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ABSTRACT: It is often difficult to quantitatively determine if
a new molecular simulation algorithm or software properly
implements sampling of the desired thermodynamic ensemble.
We present some simple statistical analysis procedures to allow
sensitive determination of whether the desired thermodynamic
ensemble is properly sampled. These procedures use paired
simulations to cancel out system dependent densities of state
and directly test the extent to which the Boltzmann
distribution associated with the ensemble (usually canonical,
isobaric−isothermal, or grand canonical) is satisfied. We
demonstrate the utility of these tests for model systems and
for molecular dynamics simulations in a range of situations and describe an implementation of the tests designed for end users.

1. INTRODUCTION
Molecular simulations, including both molecular dynamics
(MD) and Monte Carlo (MC) techniques, are powerful tools
used to study the properties of complex molecular systems.
When used to specifically study thermodynamics of such
systems, rather than dynamics, the primary goal of molecular
simulation is to generate uncorrelated samples from the
appropriate ensemble as efficiently as possible. These
simulation data can then be used to compute thermodynamic
properties of interest. Simulations of several different ensembles
may be required to compute some thermodynamic properties,
such as free energy differences between states. An ever-
expanding number of techniques have been proposed to
perform more and more sophisticated sampling from complex
molecular systems using both MD and MC, and new software
tools are continually being introduced in order to implement
these algorithms and to take advantage of advances in hardware
architecture and programming languages.
However, it is extremely easy to make subtle errors in both

the theoretical development and the computer implementation
of these advanced sampling algorithms. Such errors can occur
because of numerical errors in the underlying energy functions,
theoretical errors in the proposed algorithm, approximations
that are too extreme, and the programming bugs that are
inevitable when managing more and more complicated code
bases.
There are a number of reasons it is difficult to validate a

given implementation of an algorithm for the proper
thermodynamic behavior. First, we lack analytical results for
virtually all complex molecular systems, and analytically soluble
toy problems may not have all of the features that more
complicated systems of actual research interest may possess.
Additionally, molecular simulations generate statistical samples
from the probability distribution of the system. Most
observables therefore require significant simulation time to

reduce statistical noise to a level sufficiently low to allow
conclusive identification of small but potentially significant
violations of the sampled ensembles.
There are of course some aspects of molecular distributions

that can and should always be checked directly. For example, in
an NVE ensemble the total energy should be conserved with
statistically zero drift. For symplectic integrators with NVE
simulations, the RMS error will scale with the square of the step
size. For an NVT ensemble when the potential energy is
independent of particle momenta (which is true with the rare
exception of systems with magnetic forces), then the kinetic
energy will follow the Maxwell−Boltzmann distribution, and
consistency with this distribution can be estimated using
standard statistical methods. NVT simulations must also have
an average kinetic energy corresponding to the desired
temperature, and NPT simulations must have the proper
average instantaneous pressure computed from the virial and
kinetic energy. We would encourage all simulation developers
to include these automated tests in their code.
However, there are no standard tests for proper distribution

for the potential energy, which greatly complicates Monte
Carlo simulations, or for total energy of an arbitrary simulation
system. Additionally, there are many possible distributions
which have the correct average temperature or pressure but do
not satisfy the proper Boltzmann probability distributions for
our specific ensemble of interest.
It is therefore worthwhile to have physically rigorous

strategies and tools for assessing whether a simulation method
is indeed generating samples from the desired distribution in its
entirety. Such general strategies could help to better answer
vital questions such as, “is this thermostat/barostat correct?”,
“how much does a very long time step affect my energy
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distribution?”, and of course “have I f inally got that bug out of
my code now?”

2. THEORY
Thermodynamic ensembles all have similar probability
distributions with respect to macroscopic intensive parameters
and microstates, e.g.:

β β|⃗ ∝ − ⃗ ⃗P x H p q( ) exp( ( , )) canonical (1)

β β β⃗ | ∝ − ⃗ ⃗ −

‐

P x V P H p q PV( , , ) exp( ( , ) )

isobaric isothermal (2)

∑β μ β βμ⃗ ⃗ | ⃗ ∝ − ⃗ ⃗ +P x N H p q N( , , ) exp( ( , ) )

grand canonical

i i
species

(3)

where P(a|b) indicates the probability of a microstate
determined by variable or variables a given a macroscopic
parameter or parameters b. Specifically, all have the exponential
form exp(−u(x ⃗)) where x ⃗ = (p ⃗,q ⃗,V,N⃗) is the microstate and
u(x ⃗) is a reduced energy term whose form depends on the
ensemble.
This reduced energy term is a generalized function of two

types of variables. The first type of variable consists of the
degrees of freedom determining the microstates of each
ensemble, including the positions and velocities of the atoms,
but also potentially including the volume of the system V and
the number of particles of each of i species in the system Ni.
The second type of variable consists of those determining the
ensemble of the physical system, including the temperature T,
the pressure P, the chemical potentials μi, and the specific
functional form of the Hamiltonian H(p ⃗,q ⃗). These equations,
along with the requirement that all microstates with the same
value for the generalized energy term have the same probability,
completely define the thermodynamic ensemble. A general test
should therefore check as directly as possible that the samples
we collect are fully consistent with eqs 1−3. For simplicity, we
will perform an initial derivation of such a test using the
canonical ensemble and then generalize the derivation to other
ensembles.
The probability density of observing a specific energy in the

canonical ensemble (eq 1) can be written in terms of the
density of states Ω(E) = exp(S(N,V,E)/kB) as

β β β| = Ω −−P E Q E E( ) ( ) ( ) exp( )1
(4)

where S is the entropy, β = (kBT)
−1, kB is Boltzmann’s constant,

and Q(β) = ∫ Ω(E) exp(−βE) dE is the canonical partition
function, related to the Helmholtz free energy A by A = −β−1 ln
Q. Q is a function of β, but not E, whereas Ω is a function of E,
but importantly, not β. Note that at this point, E is specifically
the total energy, though we will examine kinetic and potential
energies separately later on.
Without specific knowledge of what the density of states

Ω(E) is for a particular molecular system, no quantity of
samples from a single state can identify if the energies indeed
have the proper distribution. However, if we take the ratio of
the probability distributions of two simulations performed at
different temperatures, hence with two different values of β, but
with otherwise identical parameters, the unknown density of
states cancels, leaving
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If we take the logarithm of this ratio, we obtain:
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which is of the linear form α0 + α1E. Note that linear coefficient
α1 = −(β2 − β1) is independent of the (unknown in general)
Helmholtz free energies A2 and A1.
This relationship forms the basis of the ensemble validation

techniques we present in this paper. Similar formulas can be
derived for any of the standard thermodynamic ensembles with
probability distributions of the form e−u(x ⃗) as long as the
reduced energy term is linear in conjugate parameters.
Nonexponential probability distributions are certainly possible
to generate in simulations, but are much less standard, and so
we will not deal directly with them in this study. The same
general techniques will work if the probability of a given
microstate depends only on the energy of the microstate. We
will call agreement of a simulation with its target distribution as
described by eq 6 and its analogs for other ensembles ensemble
consistency.
These tests are particularly simple because they require only

the energy, volume (for isobaric−isothermal simulations), and
particle number (for grand canonical simulations) data for a
pair of simulations to be saved, and because they are general for
all molecular systems that have an associated Boltzmann
probability; new varieties of the test need not be generated for
each new system encountered.
There are a number of ways to check if the distribution of

samples from a given pair of NVT simulations satisfies these
equations. The most straightforward way starts with binning
the energies E from both simulations. If the distributions are
sufficiently close together to have statistically well-defined
probabilities at overlapping values of E and we have sufficient
data, we can fit the ratio of the histogram probabilities to a line
in this overlap region. If the slope deviates from −(β2 − β1) by
a statistically significant amount, then the data necessarily
deviate from a canonical distribution. However, deciding
quantitatively what constitutes “statistically significant” can be
challenging and will be further explored in this paper.
This test of consistency with eq 6 is a necessary test for an

algorithm that is consistent with the canonical ensemble; if the
slope of the probability ratio deviates from the true line, the
data cannot be consistent with the ensemble. However, the test
is not necessarily a suf f icient test of simulation quality as it does
not include any direct test of ergodicity. Specifically, it says
nothing about whether states with the same energy are sampled
with equal probability as is required by statistical mechanics. It
also does not say anything about whether there are states that
are not sampled. We could have sampling consistent with the
desired ensemble but trapped in only a small portion of the
allowed phase space of a system.
In general, additional tests of convergence or ergodicity are

required before the system can be assumed to be sampled
correctly. For example, for molecular dynamics, one could
examine the kinetic energy of different partitions of the degrees
of freedom as can be used to diagnose such problems as the
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“flying ice cube,” occurring in some poorly configured
simulations when the center of mass degrees of freedom are
decoupled from other degrees of freedom.1 However, for
testing algorithms or code, simple systems that are both
sufficiently complicated and general can usually be found which
will behave ergodically within a reasonable amount of
simulation time. Therefore, in the rest of this paper, we will
analyze systems which are clearly sampled ergodically and
which have converged ensemble averages of interest, so we will
not require any additional tests of ergodicity or convergence.
Having analyzed the potential problems with such ensemble

validation analysis, we next explore possible methods to
quantify deviation from the canonical ensemble using data
collected from pairs of simulations.
2.1. Visual Inspection. We can divide the common energy

range of the two simulations into bins (perhaps 20−40,
depending on the amount of data, numbers chosen solely from
experience through trial and error). Bins need not be equally
spaced, though this simplifies the analysis considerably by
removing the need to correct the probability densities for
differing widths of bins. It also greatly simplifies the analysis to
select bin divisions that are aligned between the two data sets.
Bins can be chosen to exclude a few points on the top and the
bottom of each distribution to avoid a small sample error and
zero densities at the extremes. P1(E) and P2(E) in each bin can
then be estimated directly from the histograms. We can
compute the ratio of these histograms at each value of the
energy at the centers of the bins and plot either the ratio or,
more cleanly, the logarithm of this ratio, as shown in Figure 1.
If this logarithm ratio is linear, we have a system that for all
qualitative purposes obeys the proper equilibrium distribution.
Qualitatively, if the actual slope of the log energy ratios is

below the expected slope, it means that the low β (high
temperature) simulation samples that particular energy less
than it should, while if it is above the true line, it means that
portion of the distribution is oversampled. A consistently higher
observed slope therefore means that the distribution is
narrower than it should be, and a lower observed slope
means that the distribution is wider than it should be.

2.2. Quantitative Fitting. The relationships presented so
far are not entirely novel; visual inspection of probability ratios
of paired temperature replica exchange simulations has been
used previously to check that neighboring replicas have the
proper distributions relative to each other.3,4 However, there
has not been an effort to use this relationship as a general test
to quantitatively analyze simulations for goodness-of-fit to the
putative ensemble distributions.

2.2.1. Linear Fitting. To make this ensemble test
quantitative, we estimated the error in the occupancy
probability pk of each bin i as δpk = (pk(1 − pk)/n)

1/2 (a
standard result for the binomial distribution) and propagate the
error in the individual bin probabilities into the ratio P2(E)/
P1(E) (a process detailed in Appendix B). If the true slope lies
consistently outside of the error estimates, then it is very likely
the simulation is not correctly sampling the desired ensemble.
Calculation of the histogram uncertainties also allows us to
perform weighted linear and nonlinear least-squares fitting
(details also in Appendix B). This allows us to include the effect
of small sample error at the extremes of the distribution in our
fitting. We can use standard error propagation methods to
propagate the error in the histogram occupancy ratios into the
error in the linear parameters.

2.2.2. Nonlinear Fitting. It is well-known that linearizing a
mathematical relationship in order to perform linear least-
squares can introduce bias in the estimation of the parameters.
It is therefore often preferable to minimize the direct sum of
the residuals Sr(α⃗) = ∑i(yi − f(α⃗,xi))

2, which is a nonlinear
function of a ⃗, and then propagate the error in the histogram
bins into the uncertainties of the components of α⃗. In this
particular problem, we want to determine the two parameter fit
that minimizes the sum of residuals Sr(α0, α1) for the function

∑α α α α= − +
⎡
⎣⎢

⎤
⎦⎥S

P E
P E

E( , )
( )
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exp( )r
i

i

i
i0 1

1

2
0 1

2

(7)

2.2.3. Maximum Likelihood Estimates. Any results from
either the linear or nonlinear case may be affected by the choice
of histogram binning we use. In theory, we can vary the number
of histogram bins to ensure that the answers are not dependent

Figure 1. Ensemble validation of water simulations. Validation of the energy distribution of 900 TIP3P water molecules simulated in the NVT
ensemble using the Nose−́Hoover algorithm.2 The predicted value and the actual data for both linear (a) and nonlinear (b) fits quantitatively agree.
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on the number of bins. However, we can completely eliminate
the histogram dependence as well as include the data at the tails
rather than truncate them by using a maximum likelihood
approach. A maximum likelihood approach allows us to predict
the most likely parameters for a given statistical model from the
data that have been observed.
Previously, we used such a maximum likelihood approach to

compute the free energy difference between forward and
reverse work distributions between two thermodynamic states
at the same temperature,5 which is equivalent to computing the
value of ln Q1/Q2 with fixed β. In that case, we use information
from two unnormalized distributions to find a single unknown,
the ratio of normalizing constants. In the present case, however,
we have two parameters in the distribution which we must fit,
α0 = ln Q1/Q2 and α1 = −(β2 − β1). Applying a maximum
likelihood approach along the lines described in the paper5

leads to log likelihood equations:

∑ ∑α α α α α| = − − + +
= =

L f E f Eln ( data) ln ( ) ln ( )
i

N

i
j

N

j
1

0 1
1

0 1

1 2

where f(x) is the Fermi function f(x) = [1 + exp(−x)]−1, and
where the first sum is over energies sampled at temperature T1
and the second sum is over the energies sampled at T2. The
most likely parameters are the ones which maximize the
likelihood function in eq 8. This particular function can be
shown to have no minima and only one maximum, so it will
always converge. The change from one unknown to two
unknowns does not affect the procedure to calculate the value
but does affect the uncertainty. Details of these differences are
discussed in Appendix C.
Equation 8 can be solved by any of the standard techniques

for multidimensional optimization as it is everywhere concave.
There is one minor technicality; clearly, the variance can be
minimized to zero by setting α0 = α1 = 0, which is not
physically consistent with the data. There is therefore an
additional constraint we must first identify to find a unique
minimum.
In performing this likelihood maximization, we note that

although there are four parameters explicitly stated, A1, A2, β1,
and β2, only two of them are actually free parameters.
Examining eq 6, we can express the relationship to the physical
quantities as α0 = β2A2 − β1A1 and α1 = −(β2 − β1). We also
note that eq 6 does not allow us to test for β1 and β2 directly
but instead is only a function of the difference β2 − β1, so we
must actually treat this as one variable corresponding to a single
degree of freedom. A simple choice is to treat β1 + β2 as a
constant in what amounts to a choice of the energy scale. We
can therefore set βave = 1/2(β1,user + β2,user), the user specified
temperatures. A1 and A2 are the free energies of the system, so
there is no physical meaning to their absolute value, only their
difference. Without a loss of generality, we set A1 + A0 = 0 and
treat ΔA = A2 − A1 as our second independent variable. These
two choices allow us to then solve for unique values of α0 and
α1, rewriting α0 + α1E = βave(A2 − A1) − (β2 − β1)E = βaveΔA
− ΔβE, an expression that explicitly only has two free
parameters.
One down side of using a maximum likelihood analysis is

that it does not give a graphical representation; it is histogram
independent, and so we do not have a histogram that we can
plot! A linear fit should therefore be performed in conjunction
with maximum likelihood analysis to quickly visualize the data
as a sanity check.

2.3. Error Estimates. Once we have an estimate of the
slope β2 − β1, we must ask if the slope deviates from the true by
a statistically significant amount or if the difference is more
likely due to random chance. For this, we can turn to error
estimation techniques to find a statistically robust approx-
imation for the error in β2 − β1 and to determine if any
deviations from the true value are most likely a result of
statistical noise or actual errors in the simulation.
For weighted linear least-squares, weighted nonlinear least-

squares, and multiparameter maximum likelihood logistic
regression, the analytic asymptotic error estimators for the
covariance matrix of fitting parameters are all well-known
statistical results:

α ⃗ = −X WXlinear cov( ) ( )T 1
(8)

α ⃗ = − −J W Jnonlinear cov( ) ( )T 1 1
(9)

α ⃗ = α
−H Lmaximum likelihood cov( ) ( (ln ) ) 1

(10)

In all equations, α⃗ is the vector of parameters we are estimating.
In eq 8, X is the (M + 1) × N matrix with the first column all
ones, and the second through the (M + 1)th column, the values
of the N observations of the M observables. In eq 9, J is the
Jacobian of the model with respect to the vector of parameters,
evaluated at N observations and the values of the parameters
minimizing the nonlinear fit. In eq 10, H(ln L) is the Hessian of
log likelihood with respect to the parameters, and W is a weight
matrix consisting of the variances of the values of each data
point estimated from the histograms. We explore these
expressions more completely in Appendices B and C.
We can also use bootstrap sampling of the original

distribution data to generate error estimates, which has proven
to be a reliable error estimation method for free energy
calculations.6 Although more computationally intensive, the
total burden is relatively low. For example, it takes only 20 min
on a single core of a 2.7 GHz Intel i7 processor to perform 200
bootstrap samples, even with 600 000 energy evaluations from
each simulation.
Once we have generated error estimates for our estimates of

the parameters, we can ask the underlying statistical question of
whether deviations from the true result are likely caused by
statistical error or by errors in the underlying data. In most
cases, we will have collected enough samples that the deviation
from the fit should be distributed normally. In this case, we can
simply compute the standard deviation of the fit parameters
and ask how many standard deviations the calculated slope β2
− β1 is from the user specified slope. If this difference is
consistently more than 2−3 σ away from the true value in
repeated tests, it indicates that there are likely errors with the
simulations as the two distributions do not have the
relationship that they would have if they obeyed a canonical
distribution. More sophisticated statistical tests are possible that
do not assume normality, but the straightforward normal
assumption appears to work fairly well to diagnose problems for
all cases presented here. It is important to note that the number
of standard deviations a result is estimated away from the
expected value is not necessarily a measure of the size of the
error. Instead, it is a measure of how certain we are of the error,
as we may be measuring either a very small error with extremely
high numerical precision or a large error with lower precision.

2.4. Choosing the Parameter Gap. We note that the
relationship in eq 6 is true for any choice of the temperatures β1
and β2. However, if β1 and β2 are very far apart, then the two
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probability distributions P(E|β1) and P(E|β2) will not be well
determined over any range of E in any simulation of reasonable
length. If, on the other hand, β1 = β2, no information can be
obtained because the simulations will be statistically identical. If
the two simulations are not statistically identical, there are
deeper problems to worry about than if the simulations are
ensemble consistent!
Coming in from these two limits, if β1 and β2 are moderately

far apart, small-sample noise from the extremes of the
distribution will make it difficult to determine the deviations
from β2 − β1. If β1 and β2 are too close together, even the
relatively small statistical noise at the centers of the
distributions will swamp out the information contained in the
very slight difference between the user-specified temperature
gap and the simulation’s actual value for β2 − β1. There should
therefore be some ideal range of temperature gaps giving the
most statistically clear information about deviations from
ensemble consistency. We will examine specific choices of
this gap for different systems in this study.
2.5. Sampling from the Canonical Ensemble with a

Harmonic Oscillator. To study these ensemble validity tests
in practice, we first examine a toy model, sampling from a D-
dimensional harmonic oscillator, where we can generate

uncorrelated samples directly from the analytical Boltzmann
distribution. We then use this model to demonstrate the use of
this method to identify simulation errors.
For a D-dimensional harmonic oscillator with an equal spring

constant K in each dimension and equilibrium location xi,0 in
each direction, the total potential energy of the system is E = 1/
2K∑i=1

D (xi − xi,0)
2. The partition function for this model is

Q(β) = (2π/βK)D/2, meaning the free energy is A(β) = −(D/
2β) ln[(2π)/(βK)], and the probability of a given configuration
x ⃗ is

∑β β
π

β|⃗ = − | − |⎜ ⎟⎛
⎝

⎞
⎠
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2
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i
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i i
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For this exercise, we set xi,0 = 0 for all i for simplicity, and
choose D = 20. We specifically do not choose D = 1, because it
can give results that may not be typical for other choices of
dimensions. For D = 1, the density of states σ(E) is constant for
this choice of E, i.e., P(E) ∝ exp(−βE) for all spring constants.
Unlike most physical densities of states, in this case E = 0 has
nonzero probability for all temperatures, which means samples
from all temperatures have nonnegligible overlap. Harmonic
oscillators with D ≫ 1 have Ω(E) = 0 at E = 0 and then rapidly

Figure 2. All fitting methods are sensitive determinants of noise in the energy. Upper figure (a) shows the estimated values of β2 − β1 (dotted line is
true value of 0.6) for the three fitting methods (linear, nonlinear, and maximum likelihood), as a function of the added noise parameter ν. Errors and
values are calculated using analytical error estimates (white), bootstrap sampling (light gray), or by repeating the calculations 200 times (dark gray).
All three methods for estimating error are consistent except for the nonlinear analytical estimate. All methods have high senstivity to error, though
nonlinear fitting is less sensitive. Lower figure (b) shows for the same data the number of standard deviations (dotted line is 95% confidence level)
that β2 − β1 is from the true value for each fitting method using the three error estimate methods. The dotted line is 95% confidence level.
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increasing as E increases, much more characteristic of more
typical physical systems.
2.5.1. Testing for Ensemble Validity with a Toy System

with Simulation Noise. Using the toy system introduced in
section 2.5, we generate samples with K = 1 and β = 1.3 and 0.7
(the specific choice of temperature gap is explained later) and
record the energies of these samples. After generating the
samples and recording the energies, we add random noise δE =
ν|N(0,1)|, where N(0,1) is a Gaussian random variate with
mean zero and standard deviation 1, and ν is some small
positive constant. The addition of random noise allows us to
test the ability of the algorithm to identify simple errors in the
energy distributions. In each case, we carry out 200
independent repetitions of this procedure, each time with
500 000 samples from each of the distributions at the two
different temperatures. This particular type of error means that
the data are generated with the correct probability, but their
energies are recorded incorrectly. This pattern might not be
typical of actual errors observed in molecular simulations but
serves as a useful starting point for characterizing the sensitivity
of this procedure. The results are shown as a function of noise
in Figure 2, with 0.6 the exact result for β2 − β1. We examine
the linear, nonlinear, and maximum likelihood fits, with the
error calculated by the analytical estimates, sample standard
deviations over 200 repetitions, and bootstrap sampling using
200 bootstrap samples from the first of the 200 repetitions.
In all cases as seen in Figure 2, bootstrap sampling closely

matches the standard sample error from 200 independent
samples, suggesting that bootstrap error estimation is likely to
be as effective as independent sampling to identify ensemble
errors, as was also observed in previous free energy
calculations.6 Additionally, the analytical error estimates for
linear and maximum likelihood fitting closely match the sample
standard deviation. This is particularly encouraging because it
means that single pairs of simulations are enough to calculate
error estimates robustly.
Nonlinear fitting is somewhat less useful, as the nonlinear

analytical error estimates appear to noticeably underestimate

the actual error, as determined by the sample standard
deviation over 200 repetitions. The statistical error in nonlinear
fitting is larger than the error in the linear and maximum
likelihood estimates, possibly because of a magnified effect of
small sample errors. However, all fitting forms (linear,
nonlinear, maximum likelihood) in combination with all
estimators of the error (analytic, independent replicas, and
bootstrap sampling) are relatively sensitive determinants of
noise in the energy. Deviations of more than 3σ occur
consistently for ν as low as 0.0075, or less than 1% of kBT,
demonstrating that these errors have become statistically
significant. Even with ν = 0.01, where the slope is between 5
and 7 standard deviations from the true slope, the visual
difference between estimates becomes virtually unnoticeable,
for both the actual distributions and the ensemble validation fit,
as seen in Figure 3. The ability to sensitively identify errors that
cannot be directly visualized demonstrates the utility of this
quantitative approach. Overall, it appears that maximum
likelihood error estimates are the best method to use, as
discretization errors due to poor histogram choice will not
matter. However, linear fitting also appears robust, at least for
this system.
The ensemble validation relationship is true for all choices of

β1 and β2, but as discussed, for finite numbers of samples, there
are problems with choices of β1 − β2 that are either too large or
two small. For large slopes, a small sample error in the tails
dominates; for small slopes, the small magnitude of the slope
becomes difficult to distinguish even at the moderate levels of
statistical error occurring near the peaks of the energy
distributions. In Figure 2, we use a fixed difference in
temperatures. Can we identify an optimal temperature
difference to detect error? For this exercise, we select a fixed
low level of random error (ν = 0.01) and vary the slope β2 − β1
with the average 1/2(β1 + β2) fixed at 1, using the analytical
estimate from the maximum likelihood parameter estimation
and again using 500 000 samples from each distribution.
For fixed noise in the energy function, we see in Table 1 the

number of standard deviations from the true slope to the

Figure 3. Model energy distributions and discrimination of error. A small amount of noise (0.06% of the average energy) is added to each sample.
Such differences affect the distribution minimally (a). When the linear graph of the log ratio probabilities is inspected visually (b), it can be difficult
to distinguish errors in the sampling, but fitting quantitatively to the distribution reveals that the deviation in the distribution from analytical results is
5−7 standard deviations (depending on the fitting method used) from the expected value. The system is the same as that used for Figure 2 with error
scale ν = 0.01.
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observed slope as a function of the energy gap. The ability to
discriminate the error in β2 − β1 is lower for both very large and
very small temperature gaps, though there is a relatively broad
range near the middle where the sensitivity of the test,
measured in the number of standard deviations the measured
slope is from the true slope, is relatively constant.
Examining the energy distributions at the maximum error

discrimination point (β1 = 0.6, β2 = 1.3), we find that the
difference between the centers of the distributions (14.3kBT −
7.7kBT = 6.6kBT) is approximately equal to the sum of the
standard deviations of the distributions (4.5kBT + 2.4kBT =
6.9kBT). This suggest (though does not prove) a general rule-
of-thumb that we can maximize the ability to identify errors by
using temperatures separated by approximately the sum of the
standard deviations of the distributions. The precise value of
the difference will not matter particularly in most cases as long
as we are somewhat near the optimum. With less data, we
might err on the side of using a slightly smaller gap to guarantee
good overlap in the distributions.
This rule is simply intended as a guideline, as some sources

of error might show up preferentially in the tails and thus
require larger temperature gaps to observe but provides useful
starting criteria. One example of a physical system which
violates this rule is a 1-D harmonic oscillator, which has a
constant density of states Ω(E). Although the statistical error
does indeed increase with decreasing overlap, the slope
increases faster, and thus sensitivity to statistical error always
increases with increasing temperature gap. With fixed error, the
sensitivity with noise magnitude ν = 0.02 increases from less
than one standard deviation for β2 − β1 = 0.1 to over five
standard deviations for β2 − β1 = 1.8. However, this case is
atypical, because the density of states is a constant with the
maximum probability always at E = 0, so that even when the
temperatures are very different there is still nonnegligible
overlap in the distributions.
To apply this rule, we still need to estimate the standard

distributions of the two distributions. If we assume the variance
in energy (and therefore the value of the heat capacity) does
not change very much over the relative narrow range of
temperature spacings used to perform ensemble validation,
then the distributions will also be the same. We can estimate
the width σ of the distribution given a known heat capacity CV.
Specifically, σE = T(CVkB)

1/2, so that for a temperature gap to

result in a difference in the centers of the energy distribution of
2σE, we must have 2σE = (∂E/∂T)ΔT = CVΔT, which reduces
to ΔT/T = (2kB/CV)

1/2. Alternatively, in many cases it may
make the most sense to run a short simulation at the “center”
temperature 1/2(T1 + T2) to estimate the variance, and we can
use the equivalent relationship ΔT/T = 2kBT/σE to identify a
reasonable temperature gap β2 − β1 for simulations of a specific
system.

2.6. Isobaric−Isothermal Ensembles. Our discussion up
to this point has been restricted to NVT systems. However, the
same principles can also be applied to check the validity of
simulations run at constant temperature and pressure, and of
simulations run at constant temperature and chemical potential.
We will analyze isobaric−isothermal simulations extensively in
this section. We will not examine grand canonical simulations
in this paper, though we do include the derivations in Appendix
A.
There are at least three useful ways we can analyze NPT

simulations for validity. First, let us assume that we have two
simulations run at the same pressure but different temperatures.
Then, the microstate probabilities are

β β β β⃗ | = Δ − ⃗ −−P x V P P E x PV( , , ) ( , ) exp( ( ) )1
(11)

where Δ(β,P) is the isothermal−isobaric partition function. We
then integrate out configurations with fixed instantaneous
enthalpy H = E(x ⃗) + PV, where x ⃗ here is shorthand for both
position and momentum variables, not the entire microstate
specification. We then have

∫ ∫β β δ β
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where Ω′(H,P) is a density of states counting the number of
states with a given value of H = E + PV and is explicitly a
function of P, but not β. The prefactor of βP comes from the
requirement to cancel the units in the integral, ignoring factors
of N relating to the distinguishability of particles, which will
cancel in the ratio of distributions in all cases. Because both
simulations have the same pressure, we arrive directly at a new
ensemble validation relationship:

β
β

β β
β β

β β
|
|

=
Δ
Δ

− −
P H P
P H P

P
P

H
( , )

( , )

( , )

( , )
exp( [ ] )2

1

1 1

2 2
2 1

(12)

β
β

β β β β

β β

|
|

= + −

− −

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

P H P
P H P

G G

H

ln
( , )

( , )
ln( / ) [ ]

[ ]

2

1
1 2 2 2 1 1

2 1 (13)

The exact same ensemble validation statistical tests can
therefore be applied with H in place of E and the Gibbs free
energy (or free enthalpy) G plus a small correction factor in the
place of A.
We can also look at the probability of the volume alone by

integrating out the energy E at fixed volume:

Table 1. Optimizing Temperature Spacing to Improve Error
Detection in the Distributiona

β2 β1 β2 − β1 estimated β2 − β1 σ deviation

1.05 0.95 0.1 0.0993 ± 0.0006 1.1
1.10 0.90 0.2 0.1981 ± 0.0007 2.7
1.15 0.85 0.3 0.2970 ± 0.0008 3.9
1.20 0.80 0.4 0.3960 ± 0.0009 4.7
1.25 0.75 0.5 0.4948 ± 0.0010 5.2
1.30 0.70 0.6 0.5936 ± 0.0012 5.4
1.40 0.60 0.8 0.7913 ± 0.0017 5.1
1.50 0.50 1.0 0.9907 ± 0.0027 3.5
1.60 0.40 1.2 1.1930 ± 0.0047 1.5
1.70 0.30 1.4 1.3916 ± 0.0100 0.8

aDeviation from the correct slope of the log ratio of the energy
distributions as a function of increasing distance between the two
distributions, as measured by the magnitude of β2 − β1, with fixed
noise. The ability to discriminate the error in β2 − β1 reaches an
optimum at intermediate separation of distributions.
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We can then use the same techniques already described with
Δ(β,P1) in the place of Q(β,V), P1 and P2 in the place of β1 and
β2, and βV in the place of E.
Finally, we can treat the joint probability distributions with

both V and E varying independently:
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We can apply most of the same methods described
previously with slight modifications for the additional
dimensions. For example, when fitting the log ratio of the
distributions, we must now perform a multilinear fit in V and E.
Multiple variable nonlinear fitting can also be employed.
However, in both cases, we can quickly run into numerical
problems because of the difficulty of populating multidimen-
sional histograms with a limited number of samples, making
discretization error worse. The maximum likelihood method,
which already appears to be the most reliable method for
estimating single variables, does not require any histograms and
thus is free from discretization error in any dimension. In
examining joint variation in E and V in this study, we therefore
focus on only the maximum likelihood method.
For maximum likelihood maximization, we again need to

clarify what the free variables are in order to fix the form of the
probability distribution. The first two are ΔG = G2 − G1,
setting G1 + G2 = 0, and Δβ = β2 − β1, setting (β1 + β2)/2 =
βave = const, as before. By analogy, we set (P1 + P2)/2 = Pave,
with the variable ΔP = P1 − P2. Both βave and Pave are then set
at the averages of the applied β and P of the two simulations.
We then find that

β β β β β
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= Δ + Δ
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The explicit maximum likelihood equations for enthalpy,
volume, and joint energy and volume are then
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omitting the unchanged prefactors involving logarithms of the
ratios of the known intensive variables β1, β2, P1, and P2. In
general, we can ignore this term because we usually do not care
about the exact value of the free energy difference ΔG between
the paired simulations and so therefore do not need to break
the constant term down into its components.

2.7. Sampling from the Isobaric−Isothermal Ensem-
ble for a Toy Problem. To better understand how to validate
the volume ensemble, we examine a toy model sampling from a
modified harmonic oscillator potential. In this case, the
harmonic spring constant is increased by decreasing the system
volume in order to add a PV work term to the system. We set
the harmonic force constant K = (a/V)2, and for simplicity set
x0 = 0. This means that Δ(P, β) = ∫ V Q(V, β) exp(−βV) dV,
which gives

β β π
β

Δ = −P P
a
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22

2
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2

exp
2

2
2 2
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We use the Gibbs sampler7 to generate configurations from the
joint distribution P(x,V) in eq 22 by alternating sampling in
P(E|V) and P(V|E). To sample randomly from P(x|V), we
observe that x will always be distributed as a Gaussian, with
standard deviation σ = (K/β)1/2 = (V/a)β−1/2. To perform
conditional sampling in the system volume dimension, we must
sample according to the conditional distribution P(V|xi) ∝
exp(−β(a2xi2/2V2) − βPV). This is not a typical continuous
probability family, so there is no simple formula for generating
samples from this distribution. However, we note that the
distribution is strictly less than M exp(−βPV), where M is the
ratio of the normalizing constant for the exponential
distribution and the normalizing constant for the exponential
plus the harmonic term. We can then sample V from the
exponential distribution exp(−βPV) and perform rejection
sampling to sample from the strictly smaller desired distribution
P(V|x). Initially, it appears that the smaller the difference
between the two distributions (i.e., the smaller −βa2xi2/2V2) is,
the more efficient the sampling will be. However, because xi is
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generated from a Gaussian distribution, ⟨x2⟩ = βV/a2, then the
average efficiency reduction factor becomes exp(−β/2),
independent of P or a, so the acceptance ratio is only
significantly affected by the temperature.
2.7.1. NPT Model System Results. For all tests, we generate

250 000 samples from each of the paired distributions. To
examine the enthalpy, we pick β1 = 2/3, β2 = 2, and P1 = P2 = 1,
and using the maximum likelihood method we estimate β2 − β1
= 1.3341 ± 0.0040, only 0.2 standard deviations from the true
answer of 4/3 (see Figure 4a for the linear plot). To validate
the volume sampling, we pick β1 = β2 = 1.0 and P1 = 1.3 and P2
= 0.7 and find that β(P2 − P1) = −0.6013 ± 0.0025, 0.53
standard deviations from the true answer of −0.6 (see Figure
4b for the linear plot). Finally, when we examine the joint
variation of energy and volume, we use β1 = 0.6, β2 = 0.8, P1 =
0.8, and P2 = 1.2, which gives us 0.20035 ± 0.00318 for the
slope (β2 − β1) and −0.48129 ± 0.00185 for the slope β2P2 −
β1P1, which are 0.1 and 0.7 standard deviations from the true
answers 0.2 and −0.48, respectively. We see that indeed these
equations properly capture entropy and volume distributions.
2.7.2. Picking Intervals for Enthalpy and Volume Tests. In

the NPT case with differing temperatures and constant
pressure, the instantaneous enthalpy E + PV takes the place
of the energy, and a two standard deviation temperature gap
will mean choosing temperatures separated by (2kB/CP)

1/2,
instead of (2kB/CV)

1/2. In the case of an NPT simulation
performed with constant temperature and at differing pressures,
we want 2σV = ΔP(∂V/∂P)T. We can use the distribution of
volume fluctuations to find that 2σV = (∂V/∂P)T = σV

2/kBT. We
therefore must have that |ΔP| = 2kBT/σV, or in terms of the
physical measurable isothermal compressibility κT = −1/V(∂V/
∂P)T, ΔP = (2kBT/VκT)

1/2. Again, this is a guideline, not a strict
rule; short simulations at the simulation average can also be
useful to identify the spread of the distributions, as the answer
must only be in the right range. For joint distributions, the
analysis is more complicated, but it seems reasonable to use 2σ
in both directions, perhaps erring on the low side to ensure
sufficient samples.

3. MOLECULAR SYSTEMS
3.1. Kinetic Energy and Potential Energy Independ-

ently Obey the Ensemble Validation Equation. In most
molecular systems (for example, ones without applied magnetic
fields), the potential energy of the system can be assumed to be
independent of the velocities and masses of the particles. Thus,
the potential and kinetic energy are separable, and we can write

β β β
β β

β β
β β

β β

+ | = Ω Ω
− −

= Ω −
Ω −

= | |

− −

−

−

P E E Q Q E E

E E

Q E E
Q E E

P E P E

( ) ( ) ( ) ( ) ( )

exp( ) exp( )

[ ( ) ( ) exp( )]
[ ( ) ( ) exp( )]

( ) ( )

pot kin kin
1

pot
1

pot kin

pot kin

kin
1

kin kin

pot
1

pot pot

pot kin

The separability of the density of states occurs again because
the momenta can be sampled independently of the coordinates.
The ensemble validation algorithm is therefore valid for the
kinetic and potential energies independently as well, so that

β
β

β
β

β β
|
|

= − −
P E
P E

Q

Q
E

( )

( )

( )

( )
exp( [ ] )kin 2

kin 1

kin 2

kin 1
2 1 kin

(22)

β
β

β

β
β β

|
|

= − −
P E

P E

Q

Q
E

( )

( )

( )

( )
exp( [ ] )pot 2

pot 1

pot 2

pot 1
2 1 pot

(23)

In the case of kinetic energy, Qkin is simply Πi=1
N ∫ −∞

∞

exp(−βpi2/mi) dpi = Πi=1
N (mi/πβ)

3/2, meaning the probability
ratio is
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which is now in terms of the single free parameter Δβ = β2 − β1
rather than two parameters. Note that this is true for both

Figure 4. Validation of distributions for harmonic oscillators with pressure. We can accurately validate the isothermal−isobaric distributions of
enthalpy (a) and volume (b) for our harmonic oscillator toy problem with a volume-dependent spring constant.
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identical and nonidentical particles, since the mass terms will
cancel out for all i. In the case of kinetic energy, we can obtain a
distribution for each distribution alone, because the kinetic
energy is simply the sum of 3N random normal variables with
standard deviations (mi)

−1/2pi and is thus a χ2 distribution with
3N (minus any center of mass variables removed from the
simulation) degrees of freedom (DOF). For more than 60
DOF, corresponding to about 20 particles, the χ2 distribution is
essentially indistinguishable from a normal distribution with the
mean equal to the sum of the means of the individual
distributions, which in this case is simply the average kinetic
energy. By equipartition, the total kinetic energy will simply be
3N/2β. The standard deviation can be computed by noting that
the σ2 = kBT

2CV and that the heat capacity due to the kinetic
energy is the ideal gas heat capacity, 3NkB/2. Thus, σ

2 = 3N/
2β2, and

β
π
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to high accuracy for any number of molecules typical in
molecular simulations. In the above formulas, 3N should be
replaced by the correct number of DOF if constraints are
implemented or if any center of mass degrees of freedom are
removed. Standard methods for testing the normality of
distributions with known means and standard deviations can
be used, such as inspecting Q−Q plots or the Anderson−
Darling test.8 If the number of degrees of freedom is not
available, as may be the case when one is analyzing data
provided by someone else, then this can be estimated from the
average of the kinetic energy by equipartition as ⟨Ekin⟩ = (kBT/
2)(#DOF). If the kinetic energy is not equal to this value, then
the reported temperature will not even be correct, which should
be noticed from simpler outputs of the simulation before
running any other more sophisticated analysis like the
procedures described in this paper.
The kinetic energy distribution, in addition to following the

ensemble validation formula, can therefore be checked directly
as well with essentially no overhead, though this does not seem
to be common practice in molecular simulation validation. The
potential energy formula can be used to either validate the
potential energies separately or can be used for Monte Carlo
simulations, where only potential energies are defined. It is also
possible to perform this separation in terms of ideal gas and
canonical partition functions, but it does not change the results,
as the volume is constant.
To obtain separability of kinetic and potential energies in an

NPT ensemble, we start by writing the isobaric−isothermal
partition function in terms of kinetic and potential energy
portions of the canonical partition functions and note that the
kinetic energy part is independent of the volume.
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This separation again makes it possible to validate NPT Monte
Carlo simulations by removing the kinetic energy.

3.2. Molecular Dynamics of Lennard-Jones Spheres.
We next illustrate the utility of the ensemble validation formula
for molecular simulations. For this study, we used a simulation
of 300 Lennard-Jones particles using a beta version of the
Gromacs 4.6 simulation code compiled in double precision. We
used the Rowley, Nicholson, and Parsonage argon parameters
for Lennard-Jones spheres (σ = 0.3405 nm, ε = 119.8 K, kB =
0.996072 kJ/mol)9 and simulated at ρ = 0.85ρc (where ρc is the
Lennard-Jones critical pressure), meaning the box is of length
3.5328256 nm and T = 0.85Tc = 135.0226. Velocity Verlet
integration was used, with the exception of the Gromacs
stochastic integration method, which is only defined for the
leapfrog Verlet algorithm. The linear center of mass
momentum was removed every step, and a long-range
homogeneous dispersion correction was applied to the energy.
Unless otherwise specified, a Lennard-Jones switch between 0.8
and 0.9 nm was used, including a homogeneous long-range
correction with a neighborlist at 1.0 nm, a neighborlist update
frequency of 5 step, and a time step of 8 fs. Temperature
coupling algorithms were carried out with a coupling constant
of τT = 1.0 ps. A total of 62.5 million MD steps were simulated
for all simulations, equivalent to 500 ns with an 8 fs time step,
with the last 490 ns used for analysis. Unless otherwise
specified, the low and high temperatures are T = 132.915 and T
= 137.138, respectively, chosen to be approximately 0.7 times
the estimated ideal σ gap from the rule of thumb, using CV ≈
8.5 kJ K−1 mol−1 from a preliminary simulation of the system.

3.3. Molecular Example: Validating Temperature
Control Algorithms. Using this Lennard-Jones system, we
first examine temperature control algorithms implemented in
Gromacs: Bussi−Parrinello,10 with stochastic scaling of the
target temperature, Andersen temperature control,11 a variant
of Andersen temperature control with the velocity of all atoms
randomized at some regular interval τt, Nose-́Hoover,2

stochastic dynamics, and Berendsen velocity scaling.12 All of
these temperature control algorithms are proven in theory to
give the correct canonical distribution in the limit of long time
scales13 with the exception of the Berendsen temperature
algorithm, which is known to give an incorrect, overly narrow
kinetic energy distribution.14−16 We examine the deviations of
the total, potential, and kinetic energies, using analytic errors
from the maximum likelihood fits. In this analysis, we will often
use the ΔP and ΔT (from the maximum likelihood
expressions) to describe the deviations from the true
distribution to make them more intuitive. We can calculate
ΔT from Δβ by assuming an average βeve = 1/2(β1 + β2) and
calculating T2 = kB

−1(βeve + Δβ/2)−1 and T1 = kB
−1(βeve − Δβ/

2)−1. In all molecular simulations, we also compute the
correlation times τ of the energy observables, using the
timeseries module of the pymbar code distribution17 and
subsample the data with frequency 2τ + 1 to obtain
uncorrelated samples. We find that for the kinetic energies
alone, the correlation times are actually artificially short when
using the algorithm in the timeseries module, which only
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integrates out to the first crossing of the x axis. We therefore in
this study use the correlation times for the potential energies,
which are equal to or longer than the correlation times of the
kinetic or total energies. Subsampling more frequently than
required only affects the results by decreasing the statistical
accuracy due to collecting to few uncorrelated measurements,
which for a validation test is not as large a problem as
significantly undersampling the statistical error, which results in
using correlated data. For the thermostat comparison, we use
the subsampling frequency of 40 ps, which is the maximum
among all methods, except for the Andersen massive variant, for
which we use 60 ps.
This comparison is presented in Table 2, with all estimates

and errors computed using maximum likelihood methods
described in this paper. We see that all temperature control
methods appear to be consistent with a canonical ensemble,
with deviations from the true slope generally 1σ or less, with
the exception of the Berendsen temperature control method.
NVE kinetic energy distributions deviate from the canonical
ensemble, though interestingly, potential energy distributions
do not deviate from the correct distribution to a statistically
noticeable level. In all cases where there are deviations of the
kinetic energy, the distributions of the potential energies are
closer to the true distribution than the kinetic energy or total
energy distributions are; as noted, for NVE, the potential
energy distribution is statistically indistinguishable from the
NVT potential energy distribution.
3.3.1. Molecular Example: The Effect of Large Step Size. It

is well-known that step sizes that are too large can lead to rapid
heating of an NVE molecular dynamics simulation as the

integration deviates from the conserved energy trajectory. This
deviation was one of the initial motivations leading to the
development of thermostats. However, using a thermostat to
bleed out the extra thermal energy created by violations of the
conservation of energy effectively creates a steady state system.
The system has heat being both pumped in by numerical
integration error and pumped out by the thermostat, with the
kinetic energy having the desired average. However, this steady
state process does not necessarily have the correct Boltzmann
probability distribution.
There has been relatively little investigation of the effect of

step size on the ensemble itself when temperature control is
applied,18 especially for atomistic simulations. Here, we
examine step sizes from 8 to 40 fs. In the Gromacs code, a
step size of 48 fs with Lennard-Jones argon cause segmentation
faults within just a few nanoseconds and therefore represents
the upper limit of stability with a thermostat coupling constant
with τT = 1 ps. In these units, the reduced time is σ(M/ε)1/2 =
0.1245 ps, so the stability limit is about 0.386 reduced time
units.
However, being below the limit of stability does not

necessarily mean that the ensemble is correctly reproduced.
To analyze the distributions generated by long step sizes, we
use the Bussi−Parrinello thermostat algorithm and step sizes
ranging from 8 to 40 fs (Table 3). Uncorrelated potential
energy samples were 20 ps apart as determined by the
timeseries module, consistent over all steps sizes to within 10%.
Uncertainties in effective temperature are determined directly
from the subsampled kinetic energies, rather than using

Table 2. Ensemble Validation of Different Temperature Control Algorithmsa

true ΔT = 4.223

total potential kinetic

thermostat estimated ΔT σ deviation estimated ΔT σ deviation estimated ΔT σ deviation

none (NVE) N/A (constant) 4.388 ± 0.115 1.4 3.048 ± 0.112 10.5
Berendsen 9.369 ± 0.122 42.2 4.606 ± 0.086 4.5 29.034 ± 0.364 68.3
stochastic 4.172 ± 0.066 0.8 4.098 ± 0.081 1.6 4.251 ± 0.091 0.3
Nose−́Hoover 4.197 ± 0.067 0.4 4.220 ± 0.082 0.03 4.186 ± 0.090 0.4
Andersen 4.212 ± 0.066 0.2 4.226 ± 0.081 0.03 4.226 ± 0.090 0.03
Andersen (Massive) 4.188 ± 0.079 0.4 4.176 ± 0.097 0.5 4.217 ± 0.107 0.06
Bussi−Parrinello 4.167 ± 0.066 0.8 4.272 ± 0.082 0.6 4.155 ± 0.089 0.8

aAll studied thermostats are consistent with a canonical ensemble, with the exception of the Berendsen thermostat, with deviations from the true
slope generally 1σ or less. The true slope is 0.027865 kBT

−1, equivalent to ΔT = 4.223. All errors are computed using the maximum likelihood
method with the analytical error estimate. NVE simulations also deviate from the canonical ensemble, though the potential energy distributions do
not statistically deviate.

Table 3. Effect of Step Size on Ensemble Consistencya

true ΔT = 4.223 K

true Tlow = 132.915 K total potential kinetic

Δt (fs) Tlow(K) σ deviation estimated ΔT σ deviation estimated ΔT σ deviation estimated ΔT σ deviation

8 132.924 ± 0.040 0.2 4.230 ± 0.047 0.2 4.237 ± 0.058 0.2 4.186 ± 0.063 0.6
16 132.933 ± 0.028 0.7 4.183 ± 0.032 1.2 4.253 ± 0.040 0.8 4.106 ± 0.043 2.7
24 132.933 ± 0.023 0.8 4.058 ± 0.026 6.4 4.140 ± 0.032 2.6 4.023 ± 0.035 5.8
32 132.905 ± 0.020 0.5 3.967 ± 0.030 8.6 4.199 ± 0.028 0.9 4.054 ± 0.022 7.6
40 132.948 ± 0.019 1.8 3.988 ± 0.020 11.6 4.178 ± 0.026 1.7 3.877 ± 0.027 12.9

40 (Ekin ave) 132.917 ± 0.018 0.1 4.266 ± 0.021 2.6 4.275 ± 0.026 2.0 4.296 ± 0.029 2.6
aTotal and kinetic energy gradually deviate from the true ensemble as step size increases, becoming statistically noticeably near, but not at the
instability point. Potential energy distributions deviate less significantly from a canonical distribution than the kinetic energy distributions. The
average half step kinetic energy estimator using the leapfrog verlet integration algorithm deviates less from the true distribution.
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Gromacs g_energy output, in order to have a more consistent
treatment of uncertainties between different observables.
In Table 3, we note that total and kinetic energy gradually

deviate from the true ensemble with the deviation becoming
extremely large near the instability point. For this particular
system, average temperatures determined by averages of the
kinetic energy from a simulation (shown for the lower
temperature simulation in Table 3) are not as useful in
distinguishing systems that are being forced back to the desired
average kinetic energy using the thermostat.
Interestingly, potential energy distributions deviate much less

significantly from the canonical distribution than the kinetic
energy distributions to the extent that this deviation is not
statistically significant. This may relate to the fact that the
standard estimator of the kinetic energy in the velocity Verlet
algorithm, the sum of the squared full step velocities times the
masses, is not as accurate as the estimator of the kinetic energy
of the leapfrog Verlet algorithm, which uses the averaged half-
step kinetic energies. Although deviations increase with the
square of the step size in both cases, the full step kinetic
energies deviate more quickly.19 We note that it appears to be
the choice of kinetic energy estimator, not the integration
method per se, that makes a difference, since the two methods
give identical NVE trajectories up to numerical precision. The
hypothesis that the choice of kinetic energy estimator may
make a difference was confirmed by performing the same 40 fs
time step simulation with the leapfrog Verlet integrator and the
Bussi−Parrinello algorithm, resulting in significantly better
kinetic energy distribution without statistically altering the
potential energy distributions. We note that in this case,
although the deviation is statistically very clear, it is not
necessarily that large. Even for the 40 fs step kinetic energy, the
fitted temperature difference is only off 10%, which is about 0.4
K, which will not make a difference for most applications. We

also note that simulations of different molecular systems with
different potential functions may have different deviations from
ensemble consistency as a function of the distance from the
time step stability limit.

3.3.2. Example: Examining the Effect of Cutoffs on
Ensemble Consistency. An abrupt cutoff of a radial potential
function creates a discontinuity in the force, resulting in steadily
increasing temperature in an NVE simulation. This temperature
rise can, as in the case of large time step, again be disguised by
adding a thermostat, creating a steady state system that does
not necessarily obey the canonical distribution. We can examine
the effect of this truncated potential on the NVT ensemble
using our ensemble consistency tests. We run the same
Lennard-Jones argon system with abrupt cutoffs at rc = 2.0σ,
2.5σ, 3.0σ, 3.5σ, and 4.0σ, where σ here is the Lennard-Jones
size, not the standard deviation. Because of quirks in the way
Gromacs handles abrupt cutoffs, we create an abrupt cutoff
using a potential switch over a distance of 10−9 nm, which on
the integration time scale effectively becomes an abrupt cutoff.
We can measure how much such a simulation violates
conservation of energy by monitoring the average increase in
the conserved quantity per unit time. In these simulations, we
use the Bussi−Parrinello thermostat, with τT = 1.0 ps,
approximately 120 times the time step, with Tlow = 132.915
and Thigh = 137.138. We can measure the magnitude of energy
drift by monitoring the change in the conserved quantity over
time, which varies from 9.40 × 103 kJ mol−1 ns−1 for rc = 2.0σ
to 78 kJ mol−1ns−1 for rc = 4.0σ. Times between uncorrelated
samples, as determined by potential energy differences, were no
larger than 25 ps for all systems, so we use this sampling time
frequency for all three quantities.
We see in Table 4 that the distributions are surprisingly

ensemble consistent for most values of abrupt cutoff for
Lennard-Jones spheres despite the fact that the simulation is

Table 4. Effect of Abrupt Cutoff on Ensemble Validationa

true ΔT = 4.223

Tlow = 132.915 total potential kinetic

rc (LJ σ) Econs (gained kJ/ns) estimated Tlow (K) σ deviation estimated ΔT σ deviation estimated ΔT σ deviation estimated ΔT σ deviation

2 9400 133.952 ± 0.045 23.0 4.102 ± 0.058 2.1 4.018 ± 0.084 2.4 4.122 ± 0.070 1.4
2.5 1140 133.043 ± 0.045 2.9 4.206 ± 0.052 0.3 4.177 ± 0.059 0.8 4.176 ± 0.071 0.7
3 239 132.941 ± 0.045 0.6 4.232 ± 0.051 0.2 4.291 ± 0.065 1.1 4.213 ± 0.071 0.1
3.5 104 132.930 ± 0.045 0.3 4.226 ± 0.050 0.1 4.302 ± 0.058 1.4 4.135 ± 0.070 1.2
4 78 132.929 ± 0.045 0.3 4.302 ± 0.050 1.6 4.307 ± 0.057 1.6 4.192 ± 0.071 0.4

aDistributions are surprisingly ensemble consistent for most values of abrupt cutoff for Lennard-Jones spheres, with only the shortest cutoff distances
(less than 3 LJ σ) showing statistically clear violations.

Table 5. Molecular Validation of Ideal Gap Guidelinesa

kinetic potential total

ΔT/T β2 − β1 n × gapopt est. slope σ deviation est. slope σ deviation est. slope σ deviation

0.0156 0.01393 0.4 0.01302 ± 0.00023 4.0 0.01413 ± 0.00021 0.9 0.013518 ± 0.00016 2.6
0.0313 0.02787 0.7 0.02598 ± 0.00025 7.7 0.02585 ± 0.00018 1.4 0.026433 ± 0.00018 7.8
0.0469 0.04182 1.1 0.03892 ± 0.00027 10.7 0.04152 ± 0.00027 1.1 0.039990 ± 0.00023 8.1
0.0626 0.05578 1.4 0.05190 ± 0.00031 12.6 0.05526 ± 0.00031 1.8 0.053343 ± 0.00029 8.6
0.0938 0.08378 2.1 0.07791 ± 0.00042 14.2 0.08290 ± 0.00045 2.0 0.079531 ± 0.00049 8.6
0.1251 0.11189 2.8 0.10464 ± 0.00059 12.2 0.11150 ± 0.00071 1.6 0.107768 ± 0.0010 4.2
0.1877 0.16867 4.2 0.1522 ± 0.0016 10.1 0.1654 ± 0.0022 1.5 0.165805 ± 0.0057 0.5
0.2502 0.22645 5.6 0.2099 ± 0.0037 4.5 0.220 ± 0.010 0.6 0.249 ± 0.072 0.3

aWe test the temperature gap for maximum discrimination rule with Lennard-Jones argon with time step Δt = 32 fs. Maximum discrimination of
error in the ensemble consistency for the different energy terms occurs between 1 and 2 times the estimated gap rule (column 3).
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gaining more than 200 kJ/mol/ns with a 3 σ cutoff. We note
that in this case, the deviation from desired temperature as
calculated from average kinetic energy is fairly clear (23
standard deviations for a 2σ cutoff!), and therefore this measure
appears to be better at distinguishing violations from the
correct distribution than the ensemble consistency check. This
contrasts with the case of varying step size, where the ensemble
consistency check was more sensitive than the deviation from
the correct average kinetic energy. Clearly, multiple validation
methods should always be performed.
3.3.3. Validating the Gap Selection Criteria for Molecular

Systems. Finally, we attempt to validate our rule of thumb for
the ideal temperature gap with molecular systems, since it was
derived for a simplified model system. We test the ability to
detect error using the same Lennard-Jones argon system with
time step Δt = 32 fs using velocity Verlet (see Table 5), as for
higher temperatures, a time step of Δt = 40 fs can crash in
simulations extending for hundreds of nanoseconds. Measuring
the heat capacity as 8.5 kJ mol−1 K−1 at 135 K leads to a
standard deviation of 36 kJ/mol and an estimated ideal
temperature gap of 6 K between the means of the two total
energy distributions. We see (Figure 5) that we are most
sensitive to error in the total energy between 1 and 2 times the
estimated gap, meaning that our analytical guidelines were
close, but that a slightly larger gap might sometimes be more
effective in identifying errors. We note that the kinetic energy
standard deviation at 135 K (24 kJ/mol) is only about 2/3 of
the total energy standard deviation, but since the total heat

capacity (8.5 kJ K−1 mol−1) is more than twice as large as the
ideal gas heat capacity (3.72 kJ K−1 mol−1 for this size of
system), the kinetic energy distributions have closer mean
values than the total energy distributions. Thus, the range of
peak discrimination for kinetic energy still falls in the 1 to 2
times the “twice the central standard deviation” rule of thumb
when using the distribution of kinetic energies. For molecular
systems, the ideal gap might therefore be better estimated using
a temperature gap 1.5 to 2 times the estimated gap range.
However, a relatively wide range of values allows for
discriminating a lack of ensemble validity if sufficient data are
collected.

3.4. Examining Pressure Control Algorithms. There are
currently three pressure control algorithms implemented in
Gromacs: Berendsen,12 Parrinello−Rahman,20,21 and the
Martyna−Tuckerman−Tobias−Klein (MTTK) algorithm.22,23

The first two are defined using the leapfrog integrator in
Gromacs, and the first and last are defined using the velocity
Verlet integrator. We next examine the same small argon
system for fluctuations of enthalpy and volume, and the joint
fluctuation of volume and energy. A velocity Verlet integrator
was used except for Parrinello−Rahman, with Δt = 8 fs. We set
the pressure coupling τp to 5 ps in all cases and use P = 90 bar
and T = 125 K as the average pressure and temperature,
resulting in a system well below the critical point. When testing
volume fluctuations or joint energy and volume fluctuations, a
low pressure of 30 bar and a high pressure of 150 bar were used
(ΔP = 120 bar), except for Berendsen pressure control, where

Figure 5. Differences in validation of Berendsen and Nose−́Hoover thermostats. (a) Berendsen temperature control produces simulations deviating
greatly from the true distribution; in this case, the slope β2 − β1 of the kinetic energy log ratio is 7 times higher than it should be, 68 standard
deviations away from the true value. (b) The Nose−́Hoover thermostat, like most others examined here, gives a slope statistically indistinguishable
from the proper slope for the kinetic energy portion of the canonical ensemble.

Table 6. Ensemble Validation of Pressure Control Algorithmsa

enthalpy volume joint energy and volume

barostat ΔT σ deviation ΔP σ deviation ΔT σ deviation ΔP σ deviation

Berendsen 4.176 ± 0.121 19.8 79.5 ± 4.4 17.1 0.69 ± 0.14 7.6 −318.661 ± 7.322 43.9
Parrinello−Rahman 7.022 ± 0.033 3.5 114.58 ± 0.57 9.5 7.168 ± 0.036 0.8 110.971 ± 0.529 7.4
MTTK 7.105 ± 0.029 1.2 115.51 ± 0.50 9.0 7.152 ± 0.031 0.5 111.312 ± 0.457 7.8

aTests of enthalpy distribution, volume distribution, and joint energy and volume distributions. The Berendsen barostat fails badly in all three tests.
The other two barostats give correct enthalpy distributions but have small (ΔP off by 5 bar or ≈5%) but statistically clear (7−9σ) errors in the
volume distributions. The correct ΔT = 7.138 (1.784 for Berendsen) and the correct ΔP = 120 bar.
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low and high pressures of 88 and 92 bar (ΔP = 4 bar) were
used. A lower range is needed for the Berendsen weak coupling
algorithm as the volume distributions are far smaller than is
correct for the distribution (already demonstrating a problem).
When testing enthalpy fluctuations or joint energy and volume
fluctuations, a low temperature of 121.431 K and a high
temperature of 128.569 K (Δβ = 0.054987 kBT

−1, ΔT = 7.138
K) were used, generated using an estimated CP of 10.2 kJ/mol
from short initial simulations for this system using the
estimated gap formula. For Berendsen thermostat simulations,
a temperature range of 124.108 to 125.892 K was used (Δβ =
0.013736, equivalent to ΔT = 1.784), as again the overlap
between the distributions is very poor for wider parameter
differences. Nose−́Hoover temperature control with τT = 1 ps
was used for both Parrinello−Rahman and MTTK algorithms.
The ΔP for joint energy and volume comparisons is smaller
because the simulations are run at different temperatures and is
equal to ΔP = 114.861 bar for Parrinello−Rahman and MTTK
and 2.715 bar for Berendsen.
Looking at Table 6, we see that the Parrinello−Rahman and

MTTK algorithms reproduce very accurately the correct
enthalpy distributions, deviating very little from the correct
Δβ, with very high statistical confidence. The precision is high
partly because the time between uncorrelated samples (in this
case, determined from the largest correlation time of either the
energy or the volume) is quite short, in the range of 4−6 ps.
The volume distributions, however, are somewhat off, with the
effective ΔP in both cases near 115 ± 0.6 instead of 120. For
most cases, this will be sufficiently accurate to model physical
processes (and is far better than the Berendsen results) but
might not be sufficiently accurate for very high precision
thermodynamic measurements. The 9σ deviation from the true
answer is again not necessarily a sign of how bad the simulation
is. In this case, because the slope is nearly correct, it is a sign
that it is statistically very likely the simulation is at least
somewhat off rather than simply being very bad. Similar
patterns are seen in the joint distribution of E and V, where the
effective ΔP is still off by about 5 bar (or around 5%). The
deviations are similar for both MTTK and Parrinello−Rahman,
even though these integration routines are mostly separated in
the Gromacs code.
For Berendsen, the results are uniformly bad. In all cases, the

deviation from the expected values is significantly higher than
with MTTK or Parrinello−Rahman, with the slopes being
much further from the true value even though the statistical
error is much higher as well. This deviation exists even though
the average temperatures and pressures in the Berendsen case
were all well within statistical noise. For example, for the joint
distribution analysis, the low and high average pressures were
indeed 87.996 ± 0.003 and 91.998 ± 0.005 bar and the average

temperatures were 125.865 ± 0.015 K and 124.081 ± 0.015,
well within the statistical noise. Errors in the fitting parameters
are therefore due to unphysically narrow distributions, not the
average values themselves. We note one other potential strange
problem with Berendsen volume control combined with the
Bussi−Parrinello thermostat. The autocorrelation times are
much longer than with other simulation variables, on the order
of 20 ps for the energies and 110−130 ps for the volumes. It is
not clear what exactly is causing such a slow change of these
variables when the time constants themselves are much
lowerin this case τT = 1 ps and τP = 5 psbut perhaps
indicates another reason to avoid Berendsen pressure control.

3.5. Water Simulations. We also examine a somewhat
more typical system for molecular simulation, a small box of
900 TIP3P water, a size that might be used to compute pure
water properties or small molecule solvation free energies. We
again use velocity Verlet integration (with the exception of the
Gromacs stochastic integration, which is only defined for the
leapfrog Verlet algorithm) with linear center of mass
momentum removal every step and a long-range homogeneous
dispersion correction applied to the energy and virial. We use a
Lennard-Jones switch between 0.8 and 0.9 nm with a
neighborlist at 1.0 nm and particle mesh Ewald electrostatics
with a cutoff of 1.0 nm, PME order 6, and an Ewald cutoff
tolerance of 10−6. In all cases, a neighborlist update frequency
of 10 steps was used with a time step of 2 fs. SETTLE24,25 was
used to constrain the water bonds and angles, and a total of 10
million steps (20 ns) were simulated, with the last 19 ns used
for analysis. Temperature coupling algorithms were carried out
with a coupling constant of τT = 1.0 ps for the NVT simulations
and τT = 5.0 and τP = 5.0 for the NPT simulations. The low
temperature is 298 and 301 K, with ΔT/T = 0.01 estimated
from σE in the total energy from a single short simulation using
the relationships for the ideal temperature gap.
For the NPT simulations, using a σV = 0.25 nm3 at 1 bar

from a short simulation predicts a ΔP of 238 bar using the
formula presented here, but to err on the side of having
sufficient samples we instead use ΔP = 175 with the low
pressure at 1 bar and the high at 351 bar, though we are
potentially losing some precision. In the case of Berendsen
pressure control, we used ΔT = 1 K and ΔP = 30 bar to ensure
overlap because of the narrowed distributions using Berendsen
methods. For NVT, the interval between uncorrelated samples
is determined from correlation times of the potential energy
which is 2 ps for all methods except the Andersen method,
where we use 4 ps. For NPT, we use the maximum of the
uncorrelated sample intervals between the volume and the
energy. Correlation times for MTTK are much smaller, around
0.3−0.4 ps for both energy and volume, whereas for Berendsen
the energy and volume uncorrelated sample intervals are both 4

Table 7. Ensemble Validation of Different Temperature Control Algorithms with Watera

total potential kinetic

thermostat slope σ deviation slope σ deviation slope σ deviation

Berendsen 51.6 ± 1.1 44.2 7.20 ± 0.12 34.7 4.86 ± 0.12 15.8
stochastic 2.998 ± 0.059 0.04 2.944 ± 0.069 0.8 3.032 ± 0.090 0.4
Nose−́Hoover 2.921 ± 0.058 1.4 2.953 ± 0.068 0.7 2.837 ± 0.089 1.8
Andersen 3.028 ± 0.083 0.4 3.114 ± 0.098 1.2 2.870 ± 0.126 1.0
Andersen (Massive) 3.086 ± 0.083 1.0 3.048 ± 0.097 0.5 3.136 ± 0.127 1.0
Bussi−Parrinello 2.955 ± 0.058 0.8 2.956 ± 0.068 0.6 3.021 ± 0.090 0.2

aΔT = 3 K corresponding to a inverse temperature slope of 0.004023 (kBT)
−1. Results are consistent with those performed with argon, with all

temperature control algorithms ensemble consistent except for Berendsen.
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ps, and for Parrinello−Rahman, the energy and volume
intervals are 6 and 0.4 ps, respectively. Thus, the NPT
MTTK results are somewhat more precise.
We first examine the NVT results in Table 7. These results

are completely in keeping with the argon results before, with all
temperature control methods well within statistical error, with
the exception of Berendsen, which is again wildly incorrect.
These results demonstrate that the utility of ensemble
validation is applicable to more typical molecular simulations,
with data set sizes that are more typical for a standard testing
pipeline.
From the NPT results in Table 8, we see that Parrinello−

Rahman and MTTK have reasonable performance in describing
the enthalpy distribution. Berendsen in this case is also
reasonable, perhaps because the energy contribution dominates
for the nearly incompressible water. MTTK has somewhat
better results for volume fluctuations than Parrinello−Rahman.
It is interesting to speculate on exactly the source of the
difference between the volume fluctuation results in the argon
and the water examples. In the argon example, both pressure
control algorithms had small but statistically noticeable errors
that were consistent between the two algorithms. In the water
example, MTTK appears to be fairly ensemble consistent,
whereas Parrinello−Rahman is slightly worse. Parrinello−
Rahman with leapfrog is known to be inexact because the
pressure lags by one time step, as the pressure and temperature
are not both known at a given time t until after the next half
step. This may be more of a problem in the case of water
because with a higher compressibility, volume integration is a
stiffer equation, requiring more exact solutions. We can
tentatively conclude that typical aqueous simulations using
MTTK may be more consistent with an NPT ensemble than
Parrinello−Rahman, though both are far better than Berendsen
temperature control. However, this test is with homogeneous
fluids; it is possible that with an inhomogeneous system, such as
a lipid bilayer in water, other artifacts might appear, but testing
all possible systems and all possible methods is beyond the
scope of this study.

4. TOOLS

To make these ensemble consistency checks easier, we have
created a set of tools to assist other researchers to more easily
measure the ensemble validations. This code is hosted by
SimTK, at http://simtk.org/home/checkensemble and includes
automatic plotting of linear and nonlinear graphs, as well as
linear, nonlinear, and maximum likelihood parameter analysis
for NVT, NPT, and μVT ensembles. It also provides validation
of kinetic energies versus the Maxwell−Boltzmann distribution.
These software tools were used for all analysis in this paper.
These tools include example code for parsing Gromacs,

CHARMM, Desmond, and flat text output files for ensemble
consistency for NVT, NPT, and grand canonical simulations
(for single component fluids), including testing enthalpy,
volume, joint energy and volume fluctuations, instataneous
Helmholtz energy, particle number, and joint energy and
particle number. Scripts to regenerate all the analytic harmonic
oscillator tests described in this paper are also included in the
distribution.

5. CONCLUSIONS

We have shown that for molecular distributions characterized
by Boltzmann distributions, which is true for all molecular
simulations performed at NVT and NPT or in the grand
canonical ensemble, we can easily check for consistency with
the intended ensemble regardless of the details of the
simulation. This test thus verifies a necessary condition all
simulations must satisfy, regardless of the molecular details. We
simply require pairs of simulations with differing external
parameters such as temperature, pressure, or chemical potential.
These paired simulations allow system-dependent properties
such as densities of states to cancel out, resulting in a linear
relationship between the distribution of extensive quantities
such as energy, volume, enthalpy, and number of particles.
Importantly, the constant of proportionality in this linear
relationship is completely determined by the intensive variables
that are set by the user.
Tests of simple model systems show that these relationships

are not only qualitatively useful but also, with proper error
analysis, can provide quantitative validation of the statistics of
the distributions. We have demonstrated the utility of these
relationships with simple analytical toy models of harmonic
oscillators in both the NVT and NPT ensembles as well as with
molecular simulations of argon and water. We see that these
ensemble consistency relationships are able to identify
thermostats and barostats that are inconsistent with the
ensemble as well as identify differences in distributions caused
by long time steps or abrupt cutoffs. All tested thermostats
except the Berendsen thermostat give statistically good results.
Barostats were somewhat more problematic, with MTTK giving
the best results and Parrinello−Rahman being acceptable for
many uses, while Berendsen pressure control is simply wrong
for any calculation where volume fluctuations are important. In
all cases, simpler checks such as making sure estimators of
quantities like the temperature and pressure calculated from the
kinetic energy and the virial do indeed have the correct value
are useful as diagnosis tools and may occasionally identify
problems that are not easily identified by the ensemble
consistency methods tested here.
These relationships between pair distributions are true for all

differences in applied external thermodynamic variables.

Table 8. Ensemble Validation of Pressure Control Algorithms in Watera

enthalpy volume joint energy and volume

barostat ΔT σ deviation ΔP σ deviation ΔT σ deviation ΔP σ deviation

Berendsen 1.03 ± 0.15 0.2 262 ± 25 9.0 1.67 ± 0.21 3.3 250 ± 30 7.4
Parrinello−Rahman 2.65 ± 0.21 1.7 309.3 ± 3.7 11.1 4.09 ± 0.34 3.2 354 ± 19 0.2
MTTK 2.978 ± 0.053 0.4 335.7 ± 3.9 3.7 3.026 ± 0.074 0.4 345.7 ± 4.6 0.6

aTests of enthalpy distribution, volume distribution, and joint energy and volume distributions. For Parrinello−Rahman and MTTK, the true ΔT = 3
and true ΔP = 350, while for Berendsen, they are ΔT = 1 and ΔP = 30 in the joint energy and volume case. The Berendsen barostat performs
significantly worse than the other two methods, requiring a much narrower range of variables to get any overlap. The other two barostats give
statistically valid enthalpy distributions, with MTTK appearing to have fairly accurate volume distributions and with Parrinello−Rahman having
somewhat worse volume behavior.
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However, there are statistical reasons for choosing specific
differences in the parameters. We have shown that for simple
potentials both small and large differences in the applied system
parameters lead to difficulty in distinguishing systems with
errors from systems with the correct distributions. We have also
shown that for typical probability distributions, choosing
distributions whose means are separated by gaps 2 to 4 times
the sum of the standard deviations appears to maximize the
ability to discriminate between data that are or are not
consistent with the desired ensemble, erring on the shorter side
in cases where less data might be available. It is also important
not to underestimate the autocorrelation time for the energy
variables to be able to accurately use the error estimates, as it
may give inaccurately high deviations from the correct
distribution. Indeed, in typical simulation cases, the ability to
properly estimate correlation times may be the largest source of
uncertainty, as all other parts of the calculations are highly
robust. We also emphasize that the size of the statistical
deviation is a measure of how certain we are of the discrepancy,
not necessarily the size of the discrepancy, as with sufficient
data, we can statistically identify with a high certainty small
deviations that generally do not affect simulation properties
significantly. Finally, we note that these are very sensitive
necessary tests, but they are not sufficient tests; they cannot
guarantee that all states with the same energy are equally
sampled, nor can they guarantee that all important regions of
phase space are sampled.
We have also developed easy-to-use software tools to easily

perform the statistical validation discussed here, requiring only
lists of the relevant extensive variables and specification of the
intensive applied variables. These tools can be easily
incorporated into the workflow for molecular simulation
testing, hopefully greatly reducing the difficulty of determining
whether a given algorithm or software program is producing the
desired thermodynamic ensemble. Future potential improve-
ments of these tools include adapting the tools for grand
canonical simulations and translating the relatively unsophisti-
cated accounting of the number of standard deviation errors
that are observed into full statistical hypothesis testing.

A. GRAND CANONICAL ENSEMBLE
Although no grand canonical simulations were carried out in
this study, all the equations are essentially equivalent in the case
of the isobaric−isothermal ensemble with −μ taking the place
of P and N taking the place of V.

β μ β μ β βμ| = Ξ − +−P x N E N( , , ) ( , ) exp( )1
(26)

Examining the probability of N at fixed β and P performed at
two different chemical potentials μ1 and μ2, we obtain
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We note that in the grand canonical case, N is already discrete,
so a histogramming approach introduces no additional

approximations as long as the histograms are fine grained
down to integers. For samples sizes large enough that larger
bins are required for accurate determination of probabilities, the
maximum likelihood method will be more accurate.
We can also treat the joint probability distributions of N and

E.
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This approach can easily be generalized to multiple chemical
species, especially when using maximum likelihood methods to
allow minimization of the resulting multidimensional proba-
bility ratios. For example, for an arbitrary number of species N⃗
with associated chemical potentials μ⃗, we have
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B. WEIGHTED LEAST-SQUARES FITTING TO
HISTOGRAM RATIOS

Assume we are collecting data from a continuous, one-
dimensional probability distribution in a histogram H with k
= 1...K bins. We have N total samples, with {n1, n2, ..., nk}
observations in each bin, so that ∑k=1

K nk = N. The empirical
probability of finding an observation in bin k is simply pk = nk/
N. Repeating this experiment will lead to slightly different
results for the pk. The standard estimator of variance of pk due
to this sampling variance is a standard result for the binomial
distribution and is equal to pk(1 − pk)/N.
Given two histograms H1 and H2 that have aligned bins with

N1 and N2 samples each, the ratio of the probabilities of H2
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over H1 will be rk = pk,1/pk,2 for each bin, where pk,1 and pk,2 are
the probabilities in the kth bin for the first and second
simulation in the pair. The data in the two histograms are
collected independently, so the statistical variance in the
logarithm of the ratio ln rk = ln(pk,2/pk,1) will be to first order:
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The variance in the ratio of the histograms themselves, useful
for computing nonlinear estimates of the error, will be
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Define a diagonal weight matrix W, with one over the variance
in the ith measurement along the diagonal. If we have a
multivariate function F linearly dependent on data vector X as F
= AY, with A a constant matrix, then the covariance matrix of
uncertainties cov(F) will be equal to A cov(Y)AT. In the case of
weighted linear least-squares, cov(Y) is the matrix of weightsW,
where Wii = σ−2, the variance of each histogram ratio point. If α
is the vector of parameters and X is the (M + 1) × N matrix of
observables, with the first column all ones and the second
through the (M + 1)th column, the values of the observations
of the M observables, then we will have for α

α = −X WX X WY( )T T1

Plugging this into the equation for cov(α) in terms of cov(Y),
some linear algebra leads to a covariance matrix of the
parameters α⃗ of (XTWX)−1. If we have instead a nonlinear least-
squares problem, at the minimum, we obtain a similar
covariance matrix, except that we replace X with the linear
approxiation to the nonlinear system of equations, the Jacobian
matrix J defined by Jij = ∂f(yi, α⃗)/∂αj, where f is the nonlinear
model, and yi is the ith data point. This leads to a final equation
for the covariance of the parameters:

α = −J WJcov( ) ( )T 1

C. MAXIMUM LIKELIHOOD ESTIMATION AND
ANALYTICAL ERROR ESTIMATES

For a general Boltzmann-type probability distribution, the ratio
of probabilities must satisfy

α
⃗
⃗

= − ⃗· ⃗P X
P X

X
( )
( )

exp( )2

1 (35)

where the X⃗ are the M sample variables (such as E or V), the M
+ 1 αj variables are the corresponding conjugate variables
specified by the simulation ensemble, and α⃗·X⃗i is shorthand for
α0 + ∑j=1

M αjXj rather than the standard dot product.
We develop the solution by finding maximum likelihood

parameters along the lines of the solution presented in ref 5.
The ratio in eq 35 can be interpreted as P(X⃗|1)/P(X⃗|2) where
P(X⃗|i) is the conditional probability that an observation is from
the ith simulation given only the information X⃗. We would like
to compute the likelihood of a given set of α parameters given
sets of measurements with the specific simulation i each set
comes from known.
Using the rules of conditional probabilities, and the fact that

P(X⃗|1) + P(X⃗|2) = 1, we rewrite this probability distribution as
follows:
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We note that P(1)/P(2) = N1/N2, where N2 and N1 are the
number of samples from the two simulations, respectively.
Although either P(X⃗|1) or P(X⃗|2) can be eliminated, we are left
with one independent continuous free energy distribution.
Writing either P(X⃗|2) or P(X⃗|1) in a closed form is system
dependent; specifically, it depends on the unknown density of
states. We define the constant M = ln(N1/N2) and rewrite eq
35 as
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− | ⃗

= − − −
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j j0
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Given eq 37, we can rewrite the probability of a single
measurement P(1|X⃗i) or P(2|X⃗i) as
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The total likelihood of any given observation Xi is the product
of all the individual likelihoods, giving
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where f(x) = [1 + exp(x)]−1 is the Fermi function. This
likelihood equation can be minimized directly or by finding the
gradient with respect to the α parameters and solving for ∇(ln
L) = 0 to give the maximum likelihood result. The log
likelihood function has a single minimum, and thus there will
be only a single root to ∇(ln L) = 0.
The covariance matrix of each αj can be written in terms of

the Fisher information:

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct300688p | J. Chem. Theory Comput. 2013, 9, 909−926925



α α α
α

= = − ∂
∂

−
−⎛

⎝
⎜⎜

⎞
⎠
⎟⎟I

L
var( ) ( )

ln ( )
j j

j

1
2

2

1

(39)

Note that in ref 5 an additional factor dependent on the
number of samples was required to get the correct uncertainty
estimates. In that case, we assumed that the simulation was
conducted properly, so that β was known and thus had an
additional constraint, leaving only a single parameter estimated
from the ratio of two distributions, which ends up reducing the
uncertainty by this constant factor.26 In this case, we are solving
for two parameters using the data from two distributions, and
no implicit constraints are applied. Thus the correction is not
required.
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