Geotermie a dynamika sedimentárních pánví Tepelný tok 40 60 85 mW m 120 160 240 350 2 Trench [ Ocean lithosphere Mantle Heat Transfer Convective Heat Transfer in the Mantle Origin of the Hot Spots Teplota na bázi litosféry Geotermický gradient = ďr/dz (mK/ m) TEMPERATURE 0 200 400 600 800 1000 1200 "C Tepelný tok (mW.m2) Data from Allen & Alien (1990) Tepelná vodivost DUNÍTE DIABASE GRANITE QUARTZITE DOLOMITE LIMESTONE SANDSTONE SHALE COAL CLAY DEEP-SEA SEDIMENTS (PISTON CORES) ANHYDRITE HALITE SYLVANITE GYPSUM ANHYDRITE 55% + WATER 45% (DEHYDRATED GYPSUM) ICE - WATER OIL GAS Copper ~900 mcal/cm s °C -380 W/m°C Thermal Conductivity (mcal/cm sec°C) 0 5 10 15 20 i i i r i i i r I-1 -O -o o i i i i i i i i r ~2 H -O -O ~4 ~6 W/m°C 1D tepelná vodivost a teplota Thermal Conductivity: Vertical [W/rn/K] Temperature [Celsius] 1.00 2.00 3.00 0 50 100 150 Vliv tepelného izolantu (např uhlí) Temperature [celsius] 0 50 100 150 200 250 300 350 420 ■53 E "S. (D O 0 U.Sarm A 1000- 1 Sandstone L.Sarm_C L.Sarm_B L Insulator L.Sarm_A \ U.Bad K_D 2000 ■ U.Bad ,K_C U.Bad ,K_B \ \ U.Bad ,K_A 3000 \ \ U.Bad ,L_B \ U.Bad ,L_A \ \ M.Bad._B 4000" \ \ M.Bad._A \ \ L.Bad. D \ \ L.Bad._C \ \ L.Bad._B 5000" Sandstone \ L.Bad._A \ y Karpat_B 6000 SweeneyaBurnham(1990)_EASV%Ro [%Ro] 0.00 1.00 2.00 3.00 4.09.60 0 1000 2000 "53 E -s. OJ Q 3000 4000 5000 6000 U.Sarm A - Sandstone L.Sarm_C L.Sarm_B L.Sarm_A Insulator U.Bad.K_D U.Bad.K_C U.Bad.K_B \ H U.Bad.K_A U.Bad.L_B \ Sandstone U.Bad.L_A M.Bad._B M.Bad._A L.Bad. D L.Bad ._C L.Bad _B \ L.Bad ,_A Karpat_B Oil_TissotaEspitalie(1975)_T3 [gHC/gTOC] 0.00 0.10 0.20 0.25 0 1000 2000 ■S3 f- 3000 ■a Q 4000 5000 6000 U.Sarm A L.Sarm_C L.Sarm_B COAL L.Sarm_A U.Bad.K_D U.Bad.K_C U.Bad.K_B U.Bad.K_A U.Bad.L_B Ü.Bad.L_A M.Bad._B M.Bad._A L.Bad. D L.Bad._C L.Bad._B L.Bad._A Karpat_B I Temperature - Loz_sand_Loz_sand I Temperature - Loz_lnsulator_Loz_insulator I SweeneySBurnhamCI 990)_EASY%Ro - Loz_sand_Loz_sand I SweeiieyaBuniliani(1990)_EASY%Ro - Loz_lnsiilator_Loz_in I Oil_TissotäEspitalie(1975)_T3 - Loz_sand_Loz_sand I Gas_TissotSEspitalie(1975)_T3 - Loz_sand_Loz_sand I Oil_TissotäEspitalie(1975)_T3 - Loz_lnsulatQr_Loz_insulatQr I Gas_TissotSEs|)italie(1975)_T3 - LöZ_liisiilator_Loz_iiisiil Účinek tepelného vodiče Temperature [celsius] 50 100 150 200 1000 2000 ■53 E "S. (D O 3000 4000 5000 6000 U.Sarm A L.Sarm_C L.Sarm_B L.Sarm_A 1 U.Bad.K_D \ U.Bad.K_C U.Bad.K_B U.Bad.K_A \ \ INUK U.Bad.L_B \VlAL U.Bad.L_A M.Bad._B COND \\ M.Bad._A L Bad. D L.Bad._C L.Bad._B L.Bad._A Karpat_B "53 E ■s. (D O SweeneyäBurnham(1990)_EASY%Ro [%Ro] 0.00 1.00 2.00 3.00 0 1000 2000 3000 4000 5000 6000 l U.Sarm A I L.Sarm_C L.Sarm_B L.Sarm_A U.Bad.K_D U.Bad.K_C U.Bad.K_B \\ NORMAL U.Bad.K_A \\ U.Bad.L_B \\ U.Bad.L_A \\ M.Bad._B \\ M.Bad._A \ \ L.Bad. D w l_.Bad._C cond\\ L.Bad._B v\ L.Bad._A Karpat_B Oil_TissotaEspitalie(1975)_T3 [gHC/gTOC] 0.00 0.10 0.20 0.25 1000 2000 ■53 _f 3000 ■s. (D Ci 4000 5000- 6000 U.Sarm A SAND L.Sarm_C L.Sarm_B L.Sarm_A — i U.Bad.K_D \ SALT U.Bad K_C U.Bad.K_B ^ V \ORMAL U.Bad.K_A U.Bad.L_B U.Bad.L_A I M.Bad._B tfOND^i L M.Bad._A L.Bad. D L.Bad._C L.Bad._B L.Bad._A I SAND Karpat_B I Temperature - Loz_sand_Loz_sand I Temperature - Loi_Conductor_Loi_Conductor I SweeneyäBurnham(1 990)_EASY%Ro - Loz_sand_Loz_sand I SweeneyäBurnham(1990)_EASV%Ro - Loz_Conductor_Loz_ I Oil_TissotSEspitalie(1975)_T3 - Loz_sand_Loz_sand I Gas_TissotSEspitalie(1975)_T3 - Loz_sand_Loz_sand I Oil_TissotäEspitalie(1975)_T3 - Loz_Conductor_Loz_Conductor I I Gas_TissotaEspitalie(1975)_T3 - Loz_Conductor_Loz_Conductcl Tepelný tok v solných diapírech 0 5000 10000 15000 20000 25000 30000 35000 40000 Izotermy v solnych diapirech 5000 10000 15000 20000 25000 30000 35000 40000 1000: 2000 3000 4000^1 =] Isotherms are bent upwards at Top of Salt 5000:-I>^ 6000: 7000:-=-^^ 8000 9000:=^ Isotherms are bent downwards at Base of Salt příklady - Campos Basin Geothermics in Subsalt Basins (GOM) Heat Treansfer Temperature 10.00 Ma - EvenlJO 300000 Temperature [eels in s j l20.00-27.00 H90.00-97.00 Temp (°C) -34.00 H97.00-104.00 ■41.00 Hl04.00-111. i 111.00-118.0C ■62.00 H125.00- -7S.O0 139.00- 1 2 34 5 6 7 8 910 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 48 48 50 52 54 56 58 60 82 64 f i 70 72 74 76 78 80 82 84 Ě 3 90 92 94 98 98 100 This example shows the strong effect of salt diapirs on temperature and maturity patern in the subsalt system Maturation Oil Generation Oil_TissotSEsrjitalie(1975)_T2 /0.00 Ma - Eventji 300000 ■12 34 56 78 910 12 14 16 18 20 22 24 2G 30 92 94 96 98 100 Heat Flow History - Basin Dynamics Synrift Postrift (cooling) Mature Passive Margin Heatflow distribution h 40 •- Uniform distribution -% Lateral variation • —I-........Ii-1-1-1-1-1-1-1-1-1-1-1-r 30 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 _ Age in Ma _ Li-Ki:njdE-:ht3.iiL.mai*i>k wohtlii ami:rlta .1111 :iHIIIUl7ll4+limp h ---d /^T. IUI Heat Flow Map of North America Blackwell, D. D., and Richards, M. 2004. Geothermal Map of North America. American Assoc. Petroleum Geologist (AAPG), 1 sheet, scale 1:6,500,000. Present heat flow pattern in respect to major tectonic features Průměrná povrchová teplota This is a reproduction of the Map by T.E. Gass (1982) Geothermal Heat Pumps Geothermal Resources Council Bulletin 11(11), 3-8. Teplota hladiny oceánů B 2 4 5 9 10 12 14 16 IS 20 22 24 26 28 30 32_ i-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 This image shows the temperature (°C) of the ocean water at the surface (August 6-11, 2001). This particular data set was taken by the NOAA-16 satellite. NOAA-16 is part of the TIROS series of polar-orbiting, environmental satellites. Image courtesy of The National Oceanic and Atmospheric Administration (NOAA) http://www.windows.ucar.edu/ Teplota v oceánech - hloubkový profil vodním sloupcem Increasing Temperature (C) 500 1000 - 1500 Increasing Depth (m) 2000 - 1 2500 - 3000 - 3500 - 4000 4500 4° 8° 16° 24' Thermocline Most of the solar radiation (light and fheat) that hits the ocean is absorbed in the first few tens of meters of water. Waves and turbulence mix this heat downward quickly. The surface layer of the ocean is well mixed from the top to the bottom of that layer. The temperature of the surface waters (the mixed layer) varies mainly with latitude. The polar seas (high latitude) can be as cold as -2 degrees Celsius (28.4 degrees Fahrenheit) while the Persian Gulf (low latitude) can be as warm as 36 degrees Celsius (96.8 degrees Fahrenheit). The average temperature of the ocean surface waters is about 17 degrees Celsius. _L _L _L _L Bottom Water Temperature [°C1 5 10 15 20 AO 500 1000 1500 „2000 jE 5 6 Q 2500 1 3000 3500 4000 4500 5000 25 -i Shelf / Neritic Upper Slope/ Upper Baihyal Abyssal Trench/Hadai Depth profiles of bottom water temperatures for several transects in the Northwest Atlantic Ocean margin. From: POELCHAU et al. 1997 Correction of the Upper Boundary Conditions (Climatic Temperature) based on Paleo-Climate Evolution and Lithospheric Plate Drifting CD Q) D) CD Q CD "O -*—> '-*—> CO _I CO CD Q 60- ------ IV ----E lediterranear urope i, North Afric; \, Arabia X. ....................*~ \ \ -----N ./\ —-s 1 -- s .............v.............V................ orth America outh Africa outh AmeriCc i \ \ \ \ \ V \\ \ v » \ \ j .V.\N. ...........................X\...........T...v^\. \ \ \ N. i -r \V :\ _' . \ • : ^ \ ^ 1 \ \ ............................!'s ....... ^\ ZZ2~2:.::.2- h------,__*->1 .............. X ' v. V _ y —-\ OA -350 -300 -250 -200 ■150 ■100 -50 0 Geological Time in My Geologická historie povrchových teplot Země Rekonstrukce paleo-šířky a změny klimatu v čase Surface temperature forNorthern Europe at 70 degrees latitude Legend: Leg B B 360.00 329.00 298.00 267.00 236.00 205.00 174.00 143.00 112.00 81.00 50.00 19.00 South [Time in Ma] Devon Geologický čas (Mil let před současností) Dnes Geotermie - Shrnutí Přínos tepelné energie ze zem. hlubin je dán tepelným tokem a tepelným efektem rozpadu radioaktivních materiálů Teplotní profil s hloubkou <= tepelný tok a tepelné vodivosti Všechno se mění - klima, dynamika Země