8	9	294	51	1	0.6	8	228	13	0	0	0
152	68	0.5	102	55	1	0.3	12	173	44	0	0	0	254	79	0	0	0
139	18	0.21	146	34	1	1	5	151	4	0	0	0	121	14	0	0	0
174	20	1.5	193	41	1	0.5	21	146	20	0	0	0	5	4	0	0	0
301	11	0.56	275	18	0	0	0	126	15	0	0	0	323	27	0	0	0
150	26	0.63	49	37	1	0.5	12	316	56	1	0.7	16	243	23	0	0	0
155	40	0.21	121	53	1	0.6	14	150	15	0	0	0	190	44	0	0	0
339	41	0.21	331	16	1	0.4	14	14	41	0	0	0	307	57	0	0	0
319	35	1.8	318	62	1	1.6	29	295	20	1	0.4	3	343	20	1	0.4	13

vzorek OV 8 – data změřená na Fjodorovově stolku								x 5871	63				y 1157819							
	osa	а <i>с</i>		dvojčata e_1						d	vojčata <i>e</i>	22		dvojčata e_3						
u	Ч	d/s	velikost zrna [mm]	и	Ч	tloušťka [μm]	hustota [ks/mm]	t/s	и	Ч	tloušťka [μm]	hustota [ks/mm]	t/s	ц	h	tloušťka [µm]	hustota [ks/mm]	t/s		
84	-21	e	4.1	70.5	-15.5	0.8	36	t												
101	-33	e	2.8	83	-27.5	0.7	31	t												
21	15.5	e	0.4	31	-28.5			s												
82	-33	e	0.5	61	-34	0.4	52	t	104	-10	0.3	55	t							
306	-30	e	3.1	348	-23	0.5	25													
53.5	39	e	1.2	86	42	0.3	27	t												
337	18	e	0.35	320	5.5	0.6	51	t	4	2.5	0.4	12	t							
116	24	e	3.5	321	-43.5	0.4	16	t												
83	-39	e	4.1	124	-26	7	23.5	t												
157	20	e	1.6	3	-11.5	1.3	22	t	318	4.5	1.9	31	t							
113	13.5	e	1.3	144	28	1.1	14	t	118	-18	0.8	28	t	88	28	1.5	4	t		
83	26.5	e	0.6	83	14	1.5	37	t	118	44	4	6	t							
12	-12	e	0.7	50	-48	1	17	s												
356	-19.5	e	0.35	25	-34.5	8	33	t												
32	8	e	0.2	227	5	10	71	t												
12	33	e	0.3	19	-11	0.9	40	t	349	30	0.7	11	t	45	32	0.6	28	t		
23	-5.5	e	1.03	42	-27	5	28	t	1	-2	0.5	8	t							
268	-7.5	e	0.5	59	-15.5	0.4	25	t	285	7.5	0.3	13	t							
28	-10	e	0.77	46	-20	6	39	t	4	1	0.4	14	t							
334	-36	e	0.3	17	-35	0.6	35	t	330	-15	0.3	7	t							
62	-12	e	0.7	68	-27	0.6	48	t	26	-21.5	0.5	8	t							
51	26	e	0.2	40	10	0.4	16	t	12	45	2.3	9	t							
28	-25.5	e	0.42	61	-17	0.7	35	t	16	-41	0.5	7	t							
324	-10.5	e	1.3	302	6	3.5	28	t	333	-32	1.4	12								
337	-8	e	0.7	15	-22	4.5	21	t	338	6	0.5	6	t							
345	-38	e	0.56	18	-21	0.4	11	t												
324	-36	e	0.45	5	-38	1.5	21	t	310	-22	0.5	13	t							
353	16	e	1.3	340	41	0.9	17	t	334	-5	0.7	16	t	18	9	1	20	t		
76	31	e	1.4	36.5	31	0.5	7	t	91	12	0.5	9	t	98	52	0.5	11	t		
76	14	e	2	89	-5.5	0.6	20	t	51	11	0.3	11	t							
21	10	e	0.5	54	14	0.4	16	t	101	0	• •	27								
69	13	e	1.26	63	-13	1.1	49	t	101	9	2.3	37	t							
74	15.5	e	0.56	44	25	0.8	16	t												
22	-1.5	e	0.2	84 75	2	0.6	42	t	127	15	0.0	27								
98 70	26 25	e	1.2	75 80	20	0.5	12	ι +	20	43	0.9	10	l t							
06	-55	e	1.55	69	-20 24.5	0.5	12	ι +	127	-44	0.5	20	ι +							
90 64	5	c	1.15	58	24.5	0.0	15 26	ι +	127	57	0.7	30	ι							
23	31	e	1.5	75	-22.5	0.9	20	ι c												
4	15	e	0.84	28	37	0.6	28	t	343	13.5	0.9	20	t							
71	22	e	0.04	38	34	0.4	8	t t	545	10.0	0.9	20	ı							
25	29	e	1.9	71	43	0.4	27	t												
355	30	e	1.7	328	21	0.7	25	t	24	31	0.3	12	t							
341	-33	e	0.91	309	-39	1.8	8	t	204	37	2.3	17	t							
		-	···· •				~	-					-	•						

vzorek OV 8 – ortogonalizovaná data v geografických souřadnicích							x 58716				y 1157819								
	osa c		dvojčata e_1							dvojčata e ₂	2		dvojčata e_3						
α ^Γ	φr	velikost zrna [mm]	αr	$\phi_{\rm L}$	zdvojčatěné [0 ne, 1 ano]	tloušťka [μm]	hustota [ks/mm]	αL	φr	zdvojčatěné [0 ne, 1 ano]	tloušťka [μm]	hustota [ks/mm]	α^{Γ}	$\phi_{\rm L}$	zdvojčatěné [0 ne, 1 ano]	tloušťka [μm]	hustota [ks/mm]		
48	72	4.1	24	48	1	0.8	36	284	78	0	0	0	101	57	0	0	0		
110	72	2.8	46	61	1	0.7	31	211	74	0	0	0	123	47	0	0	0		
64	60	0.5	225	2	1	0.4	52	300	47	1	0.3	55	148	27	0	0	0		
187	2	0.4	187	28	0	0	0	30	11	0	0	0	344	11	0	0	0		
266	37	3.1	241	23	1	0.5	25	289	20	0	0	0	270	63	0	0	0		
334	13	1.2	310	27	1	0.3	27	151	13	0	0	0	360	23	0	0	0		
193	43	0.35	226	60	1	0.6	51	203	18	1	0.4	12	158	41	0	0	0		
281	47	3.5	269	23	1	0.4	16	318	42	0	0	0	246	65	0	0	0		
80	63	4.1	151	74	1	7	23.5	94	38	0	0	0	31	55	0	0	0		
239	29	1.6	349	35	1	1.3	22	140	19	1	1.9	31	78	58	0	0	0		
280	58	1.3	258	37	1	1.1	14	317	45	1	0.8	28	233	81	1	1.5	4		
321	39	0.6	340	63	1	1.5	37	291	30	1	4	6	339	18	0	0	0		
216	2	0.7	242	6	0	0	0	199	22	0	0	0	27	22	0	0	0		
230	12	0.35	55	14	1	8	33	251	29	0	0	0	203	18	0	0	0		
12	14	0.2	18	26	1	10	71	358	11	0	0	0	20	3	0	0	0		
178	10	0.3	203	0	1	0.9	40	338	7	1	0.7	11	173	36	1	0.6	28		
27	6	1	141	51	1	5	28	309	66	1	0.5	8	286	5	0	0	0		
335	59	0.5	18	49	1	0.4	25	278	75	1	0.3	13	319	35	0	0	0		
30	13	0.77	101	72	1	6	39	265	38	1	0.4	14	141	8	0	0	0		
255	22	0.3	310	60	1	0.6	35	199	13	1	0.3	7	101	26	0	0	0		
23	46	0.7	111	39	1	0.6	48	201	16	1	0.5	8	292	42	0	0	0		
345	19	0.2	13	17	1	0.4	16	328	40	1	2.3	9	152	4	0	0	0		
46	15	0.42	254	45	1	0.7	35	338	14	1	0.5	7	116	52	0	0	0		
238	45	1.3	57	38	1	3.5	28	345	25	1	1.4	12	131	27	0	0	0		
226	37	0.7	227	62	1	4.5	21	202	22	1	0.5	6	249	22	0	0	0		
248	11	0.56	46	4	1	0.4	11	91	1	0	0	0	246	37	0	0	0		
262	27	0.45	345	59	1	1.5	21	194	16	1	0.5	13	108	31	0	0	0		
193	29	1.3	164	38	1	0.9	17	223	39	1	0.7	16	194	3	1	1	20		
325	31	1.4	345	12	1	0.5	7	332	56	1	0.5	9	299	19	1	0.5	11		
340	45	2	357	70	1	0.6	20	310	33	1	0.3	11	1	25	0	0	0		
11	3	0.5	358	26	1	0.4	16	176	19	0	0	0	37	1	0	0	0		
347	41	1.26	22	41	1	1.1	49	314	57	1	2.3	37	339	16	0	0	0		
341	41	0.56	349	16	1	0.8	16	14	57	0	0	0	306	41	0	0	0		
14	32	0.2	343	61	1	0.6	42	54	22	0	0	0	355	1	0	0	0		
302	33	1.2	333	32	1	0.5	12	277	52	1	0.9	27	291	9	0	0	0		
61	53	1.35	242	66	1	0.3	12	111	8	1	0.5	18	11	7	0	0	0		
8	45	1.5	44	42	1	0.9	26	356	21	0	0	0	333	63	0	0	0		
171	5	1.26	146	14	0	0	0	193	20	0	0	0	355	21	0	0	0		
191	17	0.84	166	8	1	0.6	28	199	42	1	0.9	20	30	2	0	0	0		
337	34	0.98	343	8	1	0.4	8	7	49	0	0	0	305	37	0	0	0		
348	1	1.9	326	17	1	0.4	27	164	25	0	0	0	12	11	0	0	0		
177	28	1.7	207	32	1	0.7	25	171	3	1	0.3	12	150	44	0	0	0		
248	18	0.91	352	29	1	1.8	8	146	26	1	2.3	17	75	76	0	0	0		

Příloha 3: Přehled n	něření orientace kalcitu
----------------------	--------------------------

vzorek Z 4 – data změřená na Fjodorovově stolku									x 5862	96				y 1157828						
	osa	с		dvojčata e_1					d	lvojčata e	e2		dvojčata e_3							
ц	Ч	d/s	velikost zrna [mm]	ц	Ч	tloušťka [µm]	hustota [ks/mm]	t/s	ц	Ч	tloušťka [µm]	hustota [ks/mm]	t/s	ц	Ч	tloušťka [μm]	hustota [ks/mm]	t/s		
56.5	29	e	5.2	37	11	10	4	t	75.5	45	7	17	t							
121.3	14.5	e	3	116.5	41	2	18	t												
358.5	-17	e	1.48	340	-34	3	10	t												
70	14.5	e	1.1	41	14.5	1	7	t	86	41	1	50	t							
67.3	13.5	e	4.2	47	15	3	8	t	87	44	5	41	t							
317.5	27.5	e	5.5	344.5	38	5	19	t	333	-5	0.5	8	t							
52	2.5	e	3.5	52	25	7	20	t	83.5	-7.5	1	3	t	33.5	-18	2	2	t		
314	-22	e	3.7	309	-39	10	11	t												
165	40	e	2.5	164	29	2.5	7	t												
77	6	e	1.1	44	12	0.5	7	t	88	42	3	32	t							
65	8	e	4.25	85	37	0.6	78	t	40.5	5.5	0.5	18	t							
328	22.5	e	3.15	356	35.5	3	41	t	124	-11	1	6	t							
77	-31	e	1.2	48	-51	1.5	7	t												
335	2	e	5.3	349	36	0.4	37	t	312	10	0.7	4								
352	-12	e	1.5	8	11	8	25	t												
299	-15	e	3.7	315	-23	6	29	t												
353	-21	e	5.5	331	-29	4	5	t	24	-18	0.8	6	t	23	-35	1.2	7	t		
30	25	e	7.5	15.5	-4	0.6	15	t	31.5	-47	1.4	30	t							
30	-21	e	8.4	13	-19	0.7	9	t	64	-35	0.4	19	t							
29	-7	e	4.5	51	-30	1.2	41	t	7	-8	0.8	7	t							
23	34	e	0.9	0	36	0.4	11	t												
323.5	22	e	2.9	352	35.5	4.3	29	t	339	-5.5	2.7	9	t							
316	23	e	5.8	352	12	2.5	5	t	313	48	4.5	25	t							
66	26	e	7	80	46	0.8	36	t	38	13.5	5.5	7	t							
15	-12	e	3.8	4.5	-32	2.4	13	t												

vzorek Z 4 – ortogonalizovaná data v geografických souřadnicích

y 1157828	
	dvojčata e_3
	<u>, ()</u>

	osa c		dvojčata e_1							dvojčata e	2		dvojčata e_3						
α^{Γ}	$\phi_{\rm L}$	velikost zrna [mm]	α^{Γ}	$\phi_{\rm L}$	zdvojčatěné [0 ne, 1 ano]	tloušťka [μm]	hustota [ks/mm]	α^{T}	ϕ_{L}	zdvojčatěné [0 ne, 1 ano]	tloušťka [µm]	hustota [ks/mm]	α^{Γ}	$\phi_{\rm L}$	zdvojčatěné [0 ne, 1 ano]	tloušťka [µm]	hustota [ks/mm]		
257	46	3	239	24	1	2	18	230	69	0	0	0	290	37	0	0	0		
296	2	1.48	271	9	1	3	10	316	20	0	0	0	123	23	0	0	0		
186	43	1.1	178	17	1	1	7	152	58	1	1	50	222	43	0	0	0		
183	42	4.2	174	17	1	3	8	150	58	1	5	41	218	41	0	0	0		
331	55	5.5	344	30	1	5	19	19	71	1	0.5	8	290	48	0	0	0		
158	40	3.5	193	42	1	7	20	152	15	1	1	3	125	55	1	2	2		
269	36	3.7	247	18	1	10	11	263	62	0	0	0	295	22	0	0	0		
83	3	2.5	284	13	1	2.5	7	87	29	0	0	0	239	7	0	0	0		
187	53	1.1	180	27	1	0.5	7	140	65	1	3	32	230	51	0	0	0		
176	44	4.25	205	32	1	0.6	78	154	25	1	0.5	18	161	70	0	0	0		
326	45	3.15	346	24	1	3	41	345	69	1	1	6	295	34	0	0	0		
103	67	1.2	85	43	1	1.5	7	154	56	0	0	0	11	77	0	0	0		
304	32	5.3	330	19	1	0.4	37	298	58	1	0.7	4	283	14	0	0	0		
296	11	1.5	327	5	1	8	25	97	13	0	0	0	282	38	0	0	0		
251	51	3.7	267	28	1	6	29	214	43	0	0	0	288	71	0	0	0		
331	60	5.5	253	11	1	4	5	117	43	1	0.8	6	185	9	1	1.2	8		
160	11	7.5	134	7	1	0.6	15	172	35	1	1.4	30	355	10	0	0	0		
122	26	8.4	288	32	1	0.7	9	189	25	1	0.4	19	50	50	0	0	0		
137	21	4.5	353	39	1	1.2	41	218	62	1	0.8	7	67	8	0	0	0		
173	2	0.9	347	24	1	0.4	11	154	19	0	0	0	199	9	0	0	0		
324	49	2.9	328	23	1	4.3	29	6	59	1	2.7	9	283	51	0	0	0		
324	55	5.8	315	30	1	2.5	5	9	52	1	4.5	25	273	67	0	0	0		
190	31	7	214	16	1	0.8	36	167	16	1	5.5	7	189	58	0	0	0		
128	10	3.8	102	8	1	2.4	13	322	12	0	0	0	143	33	0	0	0		

x 586296
vzorek	Z 9 – d	lata zm	ěřená na 1	Fjodoro	lku		x 587568					y 1157706						
	05	sa c		dvojčata e_1					dvojčata e_2					dvojčata <i>e</i> 3				
и	Ч	d/s	velikost zrna [mm]	ц	Ч	tloušťka [μm]	hustota [ks/mm]	t/s	ц	ų	tloušťka [µm]	hustota [ks/mm]	t/s	ц	ų	tloušťka [μm]	hustota [ks/mm]	t/s
0	-36	e	2.5	346	-35.5	5	17	t	45.7	-28	1.7	9	t					
18	-2.5	e	4.2	8.6	-18.5	2	21	t	51.5	-1	1.3	14	t					
7	16	e	1.1	37.5	-1.5	3.5	26	t	354	-14	1.5	9	t					
13	3.5	e	3.5	5.5	-6	7	21	t	51	0.5	7	7	t					
351.5	1.5	e	1.2	28.5	-12	1.5	10	t	33.4	16.5	3	15	t					
347.5	-36	e	0.7	23.5	-21.5	0.8	7	t	333.8	-27	2	20	t					
23.6	-26	e	0.9	24	-0.3	1.1	30	t	64.7	-33	1.2	7	t					
12.5	22.5	e	1.4	46.5	0.5	0.6	10	t	1	5	0.8	46	t					
321.5	-51	e	0.7	113	32	2.5	26	t	162	17.5	0.6	39	t					
352	-13	e	1.2	19	17	0.6	26	t	333.5	-6	6	22	t					
7.5	4.5	e	0.75	44.3	12.5	3	16	t	4.5	-8	6	32	t					
7.3	8	e	0.59	2.2	-18.5	4	28	t	46	-1.5	1.5	21	t					
26	-18	e	0.66	65.5	-18	1.2	12	t	18	-48	6	14	t					
64.5	28	e	0.85	36	49.5	0.8	26	t	105	54	0.8	18	t					
25	34.5	e	1.05	19.5	-12.5	2	17	t	74.5	-55	0.8	40	t					
14	9	e	0.95	2	-1	6	25	t	46.5	3.5	0.6	18	t					
359	31	e	0.98	342	27	3	53	t										
345	-40	e	1.2	333.5	-20.5	4	12.5	t										
8	5.5	e	6	8	-11.5	5	22	t	53	-3	0.8	15						
0.2	-18	e	0.56	33	-35	1.5	19	t	342.4	-31	2	42	t					
297.6	21.5	e	0.38	244.5	-3	3	60	t										
346.3	-39	e	2.5	46.3	-46	7	26	t	347	-29	1.5	20	t					
344.5	-33	e	0.77	31	-46	0.8	11	t	324	-40	1.2	8	t	356	-7	0.6	35	t
0	-32	e	1.4	39.2	-44	0.8	23	t	327	-52	1	14	t					
1	-16	e	0.9	29	-20.5	1.2	16	t	339.5	-23	1.5	107	t					
356	3.25	e	1.2	24.2	-18.5	3	14	t	342.3	-15	4	29	t					
23.5	23	e	0.8	19.5	31.25	0.6	42	t	63.7	13.2	5	14	t					
354	-36	e	0.945	21	-30.5	1.4	13	t	351	-28	1.5	26	t					
62	37.5	e	0.91	30	41.5	3	28	t	10	51	1.1	28	t					
323.5	-41	e	0.65	340.2	-15.5	0.7	37	t	293.3	-33	0.8	26	t					
23	24	e	0.77	11	43.5	1.5	42	t	58.5	14	7	10	t					
19.5	21	e	1.5	43.5	-7	1.6	23	t	356	9.5	4	33	t					
359.5	16.5	e	0.5	340	-8	8	26	t	24	-19	0.6	11	t					
0.3	26.5	e	0.7	334.5	19.5	5	64	t										
346.7	-23	e	0.5	344	6	6	46	t										
20	8	e	4.5	5.7	-19	6	32	t	50.7	-6	2.6	17	t					
63.5	36.5	e	0.91	31.3	40.5	4.5	18	t	103.5	49	0.8	25	t					
32	-29	e	0.8	63.7	-22.5	1.2	9	t	15.5	-45	6	10	t					
18	-24	e	0.095	54.6	-36.5	0.8	9	t	13.5	-30	0.6	23	t					
348.3	-30	e	0.75	21.5	-28	0.8	14	t	329	-26	0.6	16	t					
23.5	28.5	e	0.8	11	40	1.3	40	t	57.3	14.5	3	10	t					
349.8	-38	e	0.75	21.4	-28	0.8	12	t	330	-22	0.6	30	t					
88	42.5	e	0.5	312.5	-44	0.7	14	t	69	33	0.6	6	t					
8	6.25	e	0.75	43	4.2	1.6	19	t	2.5	-11	9	16	t	356	28.25	0.8	4	t
14.5	23.5	e	0.65	44	-0.25	0.8	16	t	359	-2	5	18	t					
22	24	e	1.5	358.5	2.25	1.7	36	t	44	-1	0.6	10	t					
343.5	-14	e	0.4	3.3	-11	0.8	22	t	325.3	-17	1	24	t					
27	-33	e	0.91	21	4	1.5	28	t	62	-32	1.2	11	t					

vzorek Z 4 – ortogonalizovaná data v geografických souřadnicích								x 587568 y 1157706									
osa c				(lvojčata e	21			Ċ	lvojčata <i>e</i>	2		dvojčata e_3				
α^{Γ}	φL	velikost zrna [mm]	α^{T}	φL	zdvojčatěné [0 ne, 1 ano]	tloušťka [µm]	hustota [ks/mm]	α^{T}	ϕ^{Γ}	zdvojčatěné [0 ne, 1 ano]	tloušťka [µm]	hustota [ks/mm]	α^{Γ}	ϕ^{Γ}	zdvojčatěné [0 ne, 1 ano]	tloušťka [µm]	hustota [ks/mm]
85	11	2.5	108	26	1	5	17	268	16	1	1.7	9	59	19	0	0	0
228	1	4.2	72	10	1	2	21	227	27	1	1.3	14	26	13	0	0	0
31	11	1.1	229	9	1	3.5	26	5	4	1	1.5	9	40	36	0	0	0
43	4	3.5	65	18	1	7	21	225	23	1	7	7	18	14	0	0	0
46	23	1.2	73	17	1	1.5	10	29	2	1	3	15	32	48	0	0	0
88	21	0.7	70	1	1	0.8	7	79	46	1	2	20	114	12	0	0	0
254	7	0.9	231	23	1	1.1	30	69	19	1	1.2	7	279	16	0	0	0
24	5	1.4	217	18	1	0.6	10	357	5	1	0.8	46	39	27	0	0	0
61	23	1.2	40	6	1	0.6	26	56	49	1	6	22	86	11	0	0	0
41	10	0.75	214	16	1	3	16	21	28	1	6	32	68	15	0	0	0
39	10	0.59	64	21	1	4	28	218	17	1	1.5	21	15	22	0	0	0
245	10	0.66	265	29	1	1.2	12	219	14	1	6	14	14	15	0	0	0
184	37 0	0.85	1/5	12	1	0.8	26	217	37	1	0.8	18	155	22 12	0	0	0
201	8 2	0.05	57	4	1	2	25	189	32 22	1	0.8	40	5 11	13	0	0	0
57 14	5 12	0.95	16	21	1	3	23 53	225	3	1	0.0	10	11	0	0	0	0
95	20	1.2	75	41	1	4	12.5	123	20	0	0	0	264	4	0	0	0
41	8	6	63	23	1	5	22	225	18	1	0.8	15	15	17	0	0	0
66	15	0.56	259	8	1	1.5	19	39	14	1	2	42	83	37	0	0	0
294	76	0.38	230	60	1	3	60	57	74	0	0	0	314	50	0	0	0
93	19	2.5	275	7	1	7	26	65	28	1	1.5	20	118	33	0	0	0
85	21	0.77	272	5	1	0.8	11	57	25	1	1.2	8	108	38	1	0.6	35
82	13	1.4	284	2	1	0.8	23	59	0	1	1	14	84	39	0	0	0
64	15	0.9	88	3	1	1.2	16	223	1	1	1.5	107	60	41	0	0	0
44	21	1.2	68	8	1	3	14	23	5	1	4	29	41	48	0	0	0
202	5	0.8	33	19	1	0.6	42	220	26	1	5	14	176	8	0	0	0
87	17	0.95	256	7	1	1.4	13	68	38	1	1.5	26	115	17	0	0	0
177	30	0.91	183	4	1	3	28	204	46	1	1.1	28	146	33	0	0	0
105	34	0.65	72	35	1	0.7	37	133	51	1	0.8	26	113	9	0	0	0
202	4	0.77	359	9	1	1.5	42	45	9	1	7	10	202	31	0	0	0
205	1	1.5	225	20	1	1.6	23	180	8	1	4	33	33	24	0	0	0
32	18	0.5	55	35	1	8	26	218	8	1	0.6	11	4	23	0	0	0
19	16	0.7	22	42	1	5	64	220	0	0	0	0	355	4	0	0	0
/3	28	0.5	43	34 19	1	6	46	101	41	0	0	0	12	1	0	0	0
177	22	4.5	30 159	18	1	0	32 19	229	27	1	2.0	25	15	3 57	0	0	0
257	14	0.91	281	27	1	4.5	0	205	23 25	1	6	10	78	12	0	0	0
257	3	0.8	201	27	1	1.2	9	230	7	1	6	10	86	21	0	0	0
250	2	0.1	275	13	1	0.8	9	228	16	1	0.6	23	69	24	0	0	0
82	23	0.75	251	2	1	0.8	14	61	43	1	0.6	16	110	23	0	0	0
197	4	0.8	358	14	1	1.3	40	43	3	1	3	10	190	30	0	0	0
90	19	0.75	252	1	1	0.8	12	79	44	1	0.6	30	116	11	0	0	0
40	7	0.75	241	9	1	1.6	19	195	4	1	9	16	43	33	1	0.8	4
23	4	0.65	225	11	1	0.8	16	179	8	1	5	18	26	30	0	0	0
202	3	1.5	41	16	1	1.7	36	210	28	1	0.6	10	357	4	0	0	0
65	32	0.4	57	7	1	0.8	22	39	50	1	1	24	97	33	0	0	0
259	9	0.91	234	22	1	1.5	28	78	17	1	1.2	11	283	21	0	0	0
113	28	0.7	136	48	1	2.5	26	83	27	1	0.6	39	124	3	0	0	0
90	20	0.75	194	57	1	0.8	12	20	7	5	1	0.6	0.75	51	0	0	0

