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Tire point dipole interaction model for moleculu poltibihty recentiy proposed by Applequist, Carl, and Fung is 
modified by replacing the point dipole interaction by an interaction between smeared out dipoles. Rules are developed to 
indiczte plausible forms fer this modified interaction. The polarizabihties of a wide range of chemically different 
molecules can be calculated, using for each atom one polarizability independent of its chemical enviromnent. The errors 
are comparable to experimental uncertainty. Special care is taken to produce a model that tends to avoid infinite 
polarizabilities without use of cutoffs at short distances. 

1. Mroduction 

The accurate calculation of the effects of 
polarizability on electrostatic interaction is an 
interesting problem in various fields. Tradi- 
tionally the polarizability of molecules was 
calculated to predict optical rotation [l] and 
London dispersion forces [2]. More recently, 
inclusion of polarizability in molecular dynamics 
calculations has been studied [3]. Finally in 
many cases the stabilization of e.g. a charged or 
a dipolar moIecule surrounded by a polarizable 
solvent is important. It has been shown that this 
effect cau be included into quantum mechanical 
calculations on such a molecule, where the sol- 
vent is apprcximated by a set of interacting 
polarizabilities [4]. In all these cases one tries to 
avoid simulating the polarizability by introduc- 
tion of a dielectric, because this macroscopic 
concept cannot be used but with the greatest 
care on the molecular level. 

The interactive dipole model of Applequist et 
al. [S], based on the early work of Silberstein 
[6] seems to be a good starting point to treat 
the polarizability of arbitrary configurations of 
polarizable atoms. This model is surprisingly 
successful in predicting mean poiarixabilities and 
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is easily extended to the other fields mentioned, 
either by a matrix inversion method or by itera- 
tive solution of the equations for the interaction 
of the induced dipoles. Applequist et al. [S] 
used isotropic atom polarizabilities. They ob- 
served that their model predicts mean 
polarizabilities very well but that the predicted 
anisotropy is too large. Birge [7] showed that 
the large auisotropy can be removed by 
inclusion of the efIect of electron repulsion, 
which essentially decreases the polarizability 
component in the direction of the bond and 
gives errors in the anisotropy comparable to the 
experimental uncertainty. Birge needs 14 param- 
eters to describe the atomic polarizabilities in 
different chemical environments and their ten- 
dencies to resist excessive polarizability along 
the bonds. 

The transferability of these parameters to 
other classes of molecules is rather bad [S]. This 
property is shared by all previous parameteriz- 
ations. It is therefore interesting to discover 
trends in these parameters. This will give more 
insight into the physical process of polarization 
and may give new parameters that are more 
readily transferable. This paper shows that a 
suitably chosen modification of the interaction 
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decreases the errors in predicted polarizabilities, 
while the number of parameters is strongly 
reduced. 

In the next section the theory of the point 

dipole interaction is repeated, and extended for 
our purposes. The third section then gives a 
procedure for modifying the interaction. 

2. The point dipole model 

The modified dipole interaction model 
developed in this paper is based on the early 
work of Silberstein 163 and the more recent 
application of Silberstein’s model by Applequist 
et al. [5]. The nomenclature of rhe latter 
authors will be used and the reader is referred 
to refs. [S, 8] for a detailed discussion of the 
point dipole interaction model. The difference 
between the procedures presented here and 
those outlined by Applequist et al. is the 
modification of the dipole field tensor. The 
atomic polarizability tensor remains isotropic. 
This is in contrast with Birge’s model E7), which 
modies the atomic polarizability tensor and 
keeps the field tensor unchanged_ 

The molecule is considered as an arrangement 
of N atoms each of which has a polarizability. 
The induced dipole moment at atom p i.e. pp. 
can be calculated as a function of the applied 
electric field EP at atom p: 

where ocP is the atomic poiarizability tensor of 
atom p and T, is the dipoIe field tensor 

x2 
Tpq= (t~)a-3(r~) yx 

i 

. 
xy xi? 
Y2 1 YZ I7 (2) 

m zy z’_I 

where i is the unit tensor, r, is the distance 
between atoms p and q, and x, y and z are the 
cartesian components of the vector connecting 
atoms p and g_ Eq. (1) can be rearranged into 
the single matrix equation 

A&=& (3) 

where a is a 3N x3N matrix containing the 
inverse of the atom polarizability tensors along 
the 3 x 3 “diagonals” which are ccupled by the 
dipole field tensors. Inversion of A yields B, a 
symmetric matrix called relay matrix, which 
plays the role of a super polarizabity; 

p,=BE (4) 
t?j=~-‘=(&-‘+~)-‘. (5) 

The molecular polarizability is the response to a 
uniform applied field @ and is thus obtained by 
contraction of B to a 3 X 3 tensor OL,,~: 

L,=[++=~,&- (6) 

Diagonalization of or,01 yields the three com- 
ponents of the polarizabiiity. In more general 
cases the whole matrix e is needed [4], and in 
moIecular dynamics eq. (3) may not be solved 
by matrix inversion but by an iterative pro- 
cedure. 

A well known property of the method presen- 
ted so far, is that it may lead to infinite 
moIecular polarizabilities. For a diatomic 
moIecule the values of the polarizabilities 
parallel and perpendicular to the bond axis can 
be derived from the above: 

CYI/ = (QI*+cLui-4cK&3/r3)/(l -4cYNYBIr6), (7) 

QJ_ = (cY*+cYr3--2a*~n/r’)/(l -~,aQ/P). (8) 

When r approaches (~u~Gc&“~; “11 goes to 
infinity. This is caused by the cooperative inter- 
action (head to tail) between two induced 
dipoles in the direction of the bond. The gen- 
erd criterion for a physically meaningful sol- 
ution is that the matrix A, and therefore also its 
inverse 6, be positive definite. A matrix a is 
positive definite if all its eigenvalues are positive 
or, equivalently, if JAp>O for all vectors CL. 
That A and 6 must be positive delirite can be 
seen in two ways. Fit, when b has? negative 
eigenvalue -b then, when we t&e B equal to 
the corresponding eigenvector we obtain 

$.=~~=-_b& (9) 

which means that & and 2 are in opposite 
directions. Here we will only corsider frequen- 
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ties of the electric iie!d that are so low that 6 
can follow the variations in &_ This means that 
6 and 8 may not be in opposite directions. 
That such a system is metastabIe is seen from 
the reaction of the total energy to a small per- 
turbation SC in the dipoles. The total energy U 
is the energy of interaction between the dipoles, 
plus the energy needed to polarize the atoms. 
The latter energy is equal to $XP &cYQLP’~~ and 
therefore: 

= _fi: .& +&‘& (10) 

After a perturbation S@ we have 

*u = _sg’ . ~+~fi*j$+$~fiLf~~fi+. (11) 

In the equilibrium state, where (3) is satisfied, 
the first order contribution to SU vanishes. For 
the equiIibrium to be stable, the second order 
change in U must be positive for ali 6fi, so 

S’U = S;‘liSE > 0 for all Sfi, 02) 

which means that A must be positive definite. 
When A is not positive definite then d2U < 0 
for some SE and the system is metastable. A 
small perturbation will make all dipoles grow to 
i&&y. Further insight is gained by the 
introduction of the very useful tensor t, defined 
by: 

( T,), = s,r+ - 3XiXiP 

= (Cry* ) -“‘(~;jLi -3 - 3 ftiiljll -5) 

= (apc&pZtij(U), (13) 

where u = .~/(a,cy,)~‘~ and 6, is the Kronecker 
de1 ta. 

T,(x) = (~~s!-1’zt{x/(~~p,)“6~, (14) 

t is a shape fitnction which does nor depend on 
p and CJ. In this paper only isotropic 
polarizabiities will be used. Then 6 is diagonal 
and we have 
f = &-Uz~&-I/z, 

(151 
W=~-l+f,~-‘lz(~tI)~-1/2~ (16) 

Now 
$&, = (~-1/2Cr)‘(~+~)(~-l/2~)_ 

(17) 

When it-i is positive definite then the rhs of 
eq. (17) is positive for all G and therefore A is 
positive definite. Thus, 4 is positive definite 
when ail eigenvalues oft are larger than -1. 

3. The modified dipole intenarfioa 

When in the point dipole interaction atoms 
are coming closer than a certain limit, the 
polarizability becomes i&mite. In reality this is 
never observed. There must be some process 
which damps the interaction. This process is 
probably already at work between bonded 
atoms because Applequist needs rather small 
atomic polarizabilities to describe molecules and 
he observes that his predicted anisotropies are 
too large. The idea developed in this section is 
that the damping effect may be simulated by 
changing the interaction :ensor T such that it 
does not behave as re3 for small r. A set of 
more or less tentative principles will be given 
which were used as guidelines to investigate 
which changes to T might be applied for obtain- 
ing a good fit to experimental data, while avoid- 
ing unphysical forms. The principles were 

chosen so as to supply possible starting points 
for future theoretical analysis. The following list 
is given in the order of roughly incre&ng tenta- 

tiveness: 
(a) T must remain a tensor to ensure that 

rotation of the coordinate system does not 
change the result of the calculation, 

(b) The most essential idea of the model is 
that the interaction between any two 
polarizabilities is of the same form. In a classical 
macroscopic system, consisting of any set of 
conducting bodies or bodies of some dielectric 
constant, when all the dimensions of the system, 
i.e. the dimensions of the bodies and the dist- 
ances between them are expanded by some fac- 
tor, then alI the polarizabiities increase by the 
third power of that factor. In classical electro- 
statics this transformation is equivalent to a 
change of the unit of length. Simple extrapola- 
tion of the scaliig property to the atomic world 
is strictly speaking not allowed because atoms 
have internal structure and are not 
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homogeneous as macroscopic bodies are. 
Nevertheless, we may hope that the macro- 
scopic scaling principle is still approximately 
valid. 

When we write T in the form (14) with 
arbitrary t and if in eqs. (5) and (14) we multi- 
ply all x by a factor of k and al! polarizabilities 
by k3 then & changes to k3& and ? to Ic-% and 
so 8, which denotes the total polarizability, 
changes to 

61 ={(,p&‘+-~)}--1= pg. (18) 
This shows that in the point dipole case the 
scaling property exists and that it is preserved 
when (14) is satisfied. We may consider t as the 
interaction between two atoms with unit 
polarizability. In this model it will be assumed 
that t(u) remains independent of the atoms 
involved so that we need only study the interac- 
tion between unit polarlz2bilities to know all the 
interactions. Note that (cx~,)“~ has the 
dimension of length and that it may be associ- 
ated with the average radius of atoms p and q. 
so that we may say that ‘; is only a function of 
an effective distance of interaction u. The quan- 
tum mechanical detail of atoms p and q apart 
from their ‘-radius“, is thus neglected. 

The use of (c+Q)*‘~ as the scaling distance is 
arbitrary. Forms lie (a;” tar)/2 and {((up + 

%.)/P are also possible, but they do not allow 
the elegant forms of eqs. (15) through (17). 

(c) r&) is constrained to the tensor form 

q(u) = -a’+9(2l)/arsazl, (1% 

where c_” is some spherically symmetric posen- 
tial. This assumption is made to retain the inter- 
pretation of t ^os a dipole-dipole interaction 
where a dipole is thought to be built up from 
hvo infinitesimally shifted monopoles, which in 
our case will not be point charges. Then 4, is 
the corresponding monopole-monopole interac- 
tion. 190rk-g th2t d/du&u) = L(.$(u)/u and 
&+/au; = 8, it is easily seen that 

(20) 

(21) 

(di In the pomt dipole case cp = u-l SO v'= 

--u I q" = 2~~’ and 

tij = sijll -3 - 3 u~rijlc -5. (22) 

These relations describe the limiting behaviour 
for large U, when the atoms do not touch. 

(e) For a homonuclear diatomic molecule, 
solution of (l)-(6) for two atoms of unit 
polarizability shows 

2 2 
ali=- and cyI=p 

l-cp’fli’ 

We assume that ail = oL when II = 0, making the 
compound atom isotropic. Then cp”= cp’/u for 
small U. Solution of this differential equation 
shows that in this region we have to first order 
cy’ = CU, with c an arbitrary constant. This 
behaviour can also be obtained from the 
assumption that p is the potential of some “well 
behaved” charge distribution p. We start with 
the well known relation 

si(u) = 3 
I 

4iipu2 drt, 

0 

saying that the field at u for a spherically sym- 
metric charge density is equal to that of the 
charge contained in the sphere with radius u, 
concentrated at the centre. Because of (20) 

u 

40’= -1 4q.m’ drc. (25) II 

When p is finite when u approaches zero we 
have to first order in t&s region: 

U 

9’= -1. 
U?- I 

47i_p(0)rc2 du =-$srp(O)rr (26) 
0 

and 

(2” = -$rp (0) (27) 

and we see that c =--gap(O), a negative quan- 
tity when p is everywhere positive. Furthermore 
for large u, when p decreases fast enough 

U al 

I 
4?j-p2 dn - 

I 
47rpu’dic = Q, Gw 

0 0 



the total charge. So in this region +Y’=-Q/u’ 
which shows that Q = 1. 

It would be more elegant to consider ‘p as the 
interaction between two charge distributions, 
instead of that between a point charge and a 
charge distribution; 

a(u) = 
II 

du: du;p(ul) p(u~+c)/u~=- (29) 

This may be necessary for further theoretical 
investigation. For the present, however, we are 
satisfied with a procedure which gives us smooth 
curves which roughly follow physical intu- 
ition.We conclude that t is derivable from some 
density p, which must be finite at the origin, fall 
off rapidly for large r, and must contain a total 
charge of unity. Thus the unit point charge 
giving the point dipole equations can be con- 
sidered to be “smeared out”. 

(f) In the previous section it was shown that 
it is the descaled tensor $ which governs the sta- 
bility of a polarizable system. The requirement 
that ali its eigenvalues be greater than -1 is 
rather complicated. However, from eq. (23) we 
see that the polarizability of a diatomic 
molecule remains finite when y” and cp’/rr are 
less than unity, independent of the values of the 
CX’S and u’s In polyatomic molecules favourable 
interactions between pairs of atoms may push 
the polarisability to infinity even though each 
pair is separately stable. Therefore unity is an 
upper limit. However the interaction decreases 
rapidly with distance and geometrical restric- 
tions do not allow favourable interaction 
between every possible number of atoms. 
Therefore the limit of the instability region will 
probably not be impractically low. Numerical 
experience indicates that, with the forms studied 
in this pa2er, infinite polarizabilities become 
improbable when (pe and cp’/u remain below 
0.6. Concluding we assume that infinite 
polarizabilities will become highly improbable if 
not impossible when c9’ and cp’/u are below 0.5 
for every value of U, independent of the values 
of the atomic polarizabilities. 

4. Calculations 
. . 

Some forty more or less different functions to 
fit the polarizabiities of the sixteen molecules 

considered by l3irge [7] were examined. In each 
case the atomic polarizabilities and the param- 
eters in the interaction tensor were varied 
simultaneously to minimize the root mean 
square (T of the relative errors in the 48 com- 
ponents. Directly in the beginning, it became 
clear that per atom only one isotropic polariza- 
bility independent of its valence state is needed. 
Introduction of different LY’S for one atom did 
not significantly improve the fits. Thus it seems 
that the apparent additive polar&ability of an 
atom is strongly correlated to the geometry. For 
example a carbonyl 0 is certainly different from 
a hydroxyl 0, but this difference is sufficiently 
displayed in the geometry of its surroundings. 
The scaling principle describes this effect very 
weil. 

Further it appeared that one must be careful 
not to use a too flexible fit function because this 
flexibility often leads only to wildly fluctuating 
functions giving artificially good results which 
are physica!ly meaningless. This is why the 
optimum form of T could not be obtained by 
simply using a general function with many param 
eters. Only smooth shapes of cp’/zl and q” 
could be accepted. After the restriction to a 
tensor t derivable from some well behaved 
density p, functions of the types presented in 
table 1 were tried. This table gives an 
impression of the variation in the results when p 
is varied. Of the one parameter forms pr . . . pa. 
p4 is the simplest and, surprisingly, the best. 
This function is a simple conical charge density 
with 1.662 .& as the radius of its base (for an 
atom of unit polarizability). ps and & have been 
tested to see whether there was a preference for 
a more curved shape of p. This preference is 
rather small as is seen from the small decrease 
of c going from p4 to ~6, and from the small 
coefficient with which ps is mixed in. Case 7 was 
tried in order to study the behaviour when prin- 
ciple (c) was relaxed i.e. when e was not con- 
strained to be the second derivative of a poten- 
tial. For this purpose the factors cp’/rc - r$’ and 
q’/u in (21) were chosen to be of the form p-: 
but they were allowed to have different radii a 
and b. Not much use was made of this freedom 
to decrease o or to make a and b different. 
Therefore, it may be concluded that the factors 
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Table 1 
Charge densities and the corresponding values of the fitting error and the parameters 

pl= a3/8?; exp (-au) 

&u =-4u-3{2-(a’u”t2au+2) exp (-au)} 

pz= 3aj4s exp (-I&) 

pi/u = -ue3{1 -exp (-aus)) 

p,=3u/4n{l-(l+l/auS) exp (-llnu3)) 

(2;/u=-a{l-exp(-l/au3)} 

PJ=3/3i+z-uu)/aJ uca 

=o uza 

L/u=-_(4a-3u)/a4 u<a 

0.’ Vzlb! 
(%‘o) (%I P& 

7.06 3.37 0.427 1.285 0967 0.786 a = 2.089 

6.4? 3.84 0.496 1.334 1.073 0.837 a = 0.572 

6.78 4.22 0.471 1.288 1.024 0.801 a = 0.425 

6.13 3.32 0.514 1.405 1.105 0.862 a = 1.662 

E-u --3 u=a 

pS = 15/2r(a - u)‘/a’ u <a 

=o usa 

~;/u=-(10nt+15au-6u’)!a’ uca 

z-u --3 uz=a 

6.19 3.35 0.449 1.232 1.079 0.833 a =2.143 

P.S = k&i- (1 - b)ps 

&-&/u =3a-‘u uca 

=3t( --3 uz=a 

.&/r<=-_(4b-33v)jb’ u=zb 

6.11 3.13 0.506 1.387 

6.07 3.13 0.547 1.492 

1.095 0.857 a = 1.702 

b = 0.913 

1.157 0.887 a = 1.604 

b = 1.566 

Appleqnkt et ai. [5] 15.4” 3.39 

Birge [7] 8.6 3.39 

a’ m = the r.m.s. value of the relative errors in the 48 components. This is the quantity that wi?s minimized. 
‘) OS= the r.m.s. value of the relative errors in the 16 mean polarizabilities. 
<) This number does not include the four linear molecu!es. Including these raises cr to 31.6%. The densities p determine the 

interaction. $/u is .&en for convenience. Q- can be calculated by taking the derivative. The values for Applequist and Birge 
have been computed from their tables. 

in front of UiUj and Si; in eq. <21) tend to Obey 

principle (c) . 
There is little preference for the hydrogen 

atom like density pi, and also p2 and pf do not do 
as well as p4_ Therefore p4 is a rather ideal form 
to be used in this kind of calculation. Table 2 
shows the actual values of the polarizabilities of 
the 16 molecules together with 6 added ones to 
check the model. The worst fits seem to be 

obtained for molecules containing oxygen. Of 
the added molecules the mean polar&abilities 
are predicted with an r.m.s. error of 3.5%. This 
shows that the parameter values may be trans- 
ferred to chemically quite different classes of 
compounds_ 

The functions a’/% 9” and p are plotted in 
fig. 1. The scaled interaction distances f&r bon- 
ded atoms lie in the region u = 0.9 to 1.4. 
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Table 2 TabIe 2 (continued) 

Molecular polarizabilities of various molecules at 5893 A” 
ethanol 

Compound MolecoIar polarizabiilities 

E 5.08 
A 5.11 
B 5.11 
T 5.26 

E 2.45 
A 2.31 
B 2.31 
T 2.54 

c 6.39 
E 6.39 
A 6.46 
B 6.46 
T 6.32 

E 4.48 
A 4.14 
B 4.14 

T 4.24 

E 9.59 

H2 

N2 

co 

ethane 

propane 

cyclopentane 

cyclohexaoe 

dim&y1 
ether 

p-dioxane 

methanoI 

E 0.79 
A 0.80 
I3 0.80 
T 0.76 

E 1.76 
A 1.76 
B 1.76 
T 1.72 

E 1.60 
A 1.60 
B 1.60 

T 1.49 

E 1.95 
A 1.95 

B 1.95 
T 1.82 

E’. 4.48 
E 4.48 
A 4.46 
B 4.46 
T 4.46 

E 6.38 

A 6.58 
B 6.58 
T 6.29 

E 9.15 
A 9.05 

B 9.05 
T 9.12 

E Il.00 
A 10.95 
B 10.95 

T 10.95 

E 5.24 
A 5.20 
T” 5.24 5.20 

E 8.60 
A 8.68 
B .8.68 
T 8.84 

E 3.32 
A 3.Q4 
B 3.@4 
T 3.34 

0.93 0.72 0.72 
1.92 0.24 0.24 
0.94 0.73 0.73 
0.90 0.69 0.6Q 

2.38 1.45 1.4s 
3.84 0.72 0.72 
2.38 1.45 1.45 
2.13 1.52 1.52 

2.35 1.21 1.21 
3.11 0.85 0.85 
2.36 1.23 1.23 

1.96 1.26 1.26 

2.60 1.63 1.63 
4.23 0.81 OS1 
2.60 1.62 1.62 
2.23 1.61 1.61 

5.49 3.98 3.98 
4.99 4.22 4.22 
6.24 3.57 3.57 
5.89 3.74 3.74 
4.93 4.24 4.24 

7.66 5.74 5.74 
8.94 5.71 5.08 
7.21 6.39 6.13 
7.18 5.98 5.69 

9.88 9:17 8.40 
10.01 9.97 7.15 

9.89 9.72 7.51 
9.56 9.60 8.20 

11.81 11.81 9.38 
12.25 12.2s 8.33 
12.04 12.04 8.76 

11.69 11.69 9.47 

6.38 4.94 4.39 
7.04 4.18 4.37 
6.00 4.18 5.41 
6.55 4.58 4.51 

9.40 9.40 7.00 
10.07 9.63 6.35 
10.14 9-43 6.47 
10.53 8.59 7.40 

.4.09 3.23 2.65 
3.71 2.75 2.65 
3.81 2.81 2.50 
3.97 3.11 2.96 

formaldehyde 

acetonitde 

22-DMPN 

(CH3,CCN A 9.84 
B 9.84 
T 9.83 

5.76 
7.10 
6.03 
6.39 

2.76 
3.81 
3.09 
3.07 

7.37 
7.16 
7.16 
7.19 
7.30 

5.74 
6.66 
5.89 
5.62 

10.71 
10.61 
10.71 
10.68 

4.98 4.50 
4.30 3.93 
4.93 4.39 
4.82 4.55 

2.76 I.83 
2.19 0.94 
2.56 1.29 
2.70 1.86 

7.37 4.42 
7.14 4.88 
7.12 5.09 
7.07 5.1: 
6.50 5.X 

3.85 3.85 
2.88 2.88 
3.27 3.27 
3.57 3.57 

9.03 9.03 
9.48 9.42 
9.40 9.40 
9.4i 9.41 

water 

ethyleae 
oxide 

HCONHz 

CH&ONHz 

pmpan01 

methane 

E 1.49 
A 1.12 
T 1.44 

E 4.43 
A 6.52 
T 4.39 

E 4.08 
A 4.07 
T 3.79 

E 5.67 
A 5.72 

T 5.71 

E 6.97 
A 7.02 
T 7.17 

E 2.62 
A 2.58 
T 2.55 

0.53 1.83 1.00 
1.32 1.87 1.12 

3.20 
3.88 

5.24 
6.87 
4.86 

6.70 
7.50 

6.30 

8.8.5 
9.07 

2.62 
2.58 
2.55 

12.23 4.13 
5.09 4.18 

aa+aa=7.01 
4.04 1.32 
4.04 2.50 

(I++as = 10.30 
5.79 3.87 

6.70 4.13 

6.68 554 
6.42 6.05 

2.62 3.62 
2.58 2.58 
2.55 2.55 

I’ E Experimenti data are taken from tables Y and VI of 
ref. CS]. 
A: Point dipole interaction mode1 [Sl. 
B: hiwtropic atom point dipole intemction model [7]. 
T: Model with momed dipole ioteraction (this work). 
The 16 moleculas above the separating line were used to 
fit t&e model to. l%e additional noleeule5 were osed as a 
check of the model. Note that Applequist et al. fitted to 
alI the molecules except water and ethylene oxide which 
they ued as a check. 
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Fig. I. The functions q” and q’/n governing the 
polzrizabilities parallel and perpendicuk to the bond axis. 
u is the scaled distance .-, I, .cz~L~~ )=‘. Below u = 1.662 rhe 
polarizabiiities are daroed with respect to the point dipole 
case (---). At the top the positions of some bonds are 
shotin. p is the del.;ity from which F’/U and q” were 
derived in case 4 of :ab:e 1. 

Atoms separated by two bonds appear at u = 
2.1. Thus the functions are not really fitted in 
the regions LL CO.9 and 1.4< LL r2.1. In these 
regions they must be assumed to be smooth. 
The cusp in cp” at LI = 1.662 looks bad but will 
probably not be seriuus. The maximum value of 
y” is 0.44 which is probably small enough to 
give no infinite polarizabilities in practice. 

When wo atoms approach each other from 
infinity the interaction between their dipoles 
induced by an external field results in a separ- 
ation of 9” and r$/u. These two functions 
govern the poiarizabih++ along the bond and 
perpendicular to it, respectively, according to 
eq. (23). TIMIS ail is amplified and (x1 is damped. 
Because for zi > 1.662 ++’ is twice as large as 
PI/U, the mean polarizability is approximately 
conserved. When the atoms penetrate, the inter- 
action is effectively damped with respect to the 
point dipole case. The anisotropy is also 
damped because p” and p’/u approach each 
other. The interpretation may be that when two 
atoms touch, a new body is formed with an 
elongated shape giving an anisotropic polariza- 
bility, as in classical electrostatics. When the 
atoms penetrate further the shape becomes less 
elongated until at u = 0 a composite spherical 
atom is formed. Of course the model does not 

pretend to predict the polarizabilities of atoms 
as built up from smaller atoms. For 14 ~1 the 
individuality of the constituent atoms disappears 
and probably only quantum mechanics can 
describe the _-dual transition to the polariza- 
bility of the compound atom. This region is 
unimportant for most applications but it is 
gratifying that the polarizability is damped in 
this region, and therefore no problems are to be 
expected when, accidentally, atoms come into 
close contact in e.g. MD calculations. 

5. Discussion 

The present model, using only five parameters 
gives an improved fit with respect to Birge using 
14, and Applequist using eight parameters. Part 
of the improvement is due to the complete 
optimization used, where Applequist and Birge 
used partial optimizations. The error in the 
componenB is 6% and in the mean 
polarizabilities 3.5% which are about the 
experiaental errors. Tne parameter values of 
the model are transferable to different classes of 
molecuIes in contrast to those of Applequist and 
Birge. This fact, together with the small number 
of parameters indicates that the physical process 
behind the interaction of polarizabilities is rea- 
sonably described. The ideal situation in this 
kind of semiciassical model would be to predict 
experimental molecular polarizabilities from 
experimental atomic polarizabilities. The point 
dipole interaction is strongly amplifying and 
therefore atomic polarizabities are needed 
which are much smaller than the additive 
values, especially for H with its short bonding 
distances. Conversely the smeared-out dipole 
interaction is on the average mildly damping 
and therefore i? is accompanied with atomic 
polarizabilities which are about 20% higher 
than the additive ones. Hartree-Fock 
poiarizabilities are considered to be 20 to 60% 
higher than experimental values. But especially 
the hydrogen value, which is exact, shows that 
the smeared-out dipole model approaches the 
ideal more closely than the point dipole model 
(table 3). 



Table 3 
Polarizabilities of atoms in polyatomic molecules at 5893 8, 

Atom 

H(alkane) 
H(alcoho1) 
HMdehyde) 
H(amide) 
C(alkane) 
C(carbonyI) 
C(nitrile) 
N(amide) 
N(nitrilej 
O(&oholj 
O(ether) 
O(carbonyl) 

” Ref. [SJ. 

Polarizability (A3) 

additive Applequist Hartree- 
model”’ et al. ‘) Fock” 

0.407 0.135 0.667” 
0.405 0.135 

0.167 
0.161 

1.027 0.878 1.74 
1.027 0.616 
0.928 0.36 

0.530 1.00 
1.236 C.520 
0.604 0.465 0.73 
0.651 0.455 
0.841 0.434 

this 
work 

0.514 

1.405 

1.105 

0.862 

‘) Ref. [14] from variation-perturbation theory. 

<) Exact. 

It is interesting to note that Applequist’s 
atomic values for C, N and 0 decrease in 
chemical environments with shorter bond dist- 
ances. In the present model this trend is pro- 
duced automatically by damping the interaction 
more strongly with shorter distances. 

The present model is connected to some 
notions recently suggested by other authors. 
Oxtoby and Gelbart [9] proposed to describe 
the interaction of the induced dipoles of 
penetrating atoms as the interaction between 
penetrating dipole densities. This is equivalent 
to the principle that the dipole field tensor must 
be the second derivative of the interaction 
between smeared out char’ge distributions. This 
notion has been criticized [lo, 111 but its suc- 
cess suggests that it has some value. Maybe any 
approximation which uses the point dipole 
interaction for large distances until the atoms 
“touch” and then damps the interaction in a 
smooth way, making it zero for r = 0, will do 
reasonably. The freedom to choose the density 
function and the generally decent behaviour of 
the polarizabity are further responsible for the 
good results. Thus the value of this kind of 
approximation may be largely empirical. 

Bounds and Hinchcliffe [12] and Winicur [13] 
noted that the anisotropies of diatomic 
molecules are very similar as functions of the 
internuclear distance and that they seem to be 
determined by the “shape” of the molecule, 
defined by a suitably chosen measure of its 
length-to-width ratio. This is strongly connected 
to the scaling principle of the present model 
which uses rW(crsq)-“6 as a shape parameter. 

Inclusion of the effects of smearing out and 
the scaling principle into the interaction tensor 
is thus a generalization of existing notions of the 
apparent ‘cclassical” behaviour of the molecular 
polarizability. The small number of parameters, 
their transferability to different systems, and the 
consistent physical picture give confidence to 
the calculations in diEcult cases such as forma- 
tion of hydrogen bonds, strong deformation of 
bonds and close contacts between different 
molecules or different parts of luge molecules. 
Because each atom has only one polarizability, 
ambiguity in the assi,onment of the valence state 
to the atom has no consequences. The model is 
simple enough to be applied to large systems. 
No exclusion of bonded interactions or arbitrary 
cutoffs at short ccntacts occurring otherwise are 
needed. Hence the present method is very well 
s*Gted to be incorporated into empirical ener,y 
expressions, as they are used, e.g. in molecular 
dynamics calculations, energy optimization of 
crystal and protein structures, etc. These com- 
putational schemes might be improved consider- 
ably in this way. 
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Appendix: Details of the computation 

Probably any computer program using 
Applequist’s point dipole interaction model in 
spectroscopy, molecular dynamics, Monte Carlo 



or energy minimization, can be easily adapted 
to the smeared-out dipoie interaction. When r is 
the distance vector between two atoms with 
polarizability ccr and a~ and s = 1.662(ara~)“” 
then when r>s we have, exactly as in 
Applequist’s -model 

& = &Jr3 - 3*,ri/r’. (A-I) 

When r < s the interaction has to be changed 
into 

r, = (Ic3-3v~)6i;/r3-33t;4(rir;/r5), 

where u = r/s. 

(AZ) 

A FORTRAN program, running on a CDC 
Cyber 170/670 computer, under NOS, and 
which calculates and fits molecular 
polariiabilities, can be obtained from the 
author. 

In MD and MC calculations, polarizability is, 
for practical reasons, often treated by changing 
the magnitude or the position of the point 
charges in the molecule as a function of the 
electric field. Artificial devices are then usually 
needed to prevent excessive polarization. It may 
be possible to mimic the smeared-out dipole 
model also in these calculations. An obvious 
guess would be to use a mcdified electric field, 
viz. the field of a smeared-out charge distri- 
bution: 

E:=rJr' [r>s]. (A.3) 

Ei=(4u3-3u4)ri/r3 [rcs]. 

For the calculation of the total energy the cor- 
responding potential is given by 

p = l/r, [r>s]. (A.3 

dp =(u'-2u3+2u)/r [r<s]_ 64.6) 
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