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Abstract: The temperature steers the equilibrium and nonequilibrium conformational dynamics
of macromolecules in solution. Therefore, corresponding molecular dynamics simulations require
a strategy for temperature control which should guarantee that the experimental statistical
ensemble is also sampled in silico. Several algorithms for temperature control have been
proposed. All these thermostats interfere with the macromolecule’s “natural’” dynamics as given
by the Newtonian mechanics. Furthermore, using a single thermostat for an inhomogeneous
solute—solvent system can lead to stationary temperature gradients. To avoid this “hot solvent/
cold solute” problem, two separate thermostats are frequently applied, one to the solute and
one to the solvent. However, such a separate temperature control will perturb the dynamics of
the macromolecule much more strongly than a global one and, therefore, can introduce large
artifacts into its conformational dynamics. Based on the concept that an explicit solvent
environment represents an ideal thermostat concerning the magnitude and time correlation of
temperature fluctuations of the solute, we propose a temperature control strategy that, on the
one hand, provides a homogeneous temperature distribution throughout the system together
with the correct statistical ensemble for the solute molecule while, on the other hand, minimally
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perturbing its dynamics.

1. Introduction

Molecular dynamics (MD) simulations using molecular
mechanics (MM) force fields have become a widespread tool
to study the equilibrium conformational dynamics of proteins
and peptides in solution," including processes of folding and
refolding.? More recently, also nonequilibrium processes
have been simulated in which a protein or peptide is
destabilized, for example by applying an external force
mimicking the action of an atomic-force microscope,’™ by
exerting internal mechanical strain,®’ by introducing point
mutations into the protein sequence,®® or simply by elevating
the temperature.”'®

The behavior of proteins in solution is steered by the
thermodynamic conditions, notably by the temperature. The
native state is stable only within a certain temperature range;
processes of hot and cold unfolding have been observed.''
The temperature influences the stability and function of
proteins not only directly by changing the relative importance
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of the entropy but also indirectly via certain temperature
dependent solvent properties such as the dielectric constant'?
or the viscosity.13 Therefore, if one wants to describe
experiments on proteins by MD simulations, the temperature
must be properly controlled.

Clearly, an adequate method for temperature control is not
the only precondition if one aims at quantitative descriptions
of experimental data. In this respect, the quality of the
employed force field, the sufficiency of statistical sampling
achieved by finite simulation times, and other technical issues
are also questions of concern.'* However, the temperature
is of key importance because many experimental observables
that can be compared with the information obtained from
MD simulations sensitively depend on this parameter.
Examples are the temperature factors in X-ray crystal-
lography,'® the proton exchange and spin relaxation rates in
nuclear magnetic resonance spectroscopy [see ref 16 and
references therein], and the fluorescence depolarization
rates'” as well as the thermodynamical measures of protein
stability.'8
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The requirement of proper control does not only apply to
the temperature, i.e. the average kinetic energy of the system,
but also to other ensemble properties (e.g., energy fluctua-
tions) associated with experimental observables. Thus, in a
broader sense, the problem of temperature control in MD
simulations is also that of generating the correct statistical
ensemble (usually canonical or isothermal—isobaric). The
accurate generation of a specific statistical ensemble by
means of a MD simulation is also relevant for the application
of generalized ensemble techniques like replica exchange
molecular dynamics'®2! which has recently become very
popular in order to enhance the sampling efficiency. These
techniques rely on the assumption that the applied MD
method samples the canonical ensemble at the respective
temperature.

When simulating macromolecules in solution, the solvent
environment, which is essential for the properties of the
solute, can either be treated implicitly using continuum
approximations or explicitly by including part of the solvent
into the simulation system.'* The following discussions
exclusively deal with the latter case and are devoted to the
task of controlling the temperature of a solute macromolecule
in explicit solvent. This task can comprise additional
challenges if nonequilibrium relaxation processes are studied.
Here, frequently, energy is released in one part of the system
and then dissipated into the rest of the simulation box, e.g.
from a solute molecule to the surrounding solvent. Since the
kinetics of energy relaxation and heat transport can influence
the dynamical properties of the solute,” any applied tem-
perature control method should make sure that the natural
energy relaxation processes are unimpaired.

Generally, the ideal temperature control scheme for
solute—solvent systems would be to simulate the complete
simulation system microcanonically, i.e. at constant total
energy in the NVE ensemble. One can show?>’ that, in this
situation, an arbitrary subset of degrees of freedom in thermal
contact with the rest of the system (e.g., the solute’s kinetic
degrees of freedom) will sample the canonical ensemble if
the energy fluctuations of the subsystem are insignificant
compared with the total energy in the rest of the system.
Furthermore, one can show that the subsystem will sample
the isothermal—isobaric ensemble if also the subsystem’s
volume fluctuations are negligible compared with the volume
of the rest of the system. Finally, one expects that all those
configurational degrees of freedom of the solute which
directly interact with the solvent system will sample the
canonical or isothermal—isobaric ensemble, respectively, if
additionaly the solute—solvent interaction energy is neglib-
ible compared with the solvent-internal interaction energy.
In MD simulations systems, the latter condition is fulfilled
if the solvent atoms by far outnumber those of the solute.
Concurrently, by using the NVE approach, the solute’s
Newtonian dynamics are left completely undisturbed. The
NVE strategy has been recommended® for studies of protein
folding kinetics and is occasionally applied®>*® to eliminate
a putative influence of thermostat algorithms on the simulated
dynamics.

Unfortunately, the simple NVE strategy is not easily
applied to extended MD simulations. Numerical inaccuracies

Lingenheil et al.

associated with approximation schemes serving to speed up
the computations generally lead to a violation of energy
conservation. For example, heating may be caused by certain
approximate treatments of long-range electrostatic interactions®’*
or by integrating the equations of motion with multiple-time-
step algorithms.*® Cooling may occur, for instance, if
constraining bond lengths or angles with a too loose
tolerance™ or if neighbor lists for the calculation of the van
der Waals interactions are not updated frequently enough.*’
The defect of energy conservation could, in principle, be
compensated by using an ergostat algorithm which would
just scale the velocities of all atoms at every time step by an
appropriate factor to keep the total energy exactly constant.
However, the rates of algorithmic energy drift can vary
among the constituents of an inhomogeneous simulation
system leading to unphysical steady state temperature gra-
dients,** a problem sometimes referred to as the “hot-solvent/
cold-solute” problem.’* For example, such a gradient can
result from an approximate treatment of the electrostatic
interactions, which may render a mildly polar solute less
affected by algorithmic noise than a strongly polar aqueous
solvent,?*%3°

Thus, specifically for equilibrium simulations of macro-
molecules in solution, the applied temperature control has
to fulfill an important requirement: The temperature distribu-
tion has to be homogeneous throughout the inhomogeneous
simulation system. As a strategy guaranteeing such a
homogeneous temperature distribution it has been suggested
to couple the subsystems independently to separate thermo-
stats.*® Further below we will check this strategy among
others because it is the central aim of this work to determine
an optimal strategy for generating a homogeneous temper-
ature distribution in solute—solvent simulation systems.

From a general point of view, the appropriateness of a
given temperature control method involves the following
three aspects:

a) Thermodynamics: Does the method generate the
expected thermodynamical ensemble in principle (i.e., with
simulations of infinite length and in the absence of numerical
errors)?

b) Ergodicity: Does the method generate the expected
ensemble within the time typically covered by modern MD
simulations?

¢) Dynamics: Is the time dependence and spatial distribu-
tion of the thermostatic forces realistic? For a solute in
solution, for example, one would prefer to have no such
forces at all beyond the thermostatting Newtonian interac-
tions with the solvent.

A number of different algorithms has been proposed as
realizations of the required thermostats (for a review see ref
36). Each of these algorithms has its specific merits and
drawbacks. A critical discussion of these issues is another
goal of our study.

For example, the widely used Berendsen thermostat®’ (BT)
has the advantage to couple only weakly to the dynamics of
the controlled system (see the original paper ref 37 for this
issue). On the other hand, it is clear from theoretical
considerations that the BT does not create a canonical
distribution of microstates,*” i.e. it introduces artifacts of type
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a). Furthermore, the BT violates energy equipartition by
redistributing energy from high to low frequency modes,
which leads to the so-called “flying-ice-cube effect”.?*>" It
is unclear whether this effect is specific to the Berendsen
method and closely related methods or it can occur with any
thermostat belonging to the more general class of velocity
rescaling algorithms.®

The more strongly coupling Nosé-Hoover thermostat
(NHT) is theoretically expected to generate the canonical
distribution of microstates if certain conditions are obeyed
thus conforming with the above question a).*> However,
within the time covered by a typical MD simulation,
amplitudes of temperature fluctuations were observed which
were by 1 order of magnitude larger than those expected for
a canonical ensemble.** Several studies*****” have shown
that Nosé-Hoover coupled systems do not necessarily acquire
ergodicity in a reasonable time [cf. question b) above] if these
systems are small, stiff, or at low temperatures. Additionally,
by its very construction as a velocity rescaling algorithm,
also the NHT could show the flying-ice-cube artifact
(although we are not aware of any reports on a corresponding
example).

41,42

As a reaction to these problems, modifications to both the
Berendsen and Nosé-Hoover schemes have been proposed.
The most frequently employed variant of the Nosé-Hoover
thermostat is the so-called Nosé-Hoover chain,*® which has
been successfully tested by Cheng and Merz>® as a remedy
to the hot-solvent/cold-solute problem. No artifacts or
deviations from the canonical ensemble have been reported
so far. Only recently, Bussi et al.* suggested a modification
of the Berendsen scheme in order to reliably generate a
canonical distribution for systems that otherwise would
sample the microcanonical ensemble. Both, the Nosé-Hoover
chain and the modified Berendsen thermostat induce tem-
perature fluctuations of the correct size by artificially scaling
the atomic velocities. For systems, however, which anyway
sample the canonical ensemble, such a thermostat introduces
an unnecessary perturbation of the dynamics, i.e. artifacts
of type c). The generic example for such a system is a solute
molecule in a sufficiently large explicit solvent system,
which, as discussed above, always samples a canonical
ensemble although possibly at the wrong temperature because
of algorithmic inaccuracies.

Concerning temperature control of macromolecules in
solution, we want to show how one can (i) generate the
appropriate ensemble for the solute molecule in adequate
time, (ii) leave invariant the time scales of energy relaxation
and of equilibrium fluctuations, and (iii) guarantee a homo-
geneous temperature distribution in equilibrium simulations
with (iv) minimal perturbation of the solute’s Newtonian
dynamics.

For this purpose we will scrutinize in section 2 the existing
temperature control scenarios for MD simulations of
solvent—solute systems by partially recollecting and partially
developing associated theoretical concepts. These consider-
ations will lead to the definition of strategies for a minimally
invasive control of a solute temperature. In section 3 we will
sketch the methods which we employed in a series of quite
extended test simulations on peptides in aqueous solution.
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As explained in section 4, these simulations were specifically
designed to estimate the extent to which the theoretically
expected effects of temperature control do actually modify
the properties of a solute peptide. Section 5 discusses the
results and suggests a practical procedure ensuring a
minimally invasive temperature control.

2. Theory

Thermostats. The most widely used class of thermostat
algorithms is based on the rescaling of atomic velocities.
The equation of motion for an atom which belongs to a
system under the rule of such a thermostat is

m(0) =F, (1) — my (0 (1) M

Here, the acceleration ¥4(7) of atom i is caused not only by
the forces F; () derived from an MM force-field but also
by a second term F; herm(t) = —m;y(O¥(f), which is propor-
tional to the atom’s velocity I(7) and to a generally time
dependent thermostat parameter y(f).

In the Berendsen scheme, y(#) is directly given in terms
of the instantaneous kinetic temperature®® T(r) by

1 Ty

rO=>1"" 10

with 7 denoting the coupling time and 7, the target
temperature. For the Nosé-Hoover*'**? thermostat, y(f) is
coupled on a time scale Tnur to T(f) by the differential

equation

2

d_V:L[&_ 1] 3)

dt Thur T,

Perturbation of the Dynamics. Every thermostat which
is described by eq 1 perturbs the Newtonian dynamics
generated by the forces F; y(f) through the admixture of
additional thermostatic forces F; pem(?). For a solute—solvent
system, these thermostatic forces introduce artifacts of type
¢) concerning the dynamics (cf. section 1). The resulting
perturbation can be measured for a selected atom i by the
quotient

512 = mitherm @/ miz,ffl% (4)

where the brackets [1.[} denote temporal averages over a
simulation of a given duration D. The perturbation quotients
(4) will depend on the system size and on the particular
thermostat, i.e. on the form of y(#), as well as on the coupling
time.

The perturbation quotients &; are strictly local measures
for the influence of a thermostat on a simulated dynamics.
However, one may also consider the local perturbation
inflicted on a certain group G of atoms within a simulation
system, e.g. on the Cqy-atoms of a solute peptide embedded
in a solvent environment. Then the root mean quotient o=

\/@fl% over the &7 belonging to G can be used to compare
how the dynamics of a solute is perturbed in different
solute—solvent systems.

Instead of calculating the averages [IF'% thermd required for
the evaluation of the §,~2 directly from a simulation, one can
also give a simple estimate for these average square forces.
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Assuming a sufficiently large simulation system, the veloci-
ties of the individual atoms will negligibly contribute to the
temperature 7(¢). Hence, the correlation of y2 and ¥7 vanishes
and one obtains

[Fitherm@ = Eh?yzrtz@ = m?ﬂﬂ@&f% (5)
Assuming furthermore that the system is in equilibrium, that
the atomic velocity distributions are undisturbed by the
thermostat, and that the system is free of internal constraints
(such as fixed bond lengths), the mean square velocity of
atom i is expected to be @?0) ~ 3kgT/m;, where T = [T is
the average temperature determined from the simulation.
Equation 5 then becomes

|1?1'2,therm @ = S.InikB’fB/2 l% (6)

We will check this estimate by sample simulations and show
that it already holds for relatively small systems.

Inserting the estimate 6 into eq 4, one can recognize that
the perturbation quotients of a given system which is
simulated with different thermostatic strategies solely differ
with respect to Ijllej). Thus, in this case, comparisons of the
mean square scaling activities [7*[} suffice for the evaluation
of different thermostatic strategies concerning the size of
local perturbations of the dynamics. However, thermostats
do not only cause local perturbations of the Newtonian
dynamics but may also interfere with ensemble properties
like, for example, size and time scales of the temperature
fluctuations.

Temperature Fluctuations. In an MD simulation, the
statistics of the temperature fluctuations provides a probe
for artifacts of type a) and b) pertaining the generation of
the desired ensemble (section 1). For a system in contact
with a heat bath of temperature 7}, the distribution of
microstates is either given by the canonical or by the
isothermal—isobaric ensemble. However, with respect to the
temperature fluctuations, both ensembles are equal. The
associated probability density p(T) for the instantaneous
kinetic temperature is a y*-distribution"

_ (NpoeT/21)" [ NDOFT]
T T TWNp/ 2T € 2T

(N

where T = T, is the expectation value of T, Np. is the
number of degrees of freedom (DoF) of the system, and
I'(...) denotes the Euler I'-function. Consequently, the vari-
ance o7 of the temperature fluctuations is

2T
O%_ NDOF

®)

Under the influence of a thermostat, the statistics can deviate
from what is expected for a canonical ensemble. This
deviation constitutes a measure for the global influence of
the thermostat and for how close a simulation is to sampling
the canonical ensemble. In the limit Npo,r—00, eq 7 becomes
a normal distribution.

The size of 0% together with the autocorrelation time>° 7,
of the temperature fluctuations critically influences the
accuracy with which the equilibrium temperature 7' is
determined by a given simulation. The variance o7 of the
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time averages 7" obtained from a set of equilibrium simula-
tions with durations D can be estimated® to be

=203 ©

In order to judge whether a particular strategy is suited to
correctly tune the temperature 7, one has to perform a test
simulation which is long enough to determine 7 with
sufficient accuracy. For a small solute (large 07) with a
correlation time 7, longer than 10 ps, an accuracy of 1 K
may require simulation times of up to 10 ns.

Power of a Thermostat. By means of the observables
introduced above, one can judge to what extent a thermostat
can perturb the dynamical and equilibrium properties of a
solute in solute—solvent simulations. Such perturbations can,
of course, be avoided by using no thermostat at all. However,
as outlined in section 1, this approach is generally not feasible
because algorithmic inaccuracies, which are inevitable in
large scale simulations using efficient MD codes, represent
heat drains or sources that have to be compensated.

To properly tune this compensation, we consider the work
performed by the thermostatic forces F; mem(#) on the atoms
i for an ensemble of simulation systems with the temperature
T(r) = [T(f)Lds. The ensemble average power exerted by the
thermostat on a given atom i is

BAO) = F e (1) * E(D) (10)

Using the definition of F; mem [see eq 1] and the Berendsen
expression 2 for y leads to

B = %Biqkm(t)[TO/T(t) — 110 an

with the usual definition for the kinetic energy &; kin(f) of
atom i. Employing once more the assumption of a negligible
correlation between the velocity [and, thus, the kinetic energy
&i kin(1)] of a single atom and the kinetic temperature 7T(¢) of
the system, one obtains
3kgT (1)
p=—

where kp is the Boltzmann constant, and Ti(f) =
2/3kpl8; «in(f)Lehs 1s the ensemble average temperature of atom
i. For equilibrated systems the ensemble averages employed
in eq 12 can be replaced by temporal averages [1.03. This
allows to calculate for every subsystem « from a simulation
the (time) average thermostatic power

[To/T(1) — 1] (12)

kT,

ﬂl{z 2.[

[T,/T—1] (13)

per degree of freedom using the average temperature 7, =
[T.[} of the subsystem «, the corresponding average T =
[T of the temperature T(f) controlled by the BT, and the
thermostat parameters Ty and 7.

Further below we will use eq 13 to determine the
thermostatic power exerted by a BT on a solute peptide from
sample simulations. These data will be used to check the
validity of a heat conduction model which we will now
introduce to analyze the hot-solvent/cold-solute problem
occasionally hampering MD simulations of inhomogeneous
systems.
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Figure 1. Heat flow model representing specifically the “hot-
solvent/cold-solute” case for an inhomogeneous system
consisting of two subsystems with different heating rates. The
simulation system is coupled to a single thermostat, repre-
senting an external heat bath. Bright and dark colors code
low and high temperatures, respectively. Heat flows driven
by temperature gradients and heat sources are marked by
arrows. A detailed discussion is given in the text.

Heat Flow Model. In simulations of solute—solvent
systems, the algorithmic heat drains or sources may be
inhomogeneously distributed and, thus, the temperature may
likewise be inhomogeneous. According to requirement (iii)
stated at the bottom of the Introduction, such inhomogeneous
temperature distributions should be avoided. Figure 1
sketches a heat flow model from which one can derive
strategies for the reliable control of the solute temperature.
As drawn, the model refers to a particular strategy employing
a single thermostat for the whole system. For further
reference we denote this strategy by G.

The model depicted in Figure 1 consists of two subsystems
k € {P,S} with P denoting the solute and S denoting the
solvent. The powers o, of algorithmic heating per DoF are
assumed to be constant and homogeneous within the
subsystems. Furthermore, the temperature is assumed to be
homogeneous within each subsystem «, i.e. for the atomic
temperatures 7; we have T; = T, for all i € x. According to
eq 12, the ensemble average work S,(f) exerted on atom i
per unit time by the global thermostat then only depends on
whether i is part of P or S, respectively. Thus, for the
subsystems « € {P, S} the respective thermostatic powers
per DoF are given by

B = ’%;@[TO/T@ 1] (14)

If the local temperatures Tp and T differ, as is assumed in
Figure 1, there will be a net heat flow

. kB[Ts(t) - Tp(t)]

Bsp(t) = 5)

27gp
between S and P, which we assume to depend linearly on
the temperature difference. Here, the time constant gp
characterizes the thermal coupling of the subsystems.

The heat flowchart shown in Figure 1 immediately
suggests stationarity conditions. In the steady state, the net
heat flow must individually vanish for each of the two
subsystems, i.e.
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op+fsptfp=0 (16)
05— fept+Ps=0 a7

Now suppose for a moment that the temperature distribu-
tion is homogeneous throughout the system, i.e. Tp(t) = Ts(t)
= T(¢). According to eq 14 the thermostatic powers [p(f)
and fs(7) exerted on the subsystems are then equal, and, by
eq 15, the heat flow SBsp(f) between S and P vanishes.
Equations 16 and 17 then immediately require as the
stationarity condition that ap = @, i.e. that the heat sources
in the subsystems work at equal powers.

If this is not the case (ap & ), the temperature cannot
be homogeneously distributed in the stationary state, and,
by eq 13, there will be a nonvanishing heat exchange fSsp =
0 between the subsystems. As a result, a steady state
temperature difference is inevitable whenever, upon applying
scenario G, a single global thermostat is used to thermostatize
a system exhibiting inhomogeneities with respect to the rates
o, of algorithmic heating. This is the origin of the hot-
solvent/cold-solute problem as described e.g. in ref 34.

Separate Thermostats. To avoid temperature inhomoge-
neities, it has become a standard in simulations of macro-
molecules tocouple separate thermostats tothe subsystems, 4727
We will denote this temperature control scenario by P. In
the following discussion of scenario P, we will concentrate
on the temperature control of the solute P, assuming that
the temperature of the solvent S is reliably controlled. Such
a reliable control can be achieved by a solvent thermostat
combining a coupling time s on the subpicosecond time
scale (e.g., Ts = 0.1 ps) with a target temperature 7, s equal
to the intended temperature. This choice of thermostat tuning
actually is the standard (see e.g. refs 33, 36, 37, 47, 52-56),
and, thus, we call it the classical setup.

For a scenario P, in which a separate BT is coupled to a
(thermally homogeneous) solute P, the controlled temperature
T(¢) is the solute temperature 7p(f). Thus, we obtain from eq
14 the simplified expression

kB
Bpt)= E[TO —Tp(0] (18)

for the power of the thermostat acting on P. With eqs 18
and 15, the solute’s stationarity condition 16 may be rewritten
as

kg(Ts— Tp) + kg(Top— Tp)
2Tgp 27,

op =0 (19)
where Ty p denotes the target temperature, and 7p denotes
the coupling time of the solute thermostat. The first term
characterizes the algorithmic heating within P, the second
term characterizes the heat flow between P and S, and the
third term characterizes the power fp of the thermostat
separately coupled to P.

Equation 19 is the quintessence of our linear heat flow
model and may be used to predict the effects of three
different thermostatic strategies within scenario P. In all these
strategies, S is coupled to a classical BT and P is decoupled
from this thermostat. The three strategies are as follows:

P.1 The solute P is coupled to a classical thermostat. Here,
the use of a correspondingly small coupling time 7p =~ 0.1
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ps is the standard.>®>>7>%38 For such small 7p, eq 19 is
completely dominated by the thermostatic term. The reason
for this dominance is that 7p is by at least 1 order of
magnitude smaller than the solute—solvent coupling time tsp,
which is typically larger than 1 ps (see further below).
Neglecting the heat flow contribution, the deviation Tp —
To. p from the target temperature is given by 20,7p/ks. For
moderate algorithmic heating rates op, this deviation is
expected to be small because of the short time scale 7p.

P.2 No separate thermostat is coupled to the solute P, i.e.
Tp—00, and solely the thermostatted solvent S acts as a heat
bath. We call this strategy “noninvasive” because it does
neither alter the Newtonian dynamics nor the energy
relaxation properties of P. The expected temperature differ-
ence Tp — Ts = 20ptsplkp will be small if the local heating
op is negligible on the time scale 7gp of the thermal coupling
between the subsystems.

P.3 The solute is coupled to a thermostat with a very large
coupling time 7p>7sp to realize a “constant heat flow” (CHF)
approach. As suggested by the heat balance eq 19, a
homogeneous (7p = Ts) and stationary temperature distribu-
tion only requires that the thermostatic power f3p cancels the
power ap of algorithmic heating, i.e., ap = kg(Tp — To, p)/
27p. This condition can be satisfied for an arbitrarily large
coupling time 7p by a proper choice of the target temperature
To. p. In the limit 7p—00, the thermostat variable y in eqs 1
and 2 becomes a constant yp, and the thermostat scheme
may actually be descibed by this single parameter. At large
7p, the thermostat works in a heating/cooling limit as a
constant heat source/drain, and this activity solely serves to
maintain the energy balance. Because of eq 2, the perturba-
tion of the Newtonian dynamics [cf. eq 1] inflicted by such
a CHF thermostat can be made very small. Therefore, we
call the CHF approach to the solute’s temperature control,
which is applicable to non-negligible local heating rates o,
“minimally invasive”.

To set up a CHF simulation as required in strategy P.3,
the a priori unknown power ap of algorithmic heating has
to be determined in order to specify the constant thermostat
parameter yp, or, equivalently, the paramteres 7 p and 7p if
a traditional Berendsen thermostat is used in the heating/
cooling limit. To this end, the solute temperature 7» has to
be measured in two test simulations with different heating
powers f3p of the thermostat. The two heat balance eqs (19)
of these tests then constitute a system of linear equations
which determines the unknown parameters fsp and ap. A
detailed description of the setup protocol is given in
Appendix A.

In the following we will examine the temperature control
strategies G and P.1 —P.3 introduced above by test simula-
tions. Based on these results, we formulate guidelines for a
temperature control satisfying the four conditions sum-
marized at the bottom of the Introduction.

3. Methods

MD Simulation Techniques. The software packages
EGO-MMII?” and GROMACS>® were used in several series
of MD simulations. Besides EGO we also applied GRO-
MACS because it provides an NHT in addition to a BT,
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because it is computationally efficient for very small systems,
and because it can provide data for a crosscheck of results.
In EGO the electrostatic interactions are treated combining
structure-adapted multipole expansions®”®! with a moving-
boundary reaction-field approach®® and a multiple-time-step
integration.?"*> In the GROMACS simulations we used the
PME method®® with a 10 A cutoff for the real space
contribution, with a grid spacing of 0.5 A, and with a sixth
order interpolation of the charges to the grid. For both EGO
and GROMACS simulations, the van der Waals interactions
were truncated at 10 A. If not stated otherwise, the simula-
tions were carried out with explicit solvent using periodic
boundary conditions and with a BT (zg = 0.1 ps, Ty, s = 300
K) rapidly coupled to the solvent to guarantee that the solvent
was closely kept at the target value. Bond lengths were
constrained using the M-SHAKE algorithm® with relative
tolerances of 10™* when using GROMACS, which is the
recommended default value, and 10~° when using EGO,
which is hard-coded in the source code in this case.

We applied different simulation protocols to vary the
heating properties within the simulation systems. Here, the
first parameter was the software used for simulation, which
we denote by E for EGO or G for GROMACS. Since the
M-SHAKE algorithm is known*® to have a cooling effect,
we varied the number of constraints by either constraining
no bonds at all (N), only bonds involving a hydrogen atom
(H), or all bonds (A). The last parameter which presumably
influences the heating in the system is the length Az of the
basic integration time step, which we simply denote by its
value in femtoseconds. Thus, a standard EGO simulation
(constraints on bonds involving hydrogen atoms and Ar =
1 fs) would be denoted by E/H/1.

Model Systems. The first model system was a polyalanine
octapeptide (8ALA) with charged termini described by the
GROMOS96 force field®* and embedded in a cubic box of
20 A edge-length containing 236 simple point charge (SPC)
water molecules.®® The number of DoF for the peptide then
is 153/143/103 for N-/H-/A-constraining, respectively. The
starting conformation was always fully extended. The system
was equilibrated for 300 ps during which solute and solvent
were coupled to separate BTs (7p = 75 = 0.1y, To,s = To,p
= 300 K). The second model system was an alanine
dipeptide (ALDI) described by the CHARMM?22 force field®®
in a cubic box of 21.3 A edge length containing 324 water
molecules modeled by the transferable three-point intermo-
lecular potential (TIP3P).°*®” Here, the number of peptide
DoF is 66/54/45 for N-/H-/A-constraining, respectively. The
system was prepared as described for 8ALA, except that the
equilibration time was only 100 ps.

MD Simulations. A first series of seven MD simulations
of 8ALA in SPC water served to study the various situations
encountered in the temperature control of inhomogeneous
systems. Table 1 associates acronyms to these simulations
and lists the employed parameters. In particular, in the last
simulation G/A/2_P.3, the CHF approach was applied to the
peptide. Using the data from the preceding simulation G/A/
2. P2 (tp= oo, Tr=1293.4 K), in which only S was coupled
to a classical BT and the data from an independent 10 ns
test simulation with an additional CHF thermostat coupled
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Table 1. Simulation Names and Associated Parameters in Series #12

protocol thermostat parameters
name software C Atlfs Dins Tsys/PS 5/ps p/ps To.PK

E/HA_G EGO H 1 20 0.1 - - —
E/H/2_G EGO H 2 20 0.1 - - —
E/H/2_P.2 EGO H 2 20 — 0.1 - —
G/H/2_P.2 GROMACS H 2 20 — 0.1 - —
G/A/2_P.2 GROMACS A 2 20 — 0.1 - -
G/A/2_P.1 GROMACS A 2 20 — 0.1 0.1 300
G/A/2_P.3 GROMACS A 2 20 — 0.1 500 2340

2 The simulation names code the varied parameters and temperature control scenarios. C specifies the type of bond length constraints,
At the size of the basic integration time step, and D the duration of the simulation. The parameters t specify the coupling times of the BTs
coupled to the whole system (sys), to the solvent (S), or to the solute (P). Top is the target temperature of a thermostat coupled to the
solute. The solute peptide was 8ALA in SPC water. See the text for further information.

Table 2. Simulation Parameters in Series #2¢

protocol thermostat parameters
name software C Atlfs Dins Tsys/PS 7s/ps TAlps To,PIK
CHF.0 GROMACS A 2 200 x 2 - 0.1 - -
CHF.1 GROMACS A 2 200 x 2 - 0.1 500 2340
CHF.2 GROMACS A 2 200 x 2 — 0.1 500 4800
CHF.3 GROMACS A 2 200 x 2 - 0.1 500 7700
CHF.4 GROMACS A 2 200 x 2 - 0.1 500 11100
CLS.1 GROMACS A 2 200 x 2 — 0.1 0.1 300
CLS.2 GROMACS A 2 200 x 2 - 0.1 0.1 340

@The model peptide was 8ALA in SPC water at Ts = 300 K. Except for the simulation set CHF.0, in which only Ts was controlled,
separate BTs were applied to S and P. See the caption to Table 1 for further information.

to the peptide (zp = 500 ps, Ty, p = 4800 K, Tp = 307.9 K),
the unknown parameters in eq 19 were determined as
described in the section 2. We found the values op =
—2.04kg K/ps for the algorithmic heating rate and 75p = 1.61
ps for the solute—solvent coupling time, which actually is
in the picosecond time range as claimed further above. To
realize a CHF thermostat maintaining the peptide at 7p ~
300.0 K, these values were inserted into eq 19 yielding a
“target temperature” Ty p = 2340 K. If the assumptions
underlying our heat-flow model are correct, this choice
should compensate through » = —op the algorithmic energy
drift in the G/A/2_P.3 simulation.

The setup of a second series of simulations was chosen
such that the effects of the local temperature and of a
thermostat on the dynamics of 8ALA can be studied. We
performed seven sets of 200 simulations each. Every single
simulation had a duration of 2 ns, amounting to 400 ns per
set and a total of 2.8 us of simulation time. The simulation
parameters are summarized in Table 2. All simulations were
performed with the G/A/2 protocol. In the first set (CHF.0),
no thermostat was coupled to the peptide, while in the
following four sets (CHF.1 to CHF.4) a BT targeting at
increasingly large temperatures 7y p was coupled in an
extremely slow fashion to the peptide. In the last two sets
(CLS.1 and CLS.2), a separate classical BT was coupled to
the peptide using either the same (7, p = 300 K) or a slightly
higher (7y,p = 340 K) target temperature as compared to
To.s. The 200 initial conditions were obtained by taking
snapshots every 20 ps from a 2 ns preparatory simulation at
300 K, with the peptide’s C, atoms harmonically coupled
to their initial coordinates of an extended conformation.

To compare the different thermostatic strategies discussed
in section 2, we determined the corresponding thermostatic

Table 3. Simulation Parameters in Series #37

protocol thermostat parameters

peptide software  C Atffs DIns tss/ps  pps  TopK
8ALA GROMACS N 1 0.25 NHT 0.064 300
8ALA GROMACS N 1 0.25 NHT 0.256 300
8ALA GROMACS N 1 0.25 NHT 1.024 300
8ALA GROMACS N 1 0.25 NHT 4.096 300
8ALA GROMACS N 1 0.25 NHT 16.384 300
8ALA/ALDI EGO N 1 0.25 BT 0.001 300
8ALA/ALDI EGO N 1 0.25 BT 0.004 300
8ALA/ALDI EGO N 1 0.25 BT 0.016 300
8ALA/ALDI EGO N 1 0.25 BT 0.064 300
8ALA/ALDI EGO N 1 0.25 BT 0.256 300
8ALA/ALDI EGO N 1 0.25 BT 1.024 300
8ALA/ALDI EGO N 1 0.25 BT 4.096 300

2 For nomenclature see the caption to Table 1. In all simulations
the solvent was coupled with s = 0.1 ps to a Nosé-Hoover (NHT)
or a Berendsen (BT) thermostat, respectively.

forces (eqs 5 and 6) and perturbation ratios (eq 4) in a third
series of relatively short 250 ps simulations. Simulations were
performed for 8ALA with varying coupling strengths and
BTs and NHTs, respectively. Additionally, we determined
the thermostatic forces and the perturbation ratio also for
ALDI and Berendsen coupling again varying the coupling
strength. The simulation parameters of the third series are
given in Table 3. As these simulations served to compare
thermostatic and force-field forces, no bond lengths were
constrained thus eliminating constraint forces.

Finally, a fourth series of slightly more extended simula-
tions (500 ps) was designed to examine how the solute’s
variance of temperature fluctuations (cf. the corresponding
paragraph in section 2) is affected by the coupling times of
a BT. We studied 8ALA and ALDI in water and in vacuum
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Table 4. Simulation Parameters in Series #47

Lingenheil et al.

system protocol thermostat parameters
peptide environment software C Atlfs Dins 7p/pSs To.PK
8ALA water/vac EGO A 2 0.5 0.001 300
8ALA water/vac EGO A 2 0.5 0.004 300
8ALA water/vac EGO A 2 0.5 0.016 300
8ALA water/vac EGO A 2 0.5 0.064 300
8ALA water/vac EGO A 2 0.5 0.256 300
8ALA water/vac EGO A 2 0.5 1.024 300
8ALA water/vac EGO A 2 0.5 4.096 300
ALDI water/vac EGO H 2 0.5 0.001 300
ALDI water/vac EGO H 2 0.5 0.004 300
ALDI water/vac EGO H 2 0.5 0.016 300
ALDI water/vac EGO H 2 0.5 0.064 300
ALDI water/vac EGO H 2 0.5 0.256 300
ALDI water/vac EGO H 2 0.5 1.024 300
ALDI water/vac EGO H 2 0.5 4.096 300
2 For nomenclature see the caption to Table 1. BTs were used for solvent and solute. The solvent was coupled with a coupling time of
0.1 ps.
304 led to a 3.0 K increase of the peptide temperature, indicating
302 that the modified simulation setup has caused certain
_ 300 algorithmic inaccuracies. When using EGO, the choice of a
€ 298 larger At is expected to reduce the accuracy of the integration
(296 . . . .
204 algorithm because the employed highly efficient multiple-

292
290

Figure 2. Average peptide temperature Tp observed in the
first series of simulations on 8ALA in SPC water. The
associated acronyms and parameters characterizing the
members of the series are given in Table 1.

by E/H/2 simulations using the same set of coupling times
as in series #3. Table 4 summarizes the simulations of the
last series.

4. Results and Discussion

Temperature Control Scenarios. As outlined above, the
series of equilibrium simulations on the model peptide SALA
in explicit water as characterized by Table 1 served to
exemplify the problems connected with the temperature
control of inhomogeneous systems. Figure 2 shows the
average peptide temperatures obtained in these sample
simulations. Using eq 9, the remaining uncertainty of these
average temperatures was estimated to o7, < 0.7 K. The
solvent temperatures were 300.0 K where not mentioned
explicitly.

In simulation E/H/1_G, we used the standard simulation
protocol for EGO (see section 3 for details), which includes
a classical BT coupled to the whole simulation system and,
thus, represents an example for scenario G outlined in section
2. Neither the resulting temperatures of the peptide (cf. Figure
2) nor of the solvent showed any statistically significant
deviations from the 300 K target value suggesting that in
E/H/1_G the algorithmic noise was weak.

Figure 2 indicates that this behavior was lost in simulation
E/H/2_G, in which the basic integration time step At was
doubled to 2 fs. For our sample system, this doubling of At

time-step algorithm does not exactly guarantee energy
conservation and because the corresponding violation in-
creases with the size of Ar (see refs 63 and 29 for a
discussion). According to Figure 2, the combination of a
global Berendsen thermostat with a reduced accuracy of
integration in simulation E/H/2_G apparently led to a
moderately elevated temperature for the peptide and to a
slightly (0.3 K) cooler temperature for the larger solvent
system. Nevertheless, the temperature of the total system was
accurately kept at 300.0 K by the thermostat. Apart from
changed signs (hot solute in cold solvent), this result is an
example for the classical problem reported in the literature, -4
which can arise in scenario G from indiscriminately coupling
a thermostat to all parts of an inhomogeneous system and
which is described by the heat flow model sketched in Fig-
ure 1.

However, as demonstrated by the average peptide tem-
perature displayed in Figure 2 for simulation E/H/2_P.2, this
temperature control problem was eliminated by simply
decoupling the peptide from the thermostat, i.e. by realizing
scenario P.2. This observation suggests that in the E/H/2
simulations the solvent experiences a considerable cooling,
whereas the level of algorithmic noise within the peptide is
very low. According to our experience, such a decoupling
of the solute is a proper solution for most temperature control
problems which can occur in simulations of inhomogeneous
systems using either EGO or GROMACS.

The fact that the application of scenario P.2 cannot always
remove such problems is demonstrated by the results of
simulation G/H/2_P.2, which was carried out with GRO-
MACS using the same settings as in the EGO simulation
E/H/2_P.2. According to Figure 2, in the G/H/2_P.2 simula-
tion the peptide was by about 2 K too hot, indicating that
the rate fsp of heat transport from the peptide P into the
solvent S was too slow to compensate the algorithmic heating
op > 0 of the solute occurring in this case.
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It may be expected that introducing additional M-SHAKE
constraints into the peptide system leads to a local cooling,*®
which might compensate the observed algorithmic heating
of P. This is the reason why we carried out simulation G/A/
2_P.2, which differs from G/H/2_P.2 only in the number of
constraints (50 vs 10) within the peptide. In fact, Figure 2
displays for simulation G/A/2_P.2 a peptide temperature
which is by 6.6 K cooler than that of the solvent, implying
that the original heating has been overcompensated by the
local cooling. A deviation of this size is unacceptable in
simulations serving to probe the equilibrium properties of
the solute. Thus, the simulation setup G/A/2 is a typical case
in which one of the two remaining temperature control
strategies P.1 and P.3 described in the section 2 should be
applied.

Hence, in simulation G/A/2_P.1 we utilized a separate
classical BT for temperature control of the peptide, while in
simulation G/A/2_P.3 we applied a CHF thermostat. Figure
2 shows that in both cases there is no significant deviation
of the observed peptide temperatures from the solvent
temperature. Both methods are capable of correctly thermo-
statting the solute. For the CHF thermostat we conclude that
the choice of parameters (cf. section 3) was correct and that
the underlying heat flow model describes the situation in this
case. This success has motivated us to further scrutinize the
validity of this model.

Validity of the Heat Flow Model. The second quite
extended series of simulations (see Table 2 for the param-
eters) can serve to assess the validity of eq 19, which
expresses the contents of the model. With eq 18 the model
19 can be equivalently reformulated as

2tgp
T, =T+~ (Bptotp) (20)
B

showing that the solute temperature 7» should depend linearly
on the heating power 3p of the solute thermostat. To specify
the unknown parameters ap and 7sp in eq 20, one needs
measurements of 7 and 7p from two simulations employing
different heating powers f3p.

Estimates f3p for the heating powers 35 can be determined
from simulations by evaluating eq 13 specifically for the case
of a solute thermostat, i.e. for «k = P, To = Ty, p, T = 7p, and
T = Tp. One obtains

kg .
Pr= 50 Tor =T 1)

which is, up to the use of different averages, identical to eq
18. Thus, at a constant coupling time 7p, the heating power
Bp is steered by the choice of the target temperature Ty, p
and measured through the average peptide temperature 7.
Therefore, the linear relationship 20 between T» and [5p can
be checked by comparing with data points (7,3») obtained
from simulations employing different target temperatures
TQ P

An inspection of the first five simulation sets in series #2
listed in Table 2 shows that this set qualifies both for the
evaluation of the unknown parameters in eq 20 and for the
check of this linear equation. In all simulation sets of series
#2, the simulation protocol was G/A/2 just like in the
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Figure 3. The average temperatures Tp of the peptide ALA8
(in SPC water at Ts = 300 K) resulting from constant local
heating with different powers 3 in the simulation sets CHF.0
to CHF.4 of series #2 (cf. Table 2). The prediction of linear
heat flow model eq 20 is drawn as a dashed line, and the
solvent temperature Tsis indicated as a dotted line (see the
text for explanation).

simulation G/A/2.P.2 of the first series. However, the
temperature control scenario P.2 (no separate thermostat for
the peptide) was employed only in simulation CHF.0. In the
remaining CHF simulations a BT was coupled to P using
an extremely slow coupling time 7, = 500 ps combined with
a large and increasing target temperature (cf. Table 2).
According to eq 21 this choice leads to a heating power f3»
of this thermostat, which increases from simulation CHF.0
(Bp = 0) to simulation CHF.4. Figure 3 shows the observed
stationary peptide temperatures 7p as a function of the
observed heating power J3p. In the case of the simulation set
CHEF.0 (black dot) the result of simulation G/A/2_P.2 (cf.
Figure 2) is closely recovered because the same temperature
control setting P.2 was applied, i.e. T» was by 6.5 K smaller
than the solvent temperature of 75 = 300 K. With nonzero
and successively growing f» the peptide temperature T} is
seen to increase.

The dashed line in Figure 3 expresses the linear relation
20 between f[p and Tp. The required parameters were
determined as ap = —2.02kz K/ps and 75p = 1.60 ps from
the simulation sets CHF.0 and CHF.2. Therefore, the dashed
line linearly interpolates between the data points (Bp,T») of
these two simulation sets. The above values of the parameters
op and Tsp closely agree with those calculated earlier (see
Methods) for setting up the CHF thermostat used in simula-
tion G/A/2.P.3. This result is expected because in both cases
the parameters 0 and 7sp were computed from simulations
employing the same parameters.

In simulation set CHF.1, the peptide temperature was
nearly identical to Ts with 7» = 299.5 K (black square in
Figure 3) because here the thermostat parameters were
chosen equal to those of the simulation G/A/2.P.3 (series
#1), which realizes the P.3 strategy. The temperature 7p
predicted for CHF.1 by the dashed line deviates by only 0.5
K from the observed average. This deviation is probably
significant because the temperature averages shown in the
figure are extremely well converged (07,< 0.1 K) due to
the extended statistics. If a similar interpolation would be
constructed using the data from the simulation sets CHF.3
or CHF .4 instead of CHF.2, the error in the prediction for
CHF.1 would increase to 1.1 K or 2.2 K, respectively, with
increasing violation of the approximate linear relation 20
between fp and Tp. In the case of 8ALA in explicit water,
the assumption of a linear thermal coupling between solvent
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Figure 4. Temperature dependence of the peptide backbone
dynamics of 8ALA. The graph shows the average number of
transitions per angle and nanosecond of the y-dihedral angles
between the a-type region [-60°,—30°] and the j-type region
[95°, 145°] for the five CHF simulation sets (filled circles) and
the two CLS sets (empty squares) over the observed average
peptide temperature Tp. The error bars give the range of plus/
minus one standard deviation. Additionally, an Arrhenius®®
model (dashed line) fitted to the CHF data is plotted. The
simulation parameters are summarized in Table 2.

and solute (eq 15), thus, obviously breaks down if Tp deviates
by more than about 10 K from T, which is probably also
true for related simulation systems. In test simulations serving
to set up a CHF thermostat through eq 19, the deviation 17
— T4l should, thus, be smaller than about 10 K if one wants
to guarantee an accurate tuning of 7p in applications of
strategy P.3.

Backbone Dynamics. As we have seen further above, the
use of an inappropriate strategy for temperature control can
lead to peptide temperatures considerably deviating from that
of the solvent. It seems likely that such a deviation can entail
an altered conformational dynamics of the peptide. To check
this expectation, we analyzed the second simulation series
also in this respect. Due to the extremely slow thermostat
coupling employed in CHF.0 to CHF .4, here, the dynamics
should be exclusively affected by differences in the peptide
temperatures.

Figure 4 shows how the kinetics of conformational
transitions in 8ALA is modified by 7» in CHF.0—4 (black
dots). This kinetics is measured by local flip rates of
backbone torsional angles (see the figure caption). As
expected, the flip rates increase with the temperature. A
simple Arrhenius model® fitted to the CHF data is drawn
as a dashed line. This model yields an energy barrier of 434k
K for the backbone flips. This value is well in the range of
typical barrier heights reported for biomolecules in the
literature.”®

Having estimated the influence of the temperature on the
conformational dynamics of our sample peptide 8ALA in
SPC water, it seems appropriate to check whether a separate
classical BT (as frequently applied in strategy P.1) changes
the dynamics. Here, particularly a slowing down seems
possible because a rapidly coupled thermostat can interfere
with long-lasting energy fluctuations within the peptide,
which are caused by random in- and outflow of energy from
the solvent. For the purpose of such a check, we carried out
the simulation sets CLS.1—2 listed in Table 2, in which a
classical BT separately coupled to P enforced temperatures
T of about 300 K and 340 K, respectively.
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Figure 5. Root mean perturbation quotients Z¢, at the C,
atoms of 8ALA and ALDI evaluated from simulation series
#3 for the NHTs and BTs, respectively, for different coupling
times 7p of the peptide thermostats.

Figure 4 compares the flip rates observed when using a
classical Berendsen thermostat (open squares) with the data
for the CHF thermostat (filled circles) and demonstrates that
our expectation is actually met. Thus, if one wants to sample
the equilibrium fluctuations of a peptide in solution by MD
as rapidly as possible, or if one wants to gain access to the
kinetics of nonequilibrium relaxation processes, the separate
coupling of a classical BT to a small peptide seems
counterproductive.

We interpret the above result by the following physical
picture: A rapidly coupled BT likewise dampens fluctuations
to higher and lower energies, thus leading to the correct
average temperature. However, barrier crossings are enabled
by rare accidental accumulations of a critical amount of
energy in the respective collective coordinates. Particularly
by dampening the higher energy fluctuations of the peptide,
a classical BT makes such accumulations and, thus, barrier
crossings less likely. Note that we have additionally checked
the performance of a NHT in the same setting. We found
no reduction of flip rates (data not shown) as could be
expected for a thermostat maintaining the canonical energy
fluctuations.

Local Perturbations of the Dynamics. The flips of
backbone dihedral angles are collective movements and,
therefore, are not directly related to the perturbation which
a thermostat inflicts on the dynamics of individual atoms.
To check the latter, we collected from simulation series #3
(cf. Table 3) all those forces acting on the C, atoms of SALA
which are required for the evaluation of the perturbation
quotients (4). We carried out this data collection for BTs
and NHTs with coupling times 7p covering 4 orders of
magnitude. In the case of the smaller ALDI model, we
concentrated on the Berendsen approach.

Figure 5 shows the resulting perturbation ratios (4)
evaluated using the approximate expression 6. As demon-
strated by the squares marking the 8ALA results, the
perturbations Ecq are small for both thermostats and decrease
over a wide range linearly with the inverse of 7p. For the
classical BT (zp = 0.1 ps) the Ecq are only about 0.5%.
Furthermore, the smaller ALDI model exhibits slightly larger
Ecu (open diamonds) than SALA (open squares). However,
this size-induced difference is much smaller than that
between the NHTs and BTs. At a given 7p, Nosé-Hoover
coupling inflicts perturbations which are by 1 order of
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magnitude larger than in the Berendsen case (cf. Figure 5).
For a Berendsen coupling of maximal strength (z7p = 0.001
ps) the perturbation is comparable to that of a NHT with zp
as large as 0.064 ps. Furthermore, for Nosé-Hoover coupling
7p cannot be chosen larger than about 0.256 ps where Eca is
about 1% and, thus, not particularly small. In the given case
of 8ALA, one otherwise observes long-lasting and artificial
temperature oscillations, i.e. the so-called Toda daemon™**
(data not shown).

One can compare the perturbations shown in Figure 5 to
those which are inflicted by a CHF thermostat as employed
in strategy P.3. In simulation G/A/2_P.3, the peptide SALA
was kept at 300 K with a perturbation ratio of Eoa & 1074,
As can be seen from Figure 5, this ratio corresponds to a
Berendsen coupling time larger than 1 ps in the classical
thermostat setup. However, a classical BT with Ty p = T
and 7, = 1 ps cannot properly control the temperature
because then 7, is in the range of solvent—solute coupling
time (zsp = 1.6 ps), i.e. is too slow (cf. section 2). On the
other hand, a more strongly coupled thermostat with 7p =
0.1 ps does the job, but then the perturbation is more than
ten times stronger than for a CHF thermostat.

The above analysis was based on data for perturbation
ratios derived through the approximate expression 6 and,
therefore, depends on the validity of this equation. The first
assumption made in the derivation (cf. section 2) of eq 6
was that the atomic velocities I;(f) and the thermostat variable
y(t) are uncorrelated. We have checked this assumption for
simulation series #3 by evaluating eq 5 with and without
taking the correlation into account; the relative difference
was less than 1072 for both SALA and ALDI (data not
shown).

The second assumption was that the individual atomic
velocities 1;(f) are drawn from an undisturbed Maxwell
distribution and can be checked by comparing results of the
exact expression 5 with results of the approximate expression
6. We evaluated these expressions for the trajectories of series
#3 and determined the root-mean-square deviations. In the
worst case of a BT at the maximum coupling strength (7p =
0.001 ps), we found root-mean-square deviations amounting
to 8.3% of the mean thermostatic force for SALA and to
14% for ALDI. In view of the moderate statistics provided
by the 250 ps simulations employed in series #3, the estimate
6 is fairly reliable. Thus, eq 6 is adequate if one wants to
estimate thermostatic forces.

Temperature Fluctuations. In our suggestion of the
minimally invasive CHF thermostat characterizing strategy
P.3 we were guided by the notion that a properly thermo-
statted explicit solvent system is a canonical heat bath for
an uncontrolled solute. To check this assumption, we
compare in Figure 6 the canonical y*-distribution (eq 7) for
the instantaneous peptide temperature 7'p(f) with results from
simulation G/A/2_P.3. For the 103 degrees of freedom of
8ALA, the y*-distribution (solid line) resembles a Gaussian
(dashed line), which is expected for very large systems.
Remarkably, the MD results (circles) closely reproduce the
slight asymmetry of the y>-distribution. This agreement
strongly indicates that the peptide has sampled the canonical
ensemble in the simulation G/A/2_P.3. We have verified this
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Figure 6. Distribution of the instantaneous temperature Tp(1)
of 8ALA (in SPC water at 300 K) during the 20 ns MD
simulation G/A/2_P.3 (dots). The dashed line is a Gaussian
fit to the data. The canonical distribution (eq 7) is drawn as a
solid line.
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Figure 7. Ratio or/ot, of measured and canonical tem-
perature fluctuations for various coupling times 7p of a
Berendsen solute thermostat. The model peptides are 8ALA
(squares) and ALDI (diamonds). Simulations were per-
formed in explicit water (H2O, filled symbols) and vacuum
(vac, empty symbols) for both peptides. Simulation param-
eters are given in Table 4.

result for a series of further CHF simulations. It did not
change for larger solvent systems and was independent of
the coupling time for the solvent thermostat provided that
the solvent temperature remained well-tuned (data not
shown).

To estimate how a classical BT separately coupled to a
peptide (strategy P.1) affects its global statistical properties,
we determined the temperature fluctuations of the peptides
8ALA and ALDI, respectively, as measured by the standard
deviation 07, in a fourth series of simulations (for details
see Table 4). Figure 7 shows the ratio of 07, and or,, which
is the value theoretically expected for a canonical ensemble
and is given by eq 8. For peptides in explicit solvent the
figure shows that 07,/07, is always smaller than one and
approaches that limit for large 7p. Thus, in the classical
setting (7p = 107 ps) a BT strongly suppresses the canonical
temperature fluctuations. These fluctuations successively
become restored with increasing 7p. The full range of
canonical fluctuations is reached at coupling times 7, > 10
ps, i.e. at values exceeding the solvent-peptide heat coupling
time 7sp by a factor of 10. As a result, the separate BT is
effectively disconnected from the peptide, the solute—solvent
heat exchange term fsp dominates the heat balance eq 19,
and strategy P.1 reduces to the noninvasive strategy P.2.
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Figure 7 not only reveals the general suppression of
temperature fluctuations within a peptide by a classical BT
but also demonstrates through a comparison with vacuum
simulation data that these fluctuations are caused (i) by a
fast exchange of kinetic and potential energy within a peptide
and (ii) by a slower energy exchange with the solvent.

In vacuum simulations, the exchange of kinetic and
potential energy within the peptide is the only cause of
temperature fluctuations. As shown by the data, a rapidly
coupled Berendsen thermostat (zp < 0.1 ps) suppresses these
microcanonical fluctuations in the same way as it suppresses
the canonical temperature fluctuations of a solvated peptide.
However, at slower coupling times 7 the thermostat is seen
to no longer affect the microcanonical fluctuations. The clear
saturation of O7,/or, at 7p > 0.1 ps demonstrates that the
microcanonical fluctuations occur on time scales below 0.1
ps. In contrast, additional fluctuations of a solvated peptide
are still suppressed by the thermostat with even slower
coupling. Thus, as claimed above, they occur on longer time
scales.

In order to retain the correct statistics for the solute, it is
important to choose the coupling time 7p for the thermostat
longer than the typical time scale of the canonical fluctua-
tions, which, in our case, is in the range of 10 ps, as can be
seen from Figure 7. However, this time may even be longer
for more weakly coupling solvents or larger solutes.

5. Conclusions

Every thermostat changes the dynamics of the controlled
system to a larger or lesser extent. Measured on a micro-
scopic scale, these changes are by about 1 order of magnitude
smaller for BTs than for NHTs (cf. the data on the
perturbation quotients displayed in Figure 5). On the other
hand, NHTs, in contrast to BTs, guarantee the canonical
ensemble. For instance, as shown by the results on the
temperature fluctuations (Figure 7), BTs suppress all those
canonical energy fluctuations which are slower than the time
scale T at which the BT is coupled to the system.
Whether such changes can modify the specific observables
to be extracted from a simulation and to be compared with
experimental data is a priori unclear in many cases. Even if
one suspects that a given thermostat could possibly introduce
an artifact into the computation of a certain observable, one
may have to spend an enormous computational effort for a
statistically clear proof. In fact, to prove a suspected
dampening of peptide flip rates by a standard BT, we had to
spend about 400 ns of simulation time on each of the data
points to get the statistical certainty shown in Figure 4.
Especially if the popular strategy P.1 is applied to a
solute—solvent system, the specific drawbacks of the various
thermostat algorithms may directly affect the properties of
the solute. The P.1 strategy with a BT is expected to cause
artifacts of type a), i.e. artifacts resulting from an incorrect
thermodynamical ensemble. In fact, as we have shown for a
sample peptide, the dampening of the canonical energy
fluctuations due to the BT can lead to reduced peptide flip
rates. Furthermore, one expects that the combination of P.1
with the NHT will render the solute vulnerable to artifacts
of type b), i.e. lacking ergodicity. Using the P.1 strategy with
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other thermostats which suffer neither from type a) nor type
b) drawbacks (e.g., the Nosé-Hoover chain) still perturbs the
dynamics much more strongly than necessary, i.e. such a
strategy is prone to introduce artifacts of type c) (dynamics).

Given the need for some sort of temperature control in
large scale MD simulations of complex systems, the optimal
strategies to avoid artifacts of types a), b), and c) are P.2 or
P.3, respectively. Here, the minimally invasive strategy P.3,
which employs a constant heat flow to compensate the
algorithmic heat production in the solute, has to be applied
only if the noninvasive strategy P.2 turns out to be ineffective
in a sufficiently extended test simulation. Strategy P.3
reduces the perturbation of the solute’s dynamics to a
minimum while keeping it nevertheless properly tempered.
The precise protocol to set up a P.3 scheme is given in the
Appendix.

The preservation of the canonical ensemble within the
solute through strategies P.2 and P.3 (despite the use of a
standard BT for the solvent which strongly perturbs the
temperature fluctuations in this part of the system) is the
most important result of this paper and proves our hypothesis
that an explicitly simulated solvent of the correct temperature
Ts represents the optimal thermostat for a solute. Admittedly,
our quantitative analysis of the applicability of strategies P.2
and P.3 is restricted to relatively small peptides because an
extended statistics is required for reliable results. Already
for the small peptides with their short temperature autocor-
relation times of 15 ps, it takes more than 10 ns to determine
the average temperature with an accuracy of 1 K. For larger
systems, the temperature autocorrelation times increase and
so do the simulation times required for accurate temperature
measurements. Too short simulations can easily lead to the
false impression that the solute temperature sizably differs
from the solvent temperature. To our experience, the non-
invasive strategy P.2 can suffice for quite large solvent—solute
systems. For instance, reinspecting a simulation® of the
C-terminal domain of the human prion protein (residues
125—228), which employed a global thermostat coupling
(strategy G), we found that the protein temperature deviated
by more than 10 K from that of the solvent. Subsequent
simulations of a slightly larger fragment (residues 114—228),
which employed strategy P.2 but otherwise the same
simulation setup, showed no significant temperature differ-
ence. In the few cases in which one observes a seemingly
intolerable temperature difference between solute and solvent,
one can still use the solvent as the heat bath by applying the
minimally invasive strategy P.3 to keep the solute well
tempered.

It should be noted that our heat flow model and the
associated setup protocol for the constant heat flow strategy
P.3 are restricted to two subsystems with homogeneous local
algorithmic heating rates. For simulations of more complex
systems such as protein-DNA assemblies in solution, for
which one expects more than two different heating rates, a
constant heat flow strategy can be analogously designed.
However, it will become increasingly difficult to determine
the local heating rates of the various subsystems which have
to be compensated.
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Appendix: Setting up Strategies P.2 and P.3

Here, we give a detailed description of the steps needed in
order to set up a simulation system containing a macromol-
ecule P in thermal equilibrium with an explicit solvent
enviroment S according to the strategies P.2 and P.3,
respectively, using the standard Berendsen algorithm. After
preparation (e.g., removal of close solvent—solute contacts
by energy minimization), the following steps are necessary:

a) Heating phase: The subsystems are heated using two
separate classical BTs (e.g., ts = 7p = 0.1 ps) to the
temperature Ty, desired in the production simulation.
Depending on the initial deviations of the solute temperature
Tp and solvent temperature 7, it may take a simulation time
of up to 307y, for the respective subsystems to safely attune
to Tsim~

b) Relaxation phase I: The solute is decoupled from its
thermostat (7p = o) and relaxes to its new steady state
temperature 7p ;. The time constant for the relaxation to the
steady state is the solvent—solute coupling time 7gp. Since
Tsp is still unknown, an upper limit estimate (e.g., Tsp & 20
ps) should be used to determine the relaxation time frj,x ~
10Tsp.

c) Test simulation I: Here, the solute remains decoupled
from its thermostat and the simulation serves to determine
its average temperature 7p, ;. If the deviation from equilibrium
measured by |7p | — Tnl is less than an acceptable tolerance
ATp, then the noninvasive strategy P.2 is applicable, and
one may directly continue the simulation for data production
f).

The necessary simulation time ¢, for the test depends on
the tolerable uncertainty azfm of the measured solute tem-
perature T, 1, which forms an upper bound for the uncertainty
o7, in the prediction of the production run temperature Tp.
If ATp is the accuracy required for the prediction, we should
make sure that azf,” < AT3. By eq 9 the simulation time
then is #, = ZTCO%JAT%, where 7, is the temperature
autocorrelation time of the solute, and oy, is the standard
deviation of its temperature fluctuations, which were ob-
served during the test run. One typically obtains simulation
times of several nanoseconds.

d) Relaxation phase II: The solute is coupled to a separate
thermostat with a coupling time 7p = 500 ps intended for
the P.3 production run. Using an estimate for zsp (e.g., 1
ps), a reasonable choice for the target temperature is given
by To.p.2 = —tp/tsp*|Tp,1 — Tsml (leading to 2-fold over-
compensation if 7gp was exact). The duration of this
relaxation phase is the same as in step b).

e) Test simulation II: The average temperature Tp , is
determined. The simulation time #, should be equal to #; in
step ¢).

f) Production simulation: If strategy P.2 turned out to be
applicable in step c), the settings in this simulation are chosen
identically (in fact, one may regard the test run as the initial
part of the production simulation). Otherwise, the target
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temperature T, p for a P.3 simulation is determined from
the two test simulations by

Topr— TP,z
TO,P = Tsim + TP,2 _ TP,I (Tsim - P,l) (22)
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