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3.2.3. Moment Generating, and Characteristic Functions

The usefulness of moments partly stems from the fact that knowledge of them determines
the form of the density function. Formally, if the moments u;, of a random variable x exist and
the series

|
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(3.10)

converges absolutely for some r > 0, then the set of moments u, uniquely determines the
density function. There are exceptions to this statement, but fortunately it is true for all the
distributions commonly met in physical science. In practice, knowledge of the first few
moments essentially determines the general characteristics of the distribution and so it is
worthwhile to construct a method that gives a representation of all the moments. Such a func-
tion is called a moment generating function (mgf) and is defined by

M, (t) = E[¢"]. (3.11)
For a discrete random variable x, this is

M=% el (3.12a)

and for a continuous variable,
% $2R
M, (t) = ef(x)dx. ; (3.12b)
The moments may be generated from (3.11) by first expanding the exponential,
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then differentiating n times and setting ¢t = 0, that is:

;_ 9"Mx(t)

=2 (3.13)

t=0

For example, setting n = 0 and n = 1, gives uy = 1 and ; = p. Also, since the mgf about any
point 4 is
M;(t) = Elexp{(x = )t}],
then if A = p,
M, (t) = e MMy(t). (3.14)

An important use of the mgf is to compare two density functions f(x) and g(x). If two
random variables possess mgfs that are equal for some interval symmetric about the
origin, then f(x) and g(x) are identical density functions. It is also straightforward to
show that the mgf of a sum of independent random variables is equal to the product of
their individual mgfs.
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It is sometimes convenient to consider, instead of the mgf, its logarithm. The Taylor expan-
sion” for this quantity is

t2
In M, (t) = K1t+K2§+ =

where «;, is the cumulant of order n, and

i 0"In My(t)

WP

Cumulants are simply related to the central moments of the distribution, the first few rela-
tions being

Ki = M (1:]-12/3)/ K4:,LL4-'3,U%.

For some distributions the integral defining the mgf may not exist and in these circum-
stances the Fourier transform of the density function, defined as

: She e
¢.(t) = E[e™] = / e f(x)dx = My (it), (3.15)
may be used. In statistics, ¢,(t) is called the characteristic function (cf). The density function is
then obtainable by the Fourier transform theorem (known in this context as the inversion
theorem):

e
flx)=5- / e~ % (#)dt. (3.16)
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The cf obeys theorems analogous to those obeyed by the mgf, that is: (a) if two random
variables possess cfs that are equal for some interval symmetric about the origin then
they have identical density functions; and (b) the cf of a sum of independent random
variables is equal to the product of their individual cfs. The converse of (b) is however
untrue.

EXAMPLE 3.5

Find the moment generating function of the density function used in Example 3.2 and calculate the three
moments uy, uh, and uj.
Using definition (3.12b),

M, (t) =/0 e f(x)dx :—-%/0 ex’e ™ dx = %/ e~ (1124,

0

*Some essential mathematics is reviewed briefly in Appendix A.
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which integrating by parts gives:

<
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Then, using (3.13), the first three moments of the distribution are found to be

p.'l o 1 — 60,

EXAMPLE 3.6
(a) Find the characteristic function of the density function:

: Hulabi gm0
3 = {0 otherwise ’

and (b) the density function corresponding to a characteristic function e M.
(a) From (3.15),
¢.(1) = El¢¥] = 32/ e xdx.
azJo

Again, integration by parts gives

2 [ et . g
Py (t) = —[‘—2 (it — l)]0 = —ﬁ[et (ita — 1) + 1].

(b) From the inversion theorem,

e —|t| ,—itx =i —t
f(x) =5l . e ileutedy 7r/0 e 'cos(tx)dx,

where the symmetry of the circular functions has been used. The second integral may be evaluated
by parts to give

af(x) = [ - e~tcos(tx)], —x T e~*sin(tx)dt
0

©

e { [ etsin(tx)] +x | e-tcos<tx>dt} =1 - mf(x).
0

Thus,
1
O =z

This is the density of the Cauchy distribution that we will meet again in Section 4.5.

0 <x< .




