

CVIČENÍ 1

POKROČILÁ LOŽISKOVÁ GEOLOGIE LENKA SKŘÁPKOVÁ

PODMÍNKY ZÁPOČTU

1. DOCHÁZKA \rightarrow max. 2 absence bez omluvy

2. PRŮBĚŽNÉ TESTY

- bez absence \rightarrow nutné dopsat v náhradním termínu
- celkový počet bodů v každém testu je individuální → systém bodování <-2;-1;0;1;2>

3. PRŮBĚŽNÝ TEST NA MINERÁLY

- bez absence \rightarrow nutné dopsat v náhradním termínu
- nepočítá se k ostatním průběžným testům → nutné jej splnit (možná oprava na konci semestru)

4. ZÁPOČTOVÝ TEST

- koná se XXXXX → před tímto datem je nutné mít splněné všechny výše uvedené podmínky
- součástí bude i praktické poznávání horninových vzorků
- k celkovému získanému počtu bodů se připočítají či odečtou body z průběžných testů
- bez jeho splnění není možné jít ke zkoušce

5. KONZULTACE

vždy po přodobozí domluvá

Série		Skupina	Тур	Formace	Ger
		•	likvační	Cu-Ni + PGE	
		magmatická	protomagmatická	Cr, PGE, C, Ti, REE	Inžia
			hysteromagmatická	Cr, Ti, magnetit-apatit	IUZI
			jednoduché pegmatity	křemen-živec-slída	
		pegmatitová	metasomatizované pegmatity	Li, Be, Nb-Ta, Sn, U- Th, Au, drahé kameny	
		karbonatitová		REE	
Endogenní		hydrotermálních metasomatitů	skarnová	Fe, W, Cu, Pb-Zn, Co, Sn, Mo, U,	Endo- exogenní
			albititová	Nb-Ta, Zr, U, Be,	
			greisenová	Sn-W, Mo, Be, Li	
			porfyrových rud	Cu, Mo, U	
		hydrotermální	plutonická	Au, Sn, W, Mo, Cu, U, Ni-Co, Sb, …	
			subvulkanická	Sn-W-Bi-Ag, Au-Ag, Cu-Pb-Zn, …	Exo- endogenní
			teletermální	Pb-Zn, Hg-Sb, Cu, fluorit	
			kontaktně metamorfovaná	Fe, Mn, V,	
	Metamorfogenní	kontaktně metamorfogenní	kontaktně metamorfní: metasomatická termometamorfní	viz skarny grafit, smirek, andalusit	Exogenní
		regionálně metamorfogenní	regionálně metamorfovaná	Fe, Mn, kyzové formace, rýžoviska	
			regionálně metamorfní: restity	grafit, sillimanit,	
			pegmatity metasomatity metamorfně	azbest křemen-živec- slída viz skarny viz hydrotermální	

Genetická klasifikace

DŽISEK (upraveno podle Rozložník et al. 1987

	subaerická	vulkanoexhalační	S, B	
		krustální	travertin, sintry	
Endo-		hydratogenní	pitná, léčivá, průmyslová voda geotermální energie	
exogenni	submarinní	vulkanosedimentární	Fe (Lahn Dill), Mn, Cu+Pb-Zn+Au- Ag (kyzové formace)	
		hydrotermálně sedimentární	Cu-Co, Cu, Pb-Zn + Ag, kovonosné jíly	
Exo- endogenní	infiltrační	mineralizace hydrogenní: v pískovcích v karbonátech v kaustobiolitech	U, Cu red beds S, sádrovec, P U, Ge, P	
	zvětralinová	rýžoviska	Sn, Nb-Ta, W, diamant, pyrop	
		reziduání	kaolin, bauxit, Fe, Ni-laterity,	
		halmyrolytická	bentonit	
E ve sonsí		supergenního obohacení	druhotné oxidické a sufidické rudy	
Exogenni	sedimentár ní	klastická	Au, Pt, diamant, Sn, Ti, Zr, Au-U štěrky, písky	
		chemogenní a biochemogenní	evapority, karbonáty, silicity	
		organogenní	karbonáty, silicity, fosfority kaustobiolity	

MAGMATICKÁ LOŽISKA

Procesy diferenciace a krystalizace magmatu

LIKVAČNÍ LOŽISKA

LIKVACE

Procesy likvace nejsou vždy vázány jen na jednu intruzi – mohou probíhat i v rámci soustavy více intruzí.

Pohyb taveniny tak není vázán jen směrem vzhůru, ale i do stran a může docházet i ke zpětnému toku.

Vícefázový pohyb taveninu současně s likvací také diferencuje dalšími způsoby.

Dochází ke vzniku textur odrážejících různé způsoby průchodu taveniny a polyfázový Vývoj.

SUDBURY

největší světové ložisko Ni

- vrstevnatá mafická intruze vzniklá dopadem meteoritu před 1.85 Ga
- průměrný obsah Ni 1.2 hm. % a Cu 1.03 hm. %
- chalkopyrit, pyrhotin, pentlandit
- mineralizace vázána na nority, křemenná gabra a brekcie

SUDBURY – VZNIK LOŽISKA

https://craterexplorer.ca/sudbury-impact-structure/

SUDBURY - KOMPLEX

IMPAKTNÍ STRUKTURA MÁ 3 HLAVNÍ ČÁSTI

Sudbury basin

SIC (Sudbury Igneous complex)

šokově met. podložní horniny (shatter-coned)

Hashmi et al. 2021

SUDBURY – STRATIGRAFIE

2a

SUDBURY - MINERALIZACE

footwall breccia – masivní chalkopyrit footwall breccia – žilky masivního pyrhotinu a chalkopyritu

- olivín-nosné diferenciované ultramafické intruze (gabro-dolerit) perm-triasového stáří, uložené v sedimentech na SZ okraji sibiřského kratonu
- obsah Ni 0.5-2.8 hm. % a 0.6-5 hm. Cu
- PGE až 15 g/t
- Co, Pd, Rh, Au, Te, Se, Ag a S
- chalkopyrit, pentlandit, millerit, pyrhotin
- mineralizace vtroušeninová, masivní a tzv. Cu-sulfidová

NORIL SK – STRATIGRAFIE

Yao & Mungall, 2021

NORIL SK – ŘEZ LOŽISKY

NORIL SK -MINERALIZAC

VTROUŠENINOVÁ RUDA 0.5-0.6% Ni, 0.6-0.7% Cu, 5-6 g/t PGEc

> Vázána na olivín-nosné horniny. Chalkopyrit, pyrhotin,

MASIVNÍ ČOČKY 2.8% Ni, 5.6% Cu, 15 g/t PGE

Vnitřně zonální: střed tvořený Cu-sulfidy je lemovaný pentlanditem, pyrhotinem a i magnetitem.

Cu-SULFIDY

Tvoří nepravidelná rudní tělesa brekciovité struktury. Samotná Cu- ruda je vrstevnatá.

Figure 2. Field relationships of different rocks in the Medvezhy Ruchey open pit. (**A**) Layout of the open pit with outlined main geological bodies; (**B**) sampled outcrop on the 300 m horizon; (**C**) a geological sketch of the 270 m horizon (after [13]); (**D**) Leucogabbro with visible Cr-spinel-rich sites.

NORIL SK -MINERALIZACE

Yakubchuk & Nikishin,

80 cm mocná masivní čočka sulfidů uložená v kontaktním rohovci, Komsomolsky důl, intruze Talnakh

kontakt diferencované intruze (nahoře) a vápence (dole) se sulfidickými čočkami podél jejich kontaktu, Komsomolsky důl, intruze Talnakh

NORIL SK - ZNEČIŠTĚNÍ

Norilsk Leads the World in Sulfur Dioxide Pollution

The Norilsk Nickel smelting complex in Siberia generates close to 2 million tons of sulfur dioxide pollution annually, far more than any other human enterprise on Earth. Only volcano emissions come close, according to a NASA-led global monitoring project. The company this year launched a project it says will reduce sulfur pollution 90 percent by 2025.

TOP 10 SULFUR DIOXIDE EMITTERS In kilotons, 2019			
Volcano Smelter Oil & gas	Power plant		
LOCATION	MISSIONS		
🚺 Norilsk, Russia	1,833 kt		
2 Mt. Etna, Italy	1,161 kt		
Manam, Papua New Guinea	1,070 kt		
4 Yasur, Vanuatu	844 kt		
Oukono, Indonesia	763 kt		
🙆 Aso, Japan	664 kt		
🕜 Rabigh, Saudi Arabia 💦 🔬	652 kt		
Kadovar, Papua New Guinea	592 kt		
2 Zagros, Iran	558 kt		
🔟 Kriel, South Africa	504 kt		

SOURCE:NASA

- mineralizace Ni-Fe vázána při bázi mafických-ultramafických hornin (komatiity) v archaických greenstone belts
- poloha Silver Lake Komatiite \rightarrow všechna ložiska Ni
- dnes všechny horniny různou mírou metamorfovány, hydratovány a karbonatizovány (ultramafické horniny → jílovo-karbonátové a serpentinizované formace)
- niklo-nosné rudy mohou být asociovány také se zlatonosnými hydrotermálními křemen-karbonátovými žilami
- 1–5 hm. % Ni (výj. až 20 hm. %)
- masivní a vtroušeninové textury
- pyrhotin, pentlandit, pyrit, chalkopyrit, magnetit, spinel a chromit

SPINIFEX TEXTURA

- skeletální, tabulkovité až jehlicovité krystaly olivínu či pyroxenu v ultramafických-mafických lávách
- synonymem je herinkovitá či pérovitá textura
- interspinifex ore = olivín se spinifexovou texturou asociovaný se sulfidy, typicky na sulfidových ložiscích vázaných na komatiity

MODEL VZNIKU

Komatiitová tavenina laterálně injektovala do sulfidické taveniny a vytvořila tak bariéru mezi stále ještě tekutými masivními sulfidy a již ztuhlými net-textured sulfidy.

Interakce a vzájemná asimilace → spinifex textury, sférické agregáty komatiitu v sulfidech a naopak, emulzní struktury (nemísitelnost tavenin).

Spinifex textura olivínu vznikla díky výrazně vyšší teplotě komatiitové taveniny (>1500 C) injektované do zchladné sulfidické taveniny (ca. 1190 C) a drobným pohybům komatiitových sférických agregátů. Krystalizace spinifex olivínu výrazně zpomalila vzájemnou interakci tavenin, až došlo k jejich oddělení.

MODEL VZNIKU 2

Model založený na několika pulzech komatiitové a sulfidické taveniny.

Vyklínění (pinchout) vzniklo laterální termální erozí způsobené sulfidickou taveninou.

Postupně došlo k "vymílání a erozi" sulfidické taveniny stále aktivní komatiitovou taveninou za vzniku polohy komatiitu se spinifex texturou.

Nový pulz sulfidické taveniny injektoval do zřejmě stále částečně tekuté komatiitové taveniny a generoval další spinifex rudu. Následoval další pulz komatiitové taveniny a alterace/eroze starší sulfidické taveniny. Staude et al, 202

MODEL 1

Vysvětluje pozorované textury, stratigrafii a vyklínění.

Vysvětluje geometrii vyklínění, ale vyžaduje složitější procesy.

Vysvětľuje vysoké množství magnetitu v asociaci s interspinifextexturou a vysoké hodnoty Ni, S, Pd a Pt v komatiitu → interakce komatiitu a sulfidů.

Vyžaduje injektáž relativně lehké komatiitové taveniny v podobě ložní žíly do hustší, stále částečně tekuté sulfidické taveniny → strukturní bariéra (zlomy, praskliny, atd.)

Vtroušený chromit by měl být hojný vzhledem k výraznému promísení sulfidické a komatiitové taveniny. Chybějící chromit by musel být fyzicky přemístěn jinam → vysvětluje pozorované chromitové dutiny. Vyžaduje vznik pouze nettextured sulfidů bez masivních sulfidů.

Vysvětluje chybějící velký objem vtroušeného chromitu → důsledek magmatických pulzů a následné eroze.

BUSHVELD COMPL PGE, NI-Cu

 světově největší vrstevnatá mafickáultramafická intruze (70 000 km2)

• vznik před 2.055 Ga

		MINERALIZACE			
		likvační		PGE, Ni-	
				Cu	
		protomogmotiokó		Cr	
		ргототадтатска		Fe-Ti-V	
ROZI	_IŠU	JEME 3 SKU	JPINY	VIVRELIC	H HORIN
Rooiberg group			nejsta grano	ırší; felsit-ryc fyr	olit +
Rustenburg layered			pyrox	enit, gabro-r	orit, diorit

Scoon & Costin, 2018

BUSHVELD – VZNIK LOŽISKA

BUSHVELD – VZNIK LOŽISKA

С

С

Vzniklý plášťový chochol stoupal vzhůru a začal tavit okolní horninu. Vzniklá tavenina spolu s teplem generovaným chocholem injektovala do metasomatizovaného SCLM a způsobila jeho natavení.

Poté došlo ke smíchání obou tavenin a jejich výstupu podél trans-litosférické sutury až do kratonu, kde se vytvořily vrstevnaté intruze.

Vznik PGE, chromitových a magnetitových reefů s vtroušeninovou až masivní texturou. Nárůst objemu hornin v kůře po magmatickém pulzu způsobil centrální subsidenci.

MERENSKY REEF

- hlavní zdroj PGE v "pegmatitickém živcovém pyroxenitu" gabronorit
 - velmi hrubozrnný orthopyroxen (až 90 %) + plagioklas (až 30 %)
- 85 % (pyrhotin, pentlandit, chalkopyrit); zbytek pyrit, cubanit, millerit, troilit, vzácně galenit a sfalerit
- PGE, Ni, Cu, REE, P

PGE MINERALIZACE JE VÁZÁNA NA TŘI TYPY TEXTURNÍ ASOCIACE			
PGE uzavřené v sulfidech	38-97 %		
PGE uzavřené v silikátech	3-62 %		
PGE uzavřené nebo přidružené v chromitech či Fe- oxidech	v menší míře než ostatní		

MERENSKY REEF

Chromite Anorthosite

Merensky Reef

Pyrrhotite + PGE minerals

hrubozrnný hnědý pyroxen a plagioklas → pegmatitický pyroxenit

bílý anortozit s hnědě zbarvenými zrny pyroxenu

Cawthorn, 2010

MERENSKY REEF – STRATIGRAFICKÉ SCHÉMA

- 80 % světových zásob PGE
- 22 % přímo v Merensky Reef
- PGE mineralizace také v chromitové vrstvě UG2 a Platreef
- PGE mineralizace situována v nadloží chromitu

UG2 REEF (UPPER GROUP 2 REEF)

- chromitová vrstva UG2 leží přímo pod Merensky reefem v mocnosti 0.4-2.5 m
- 90 % chromit; zbytek pyroxen a plagiokl + akcesorie
- obsah Cr₂O₃ může dosahovat až 40 hm
 %
- minerály platinoidů PGE mezi 4-7 g/t
- nikl i měď jsou v ppm vázány v sulfidech

Mungall et al. 2016

PLATREEF

- pouze v severní části komplexu, na kontaktu s podložními horninami Transvaalské superskupiny
- reakce horkého magmatu komplexu s podložními Ca-bohatými horninami
- asociace pyroxenitů se serpentinity a skarny
- mineralizace až 40 m mocná
- minerály platinoidů, pyroxeny, pyrhotin, pentlandit, chalkopyrit, pyrit

STRATIGRAFIE REEFŮ

McDonald et al. 2005
SHRNUTÍ REEFŮ

MERENSKY REEF

- táhne se přes celou západní a východní část komplexu
- 300 km délka, mocnost až 4 m

UG2 REEF

- 20-400 m pod Merensky reefem
- mocnost 0.5-2.5 m

PLATREEF

- vázán na severní část komplexu
- délka ca. 30 km, mocnost 10-300 m

PROTOMAGMATICKÁ LOŽISKA

FRAKČNÍ KRYSTALIZACE

diamantů

chromit, ilmenit, magnetit, hematit, apatit

PROTOMAGMATICKÁ LOŽISKA

 tzv. ranně magmatická ložiska vznikla procesy frakční krystalizace, kdy ložiskotvorné minerály vykrystalovaly dříve než samotná hornina

			LC)ŽISKA	
chromit	FeCr ₂ O ₄		Great Dyke	zimbabwský kraton	ZW
ilmenit	FeTiO ₃	TEXTURY	Stillwater Complex	wyoming kraton	US A
magnetit	Fe ₃ O ₄	virouseninova	Bushveld !Cr, Fe-Ti-	Kaapvaal kraton	JAR
diamant	С	masivin	V!		
PGE, sulfidy, REE			Kimberley	Kimberley kraton	JAR
	-		Mir	sibiřský kraton	RU

Argyle

Halls Creek orogen

AU

LOŽISKA CHROMITU

STRATIFORMNÍ

vrstevnatá intruze

archaikum - proterozoikum

peridotity, pyroxenity, gabra, anortozity

Bushveld, Great Dyke, Stillwater Complex

PODIFORMNÍ

čočkovitá tělesa

pozdní proterozoikum - fanerozoikum

ofiolity – dunity, harzburgity

Kempirsai Ultramafic Massif

crustal chromite/chromitite

GREAT DYKE Cr, PGE, Ni-Cu

- druhé největší ložisko PGE
- protáhé těleso vyvřelých hornin intrudovalo do archaických granitoidů a pásma zelenokamenů v zimbabwském kratonu před cca 2.575 Ga
- chromitové polohy jsou vázány na dunity až pyroxenity (bronzitit)
- PGE mineralizace je vázána na horizonty chromititů nebo silikátů
- pyrhotin, pentlandit, chalkopyrit, vzácně pyrit

Maier et al. 2015

PGE-nosná sulfidická mineralizace

https://www.nsenergybusiness.c om/projects/darwendaleplatinum-project/

STILLWATER COMPLEPGE, Cr, Fe-Ni-Cu

STILLWATER COMPLEX

BASAL SERIES

sulfidická mineralizace **Fe-Ni-Cu** vázána na nority

ULTRAMAFIC SERIES

chromity vázány na cyklicky se opakující dunity, harzburgity a ortopyroxeny

BANDED SERIES

J-M Reef (Johns-Manville) s PGE vázaný na kontakt gabronoritů s anortozity

chromitové polohy v Ultramafic Series

mineralizovaný anortozit J-M Reefu mineralizovaný gabronorit J-M Reefu

BUSHVELD COMPLEX Cr, Fe-Ti-V

- 75% světových zásob chromitu
- všechny rudní polohy jsou součástí Rustenburg layered suite
- chromitové a magnetitové polohy vznikly gravitační diferenciací

	Cr
C	nromit, Cr-spinel
thin vs	thick layers (cm až 2 m)
vtrou	šeninové až masivní textury
	Fe-Ti-V
r	nagnetit, ilmenit
obsahy korela konc	v V a Ti mají negativní aci – směrem vzhůru entrace V klesá a Ti stoupá
vtrou	šeninové až masivní textury

BUSHVELD COMPLEX

 nejrozsáhlejší polohy chromititů leží v lower and upper Critical Zone a jsou vázány na pyroxenity a nority

 magnetitem nabohacené vrstvy leží v Upper Zone a jsou vázány na gabra a anortozity

BUSHVELD COMPLEX – CHROMITOVÉ POLOHY

Chromitová poloha UG1 je

Pebane & Latypov, 2017

Latypov et al. 2018

LOŽISKA DIAMANTŮ

- diamantonosné horniny jsou vázány na staré subdukční zóny
- stáří mezozoikum, kenozoikum, devon (většina kimberlitů intruduje do starších hornin)
- diatrema hloubka 1000 1500 m
- diamant = HP varieta uhlíku → stabilní při tlaku vyšší než 4 GPa a T 1000 C (v hloubce vyšší než 150 km) → záleží na termickém gradientu
- nekrystalizují z kimberlitu → jedná se o úlomky pláště, které se na povrch dostaly jako xenokrysty nebo v xenolitech
- generovány ve spodní kůře (je zde dost C a více H₂O než ve svrchním plášti)

LOŽISKA DIAMANTŮ

DIAMANTONOSNÉ HORNINY			
Kimberlity	Lamproity		
Diatremy (komínové brekcie v hloubkách, výše mohou přecházet do žil), někdy ukončeny na povrchu maarem, vzájemně se protínající, mohou tvořit shluky.	Převážně žilná nebo výlevná tělesa. Diatremy méně časté, širší a mělčí než kimberlity.		
Kratony převážně archaického stáří.	Kratony archaického-mesozoického stáří.		
Mg,K-ultramafické magma	K-ultramafické magma		
úlomky pláště, silně metamorfovaných hornin, ultrabazik a ostatních hornin kůry a pláště	úlomky pláště, silně metamorfovaných hornin, ultrabazik a ostatních hornin kůry a pláště		
olivín, flogopit, diopsid, enstatit, pyrop, ilmenit	leucit, flogopit, klinopyroxen, amfibol, olivín, sanidin		
Kimberley (JAR), Mir (RU), Aikhal (RU) Ekati (CA)	Argyle (AU)		

LOŽISKA DIAMANTŮ – ARCHAICKÉ KIMBERLITY

https://www.geologyforinvestor s.com/search-diamondsintroduction-kimberliteexploration/

LOŽISKA DIAMANTŮ

ml

LOŽISKA DIAMANTŮ

CARAT COLOSSI

THE 10 LARGEST DIAMONDin caratsPRODUCING COUNTRIES 2022*+ \$ value

Which countries are the leading diamond producers annually? This chart presents data from the Kimberley Process Statistics, highlighting global diamond production and its monetary value for 2022.

LINHORKA

Pyroponosná (diamantonosná) diatréma, Linhorka.

Přívodní dráha explozivního vulkanismu vyplněná vulkanickou brekcií s úlomky pyroponosných peridotitů. V blízkém okolí byly nalezeny tři (potvrzené) drobné diamanty o velikosti max. 4 mm (P. Pořádek)

Přemysl Pořádek, 2013

HYSTEROMAGMATICKÁ LOŽISKA

HYSTEROMAGMATICKÁ LOŽISKA

 tzv. pozdně magmatická ložiska vznikla procesy frakční krystalizace, kdy ložiskotvorné minerály vykrystalovaly později než horninotvorné

 uzavření zbytkové taveniny mezi zrny horninotvorných minerálů → vtroušeniny

 tektonicky neklidné prostředí = vytláčení taveniny → tvorba epigenetické mineralizace (žíly, čočky v dislokacích)

HL	MINERÁL	(
chromit		$FeCr_2O_4$	
ilmenit		FeTiO ₃	
magneti	t	Fe ₃ O ₄	
hematit		Fe ₂ O ₃	
apatit		Ca(PO ₄) ₃ (OH,F)	
PGE, sulfidv			1
	TE	XTURY	
	vtrou	išeninová	
	m	asivní	

Frakční krystalizací magmatu (gravitační diferenciace) vznikla Fe-Ti-V-bohatá vrstva odmíšeniny s vysokou hustotou.

Piqiang mafic-ultramafic layered intrusion

Přínos H₂O podpořil krystalizaci Fe-Ti-V rud na úkor silikátů → vznik masivní a následně vtroušeninové mineralizace.

HYSTEROMAGMATICKÁ LOŽISKA

LOŽISKA				
Cr	Ural, Turecko, Nová Kaledonie, Filipíny	serpentizované peridotity		
PGE	Ural	ultrabazika ofiolitových komplexů		
Fe-Ti-V	Tellnes (NO), Lac Tio (CA)	anortozity		
magnetit-apatitová formace	Kirunavaara	keratofyr (alkalickoživcový trachyt-andezit)		
apatit-nefelinová formace	Kola (Kukisvumčorra, Jukspor a Koašva)	lopolit alkalických ultrabazik		

LAC TIO (ALLARD LAKE DEPOSIT)

- největší magmatické ilmenitové ložisko na světě
- hematit-ilmenitový norit uložený v anortozitu
- hlavní rudní těleso \rightarrow nálevkovitý tvar ca. 1 1 0.1-0.3 km (32-38 hm. % TiO_2)
- ilmenit, plagioklas, Al-spinel, orthopyroxen
- epizodické usazování magmatu střídající se s periodami frakční krystalizace a mísení magmatu → hybridní magma → periodická krystalizace hematituilmenitu s či bez plagioklasu

- ilmenitový norit (18 hm. % TiO₂) uložený v anortozitu
- by-products \rightarrow rutil, magnetit, Ni-Cu sulfidy
- rudní těleso → srpovitý tvar ca. 0.4-2.7 km → koncentrace TiO₂ se snižuje směrem do krajů tělesa
- plagioklas, orthopyroxen, olivín, Fe-Ti oxidy
- převažují procesy frakční krystalizace

TELLNES

KIRUNAVAARA

Ložisko magnetit-apatitové formace, Kiirunavaara.

Pohled na nejstarší část dolu, kde byla železná ruda těžena z povrchu (open-pit). Povrchová těžba zde byla přibližně do 60. let 20. stol (P. Pořádek)

Přemysl Pořádek, 2003

KARBONATITY

KARBONATITY REE (LREE), P, Nb-

- karbonatit = karbonátová hornina tvořená více než 50 % primárními karbonáty, obvykle i více než 90 % a zároveň méně než 20 % SiO₂
- nejčastěji součást alkalických ultramafickýchultrabazických intruzivních komplexů, ale mohou pronikat i fenitizovanými granity
- zdroj karbonátů metamorf. fluida, subdukce oceánské kůry
- proterozoikum recent

VZNIK KARBONATITŮ
rychlý výstup ultrabazického magmatu
\downarrow
vznik alkalických hornin
↓ metasomatóza-fenitizace ↓
KARBONATIT – finální diferenciát ultramafického alkalického magmatu
\downarrow
alkalické žíly

TVAR TĚLESA			
Centrální pně s výraznou			
koncentrickou stavbou nebo žilné			
výplně vulkanogenních struktur.			
Komínové intruze kónického-			
válcovitého tvaru mohou mít hloubku			
více než 15 km.			

KARBONATITY LZE ROZDĚLIT NA 3 TYPY

PRIMÁRNÍ MAGMATICKÝ	HYDROTERMÁLNÍ	ZVĚTRALINOVÝ
mineralizace již v pozdní magmatické fázi	mineralizace vzniklá působením hydrotermálních fluid odmíšených z magmatu	mineralizace vzniklá v důsledku dlouhotrvajícího zvětrávání a vyluhování fluidy
charakteristickým znak → mineralizace celého tělesa	hydrotermální fluida často přetiskují původní magmatickou mineralizaci	obvykle obohacen o HREE – LREE má vyšší mobilitu
čočkovitá tělesa, ohraničení hlubokými zlomy	žíly, žilníky, ohraničení hlubokými zlomy	lateritické kůry/krusty
zrudnění obvykle jemnozrnné, masivné, vtroušeninové či páskované	zrudnění obvykle ve formě žilné výplně, vtroušeninové či obrůstání primárních magmatických minerálů	REE zrudnění je remobilizováno, obohaceno a adsorbováno na povrchu jílových minerálů, typicky kaolinitu
bastnäsit, monazit, allanit, xenotim, parisit-(Ce,Nd), pyrochlor, magnetit, hematit,	minerálně méně rozmanitý: bastnäsit a parisit, kalcit, baryt,	

KARBONATITY – GENERALIZOV ANÁ STAVBA

Amores-Casals et al. 2019

KARBONATITY

TEXTURY
vtroušeninová
pásky, zóny

	V				
	LOŽISKA				
	Pallabora		Transvaal supergroup	JAR	
	Bayan Obo		severočínský kraton	CN	
	Mou Pass	ntain S	Mojave Crustal Province	USA	
	Araxá		SV okraj pánve Paraná	BR	
rimární karbonáty kalcit		kalcit, dolo	alcit, dolomit, ankerit, siderit		
statní minerály		apatit, magnetit, ilmenit, diopsid, augit, alkalický pyroxen/amfibol/živec, flogopit, biotit			

U, Th, Zr, Fe, Ti, V, Zn, Mo, Cu, Mn, Pb, Ba

р

0

KARBONATITY - FENITIZACE

FENITIZACE

Si + Al vyloučeny do roztoku

K + Na + Ca + Fe zůstávají ve fenitu

Na,K-amfiboly, Na-pyroxeny, K-živec, albit, nefelín, tmavá slída

apatit, REE minerály – titanit, pyrochlor, monazit, bastnäsit

LOŽISKA KARBONATITŮ

PALABORA Cu, Co, Zr, Hf, Fe, vermikulit

- ložisko vázáno na proterozoický komplex výlevných hornin (pyroxenit, foskorit, syenit, ultrabazické pegmatity) vzniklý před 2.06 Ga ležící v SV Transvaalu archaického stáří
- chalkopyrit, kubanit, bornit, magnetit, apatit, vermikulit
- Au, Ag, U, Ni, PGE
- struktury masivní až vtroušeninové, čočkovité
- mineralizace Cu je vázána na karbonatitové jádro a foskority
- fosfáty jsou vázány na foskority a apatit-bohaté pyroxenity

PALABORA – ŘEZ LOŽISKEM

- komplex má ledvinitý tvar
- mineralizace je vázána na tzv. Central Carbonatite
- Central Carbonatite má koncentrickou stavbu do středu tvořenou pegmatitickým pyroxenite, foskoritem a karbonatitovým jádrem

2017

MOUNTAIN PASS LREE (Ce), Ba

- druhé největší ložisko REE na světě (16 mil. t zásob REE)
- karbonatit intrudoval do prekambrického metamorfního podloží
- rudní tělesa jsou ve formě ložních žil nebo čoček uložena v Sulphide Queen karbonatitu
- mineralizace → bastnäsit (10-15 hm. %), baryt, dolomit, kalcit

https://www.mpmaterials.com/what-wedo/

SULPHIDE QUEEN CARBONATI

NEOBVYKLÝ KARBONATIT		
HORNINY	ultra-potasické horniny shoshonit, syenit, granit	alkalické horniny (Na) fenit, syenit, trachyt
TVAR TĚLESA	tabulární	koncentrická stavba
MINEDALIZAC	I DEE Ra ochuzení o Nh	I PEE Nb. Ta. Zr. P

https://www.usgs.gov/medi a/images/mountain-passrare-earth-element-mine-

Wang et al. 202

- největší ložisko Nb na světě
- kruhovitá intruze s průměrem 4.5 km uložená v mezo-ptz fenitizovaných kvarcitech a břidlicích
- klasická koncentrická ringová struktura: dolomitický karbonatit → svor → kvarcit
- mineralizace: monazit, apatit, pyrochlor-Nb, magnetit dolomit, kalcit, ankerit, slída, perovskit
- vysoce kvalitní Nb asociován s foskority
- ložisko je silně zvětralé a obsahuje mocnou lateritickou vrstru s

ARAXÁ – GEOLOGIC KÁ STAVBA

Araxá complex surface 90 - 70 Ma

Weathering of phlogopite-rich rocks with

Rock wheatering, soil removal and spreading, and surface lowering by erosion and dissolution

Present surface

Soil formation, clay sedimentation and formation of bauxite and/or Fe-laterite crust

Strong concentration and spreading of clastic-, weathering-resistant and supergenic minerals

CaO removed = top of the water table

Concentration and spreading of clastic-, weathering-resistant and supergenic minerals

► MgO removed

- Rust-colored, oxidized rocks
- Wheatering and oxidation front
- Botton of the water table

BAYAN OBO LREE, Fe, Nb, F

- ložisko vázáno na dolomitické mramory synklinály Bayan Obo proterozoického stáří
- největší světové ložisko REE
- jedná se o soustavu několika karbonatitových pňů → dolomitický (Fe), kalcit-dolomitický (Mg) a kalcitový (Ca) s největší koncentrací REE
- columbit, bastnaesit, monazit, pyrochlor, magnetit, hematit, fluorit

BAYAN OBO - VZNIK

- rozsáhlé hydrotermální alterace během pozdní etapy mineralizace
- extrémní REE obohacení vzniklo díky procesům intenzivní diferenciace → transformace Fe-magmatu na Camagma + fenitizace

BAYAN OBO - HORNINY

(a)jemnozrnný dolomit s vtroušeninovou mineralizací

(b) páskovaná REE-Nb-Fe mineralizace

(c)pozdní žíla protínající páskovanou REE-Nb-Fe rudu

Fan et al. 2015