Vitrinite Hydrocarbon Temperature Reflectance R0(%) generation Temperature [celsius] 10 50 100 150 200 260 Sweeney&Burnham(1990)_EASY%Ro [%Ro] 0.00 1.00 2.00 3.00 4.00 5.00 OiLTissataEspitafeCI 915}_T2 [hHC&FOC] 000 3.10 0.20 Q.30 IS E 10000 I Temperature - ICN3JCN3 I SweeneyaBurnhamC1990)_EASY%Ro - ICN3JCN3 I Oil_TiSSatSEspiielie(1 575)_T2 - OI3JCN3 I Gas_Ti*sa1SEspitalie<19rSLT2 - ICH3JCHJ MATURATION AND RANK LU S o Š LU LU O < Q V? LU 2: LU 1 O C/3 LU LU O Ě METAMORPH OSIS COAL RANK Raše lina Hněd é uhlí Černé uhlí MICROSCOPIC MATURITY PARAMETERS LU Antra cit Meta antracit - 0 2 - 0 3 - 0.4 - 0 5 0.6 0.7 08 09 10 1.2 1 35 15 20 - 2.5 - 3.0 - 4.0 - 5 0 2 ORANGE THERMAL ALTERATION INDEX (TAI) TAI - 1 5 1 YELLOW -2 3 -2.5 3 BROWN 4 BLACK 5 BLACK TAIJ -2 8 -30 -3 5 -40 CONODONT ALTERATION INDEX (CAI) 1 YELLOW 2 LIGHT BROWN 3 BROWN 4 DARK BROWN 5 BLACK FLUORESCENCE COLOUR OF ALGINITE4 GREENISH YELLOW GOLDEN YELLOW DULL YELLOW OKANGfc RED non* fluorescent COLOUR OF SPORINITE5 BLUE-GREEN GREEN YCLLOW ORANGE BROWN LL ŕ LU - 02 - 0.5 - 1.0 - 1.5 1.75 20 - 25 1from Teichmüller and Teichmüller (1982) 2from Staplin (1969) O < CiL co [u 8° BIOGENIC METHANE. HEAVY OIL AND EARLY CONDENSATE 111 I In z LL C Z CO c g SA S OIL _j O (0 W <, oo h> (T Z (Ľ LU 0 s ~ <2 I- < DRY GAS trom Jones and Edison (1978) "from Mukhopadhyay and Rullkötter (1986) Tepelné zrání kerogenu a uhlí Kerogen Types - North Sea II Kimmeridge Shale (restricted marine U. Jur.) Mixed marine (Tertiary) with Liptinite Coaly Shale (M. Jurassic) lll/IV Open marine (Cretaceous) IV Red beds (Triassic) Vitrinite + inertinite 0.0 .....I I I I I I I I I I 1 I I I I I I I I I 0.00 OOS 0 10 0.15 0,20 0.25 Atomic O/C Ratio Jones (1987) in Hunt (1996) 6. Zdrojové horniny - Tepelná zralost CO o N "D O 0,2 0,4 0,6 1.3 1,5 2,4 * Kvalita zdroje * * 0 O 1 4 I .J 1 í? I L' 4 • t «2 *3 A< * Množství vznikajících s. Uthlovodíku \ .0 J * O * * ^ v* - # c?* íl*'' A? \ Ropa 1 • V- Vlhký plyn r Suchý plyn Kerogen Nezralý Tvorba ropy Krakování ropy na plyn Kapalné uv nepřežijí Přezrálý Zralý 0 50 100 150 0 20 40 60 Franců et al. 1989 Hl (mg HC/g TOC) S1= Volné uv (mg HC/g TOC) Continuous Deposition Model Ed 20 15 Age [Ma] 10 Lozin - Loi1 10ÜQ- 2000- m 3 CD 3000- 4000' 5ÜÜCT 6000 CENOZOIC Temperature [celsius] Bo.00-15.00 150.00-165.00 ■ 15.00-30.00 165.00-180.00 ■ 30.00-45.00 180.00-195.00 ■ 45.00-60.00 195.00-210.00 ■ 60.00-75.00 210.00-225.00 ■ 75.00-90.00 225.00-240.00 B90.00-105.00 240.00-255.00 B 105.00-120.00 255.00-270.00 120.00-135.00 270.00-285.00 135.00-150.00 ■ 285.00-300.00 - U.Bad.L A M.Bad. B M.Bad. A L.Bad. D L.Bad. C L.Bad. B L.Bad. A Karpat _B Calibration by l-S clays, Present Temperature, Ro, Tmax and Biomarkers 2000- Q. Q 4000 6000 ■2000 D. (D Q ■4000 1-6000 60 80 100 70 350 0 420 460 500 540 0 Ulite Layers in l-S (%) Temperature (°C) Vi tri nite Reflectance (Easy %Ro) Tmax Ste ran e Isomerisation 20S/(S+R) C29 Ster ctctp 0.2 0.4 Hopane Isomerisation 22 S/(S+R) C32 Hopctp 4,0 , 3.0 A O Q Z < DC i E CĹ Rekonstrukce teploty na základě od ráznosti vitrinitu 20 1.0 Cerro Prieto East Mesa (Mesa 6*2) Soda Lake (44-5) Sal ton Sea (Sinclair-4) Ra(t River (RRGE-2) Heber (Holtz-1) Borehole Wilson No. 1 Waiotapu (WT-4 & WT-6) Kawerau (KA-17 & KA-E1) Broadlands (Br-9> Wairakei [224) 0 L 0 400 Barker 1983 Calibration Parameters - Vitrinite Reflectance 0 Vitrinite 38% — S Inertinite 17% i-1-r 0.5 1.0 2.0 3 4 Vitrinite Reflectance R0 (%) Only vitrinite indicates the thermal history Macerals - Reflectance Vitrinite & Cutinite (Exinite) - Reflected Light Supressed Reflectance Vitrinite & Cutinite (Exinite) - Supressed Vitrinite Reflectance due to oily Impregnation Cutiniteis dark in reflected light - Fluorescent Light Liptinite - yellow fluo. Maturity Trends 0 0.5 1 1.5 2 Vitrinite Reflectance R0 (%) Maturity trends with depth in Mio-Pliocene basins "cold" Vienna and "hot" Pannonian Similar Age, Similar Lithology, No erosion just different heat flow Miocene trend (23-5 Ma) based on 5 wells 0 E Q. O □ 2 - 4 - Carboniferous of the Upper Silesian Basin Miocene - 1 Carpathian \ + I Foredeep " immature early oil window v % 4>«>0 oil window -iIIIIIIIIIIIi- 410 420 430 440 450 460 470 430 Single well Miocene Pennsylvania!! Heat flow during Neogene T (°C) 1 max \ / Maturity Trends in Inverted (Uplifted) Basins o 200 H 400 600 800 H 1000 1200 -t 1400 1600 1800 2000 + Se Namur.BC ▲ Po- ^ ]!jr Namur-A T Pe NP-526 NP-879 NP-830 +HH- Kras-1 Cho16 ~ i i i r 0.50 1.00 "Parallel" maturity trends with depth show similar paleo-heat flow / geothermal gradients but different uplift and second burial 1.50 2.00 Maturity Trends in Overthrust Systems 600 700 800 q 900 ^ 1000 E £ 1100 Q. ° 1200 1300 1400- 1500- 1600 NP-898 L. Miocene surface of the Carboniferous Sucha Fm. Saddle Fm. Namurian B Pruba Fm. Namurian A -i-1-1-1- ~i-1-1-1-1-1-1-1-1- 1-1-1-r~ 0.8 0.9 1.0 Rr (%) 1.1 1.2 Vitrinite reflectance with depth example of deformation (imbrication and stacking) after maximum coalification Variscan foreland b. U. Silesian Basin Calibration Burial History with Uplift and Erosion Time (Ma bp) MODEL CALIBRATION Pz Testing Alternative Scenarios of Heat Flow History for the Late Paleozoic Phase (330-295 Ma) Calibration of the thermal history model: well NP-879 Vitrinite reflectance Vitrinite reflectance Easy %RG Easy %RG Apatite Fission Tracks Štěpné stopy uranu v apatitech a zirkonech Radioaktivní rozpad uranu vyzařuje částice které proráží "tunely" v krystalové mřížce minerálů (a) POSITIVE CHARGED PARTICLE O O © 0 o o o o © © o o o o © ß o o o o ©/© o o O O 0 © o o o o © © o o o o © o o FISSION EVENT (b) o o , PARTICLE TRACK >^>- USX) o o o /S© o ou\; o0o /© o o o o o o o o o o Stopy se uchovají, rostou a množí při T < 60°C Jak se teplota v zemských hlubinách zapíše do hornin v podobě histogramu AFT Vi u AFTA Diagramy Fission track age (Ma) 550 Věk podle AFTA wt% CI CI (%) B: Fraction 1.00 0.75 0.50 0.25 o.on D: N 40-i 30-\ 20H 1 oH Obsah chlor-apatitu 0 5 1.0 1.5 2.0 2 5 3.0 wl%CI Délka štěpných stop (jLim) 5 10 15 Track Length (\im) 20 Mean track length 10.97 ± 0.50 um Std. Dev. 1.51 um 9 tracks Délka štěpných stop AFT a Teplota vrstev Otway Basin reference wells Otway data and predictions AFTA (3 (3 O) 16 r 15 \ 14 \ 13 í" 12 i" 11 \ 10 !- 9 \ 8 I- 7 I- 6 ~t '25 o + t Multi-corn positional model Mean track length (|jm) Laslettet al. (1987) Crowley et al. (1991) 1 1 1 50 75 100 Temperature (°C) 125 from Green et al, 1989a Little or no post-depositional annealing (T<6ü°C) 4DQ -T*- ■ k +2 + 1 n '-■ - 1 -2 — K N _ ■\ V im Moderate post-depositional annealing (T-90°C) +2 +1 ; -1 ■2 ■ , . . . . . . . . . . . . . . . - v - - -\ M v. ■ ■N 80. 1DD Total post-depositional annealing (T> 110°C) +1 : -1 ■2 m - ťW ■ - -v J eo if* T ne of cooling Slratigraphic age range r ľ: J. "■: í : 157-178 Ma) ■äC Radiálni diagramy měření jednotlivých zrn Chladné vrstvy Středně pohřbené a prohřáté (90°C) horniny Silně prohřáté horniny při hlubokém afta pohřbení Green et al, 1989a Plyno-kapalné uzavřeniny (inkluze) v pískovcích a kalcitových nebo Q žilách Teplota => Fázová koexistence Plynová bublina Kapalina Krystalky soli Výsledky měření plyno-kapalných uzavřenin AQUEOUS INCLUSIONS > u U) 3 a u CE Lb 4H 2-4 70 90 T T 100 110 120 HOMOGENIÍATlON TEMPEftATUňE («C) 130 140 HYDROCARBON INCLUSIONS 4H o 70 ao t-r-r 90 100 110 120 HOMOQENtZATION TEMPERATURE CC) 130 140 Homogenizační Teplota Plyno-kapalne inkluze P, T interpretace homogenizace Pressure (bar) -78 -51 +0.5 Temperature (°C) Shrnutí - plyno-kapalné inkluze Z p T podmínek fázových změn (bublina - roztok - krystalek) lze vyčíst podmínky vzniku celého krystalu - teploty a hloubky pohřbení 6. Summary - Calibration • Calibration make model closer to reality • From maturity data we read the paleo-heat flow and estimate the amount of erosion • Only calibrated models can provide reasonable calculation of generated oil and gas