DU 1. Denote by A^xJ the ring of formal power series with coefficients in A, i.e. its elements are formal expressions f{x) = ao + a\x + ci2X2 + • • • = anxn. 1. Let J C R be an ideal and define the limit of the diagram ----> R/J2 R/J2 R/J to be the completion of R at the ideal J and denote it Rj. Show that A\x^ = ^4[^]mo, the completion of the polynomial ring at the maximal ideal mo = (x). Consider all the rings in the diagram equipped with the discrete topology and endow A^xJ with the limit topology. Give an explicit criterion for a sequence (or a net or a filter) of formal power series fk(x) = ^aknxn to converge to f{x) = ^anxn in terms of the coefficients a&n and an. 2. Show that for a field k the ring k[x]] is a UFD. As one of the ingredients, prove more generally that f(x) G A^xJ is invertible iff ao £ Ax is invertible; in the nontrivial direction, reduce to the case ao = 1, write f(x) = l+g(x) so that g(x) = a\x+a2X2 + - ■ ■, and show that the following makes sense and defines the inverse: f(x)-1 = (1 + g(x))-1 = 1 - g(x) + g(x)2 (using the previous point, one can make sense of the infinite sum on the right hand side as the limit of the sequence of partial sums; this indeed converges). 3. The goal is to prove that k[x]] is a UFD. As for the polynomials, one observes that for a tuple of variables x = (x',t) , one gets k[x]] = k[x']]|[t]]. However, it is generally not true that A being a UFD implies A^xJ being a UFD, so one has to argue differently. We say that /(x) G k[x]] is a not-necessarily-monic Weierstrass polynomial w.r.t. t if it lies in and as such is a polynomial of degree n with leading coefficient invertible in k[x']] and all other coefficients non-invertible, i.e. lying in mo [[£]]. Classically, a Weierstrass polynomial is additionally assumed to be monic. The Weierstrass preparation theorem says that every formal power series /(x) G k[x']]|[£]] \ mo|[£]] is associated to a (unique monic) Weierstrass polynomial (the condition simply means that / is non-zero along the f-axis, i.e. that as an element of k[x]] it contains some monomial tn with a nonzero coefficient).1 Since we can assume that k[x']][i] is a UFD by induction, this can be 1Here is an idea of the proof: We want /(s) = a(is)(tn + fe(s)) with fe(s) G mo[t] of degree n — 1. Now rewriting this as tn = a(s;)_1/(s;) — fe(s) we want to divide tn by /(s) "with a remainder". Now one can easily divide by tn, for one can write canonically any formal power series as ao(~x.)tn + &o(s) with &o(s) G k[s'][t] of degree n — 1. Expressing /(s) in this way as /(s) = u(is.)tn + v(is.), now with v(is.) G mo[t] - this determines n, we see that /(s) is roughly u(x.)tn and we start by dividing by u(is.)tn instead: ao{^.)tn + &o(s) = ao(s;)w(s;)_1 w(s;)tn + &o(s) = ao(s;)w(s;)_1/(s;) + (—ao(s;)w(s;)_1u(s;) +&o(s)). Continuing in this way we see that the quotient is (ao(s) + ffli(s;) + ■ ■ ■ and the remainder is &o(s) + &i(x) + ■ ■ ■ provided that these converge. But one can see easily, using G mo[i], that if afe(s) G mo[i] then both afe+i(s),fefe+i(s) G m£+1[[t]. ultimately used to show that k[x]] is a UFD: Assume that M C N are two (cancellative) monoids satisfying: • The mapping M/ass —> N/ass is bijective. In detail, every element of ./V is associated to some element of M and every two elements of M that are associated in ./V are associated also in M. Show that if M has a unique factorization property then so does N. Apply this to M consisting of the (not-necessarily-monic) Weierstrass polynomials (these easily inherit the unique factorization property from k[x']][t] for they are closed both under multiplication and factorization) and ./V = k[x']]|[t]] \ moM- Finally, show that for any non-zero element /(x) G k[x]] one can set up the coordinates so that /(x) G ./V (look at the lowest non-zero homogeneous degree and apply the theorem from algebraic geometry about polynomials). DU 2. Here we work over M. (or better over C). Let C = V(f) C A2 be a curve that is smooth at xo G C in the sense that d/(x) 7^ 0. Then one can parametrize C near xo locally as x = (£(£), a(£)), passing through xo for t = to, and any two parametrizations differ by a diffeomorphism of the parameter space near to, so the following definition makes sense: The multiplicity of the intersection point xo of C = V(f) and D = V(g) is defined as the order of zero at to °f the function Y be a regular map and denote by k[X] the induced map on coordinate k-algebras. We showed that V(tp*I) = /_1(l/(/)). 1. Prove symmetrically that I(f(S)) = Xq is surjective with finite fibres and identify them as orbits of the G-action. Conclude that Xq = X/G as sets. 2Start by observing that any a G A is a root of a monic polynomial pa = IlgeG^ — ffl9) wnose coefficients are the elementary symmetric polynomials 04(a) = ai{a9 \ g G G}, up to a sign, and as such lie in AG. Denote the generators of A as Uj and denote by B the subalgebra generated by tji(uj). Then pUj (uj) = 0 implies that u™ G B{1, Uj,..., m"-1}. For this reason, A = SJm™1 ... u"r | «i,..., ar < n} = B{ua}, so A is already finite over B. Explicitly, for any a £ A, we have an expression a = ^ baua with ba G B. Apply the symmetrization S: A —> AG, S(a) = ^ ^2geG a9', assuming that a G AG, we get a = S(a) = J2b<^S(ua) and thus A° = B{S(ua)} = h[ai(Uj), S(aa)}. 3 DÚ 1. Dokažte následující izomorfismy: • Ala-1} ~ A[t]/(at—t)y • (A/I)[t] = A[t]/J a popište ideál J, • A/{I I J) = (A/I)/Jr a popište ideál J' ve stylu "je to v zásadě J, jenom... ". DU 2. Pomocí Grobncrovy báze vyřešte soustavu polynomiálních rovnic x2 + y + z = 1 x + y2 + z = 1 x + y + z2 = 1 DU 3. Nechť k je algebraicky uzavřené těleso. Studujte vztah mezi nenulovými kvadratickými polynomy / C k[íEi,..., xn] a příslušnými afinními varietami V{f) C An; konkrétně se zabývejte tím, nakolik je zobrazení / i > V{f) injektivní. Dále proveďte analogickou studii pro kubické polynomy. DU 4. Dokažte následující tvrzení: • Afinní varieta X je ireducibilní, právě když pro libovolné afinní variety X±, X2 platí X C X\ U X2 ==>■ (X C X\ VI C X2). • Ideál J je prvoideál, právě když pro libovolné ideály J±, J2 platí J D Ji J2 =^(JDJiVJ3 J2). • Pomocí předchozích dvou tvrzení dokažte, že X je ireducibilní, právě když I{X) je prvoideál (není k tomu potřeba Hilbertova věta o nulách, ale klidně ji použijte). DÚ 5. Označme I = (g \ g €ž I) ideál generovaný homogenizacemi g = xQdegs'gIxP \a\ > |/3| V(|a| = |/3| f\xa > x?). Dokažte, že v případě, že / = (51,... ,gr) je Gróbnerova báze vzhledem k >gr, je také / = (gi,..., gr) Gróbnerovou bází vzhledem k podobném uspořádání >gr, jen s xq navíc a menším než zbylé proměnné, tj. x\ > • • • > xn > xq. DU 6. Ukažte, že zobrazení /: P2— -tF2, (x$ : x\ : x2) 1—> (x\x2 : x2xq : xqX\) je biracionální ekvivalence a najděte otevřené podmnožiny P2, na nichž je / izomorfismus. (Nápověda: napíšete-li si zobrazení afinně, inverze by měla být jasná.) DU 7. Dokažte, že obraz regulárního zobrazení A1 —> An je uzavřený (nápověda: použijte, že P1 ->• Pn je re gulární a zkoumejte obraz nevlastního bodu). DU 8. Řekneme, že fc-rovina K a /-rovina L se protínají transverzálně v Pn, jestliže jejich průnik je {k + 1 — n)-rovina. Ukažte, že obecná dvojice (K, L) G G(k, n) x G(l, n) se protíná transverzálně. DU 9. Nechť /: X—> Y je surjcktivní uzavřené zobrazení mezi Nocthcrovskými topologickými prostory takové, že pro každou dvojici uzavřených podmnožin A ^ B C X, kde B je ireducibilní, je f (A) Q f (B). Dokažte, že / je otevřené. 4