MUNI SCI

Plasma Physics 2

Adam Obrusník, <u>adamobrusnik@physics.muni.cz</u> Tomáš Hoder, <u>hoder@physics.muni.cz</u>

Introduction and context (CZ)

Předcházející povinné a volitelné kurzy

– F5170 Úvod do fyziky plazmatu / dr. Z. Bonaventura

(definice plazmatu, pohyb častic v el-mag poli, Transportneí rovnice v plazmatu)

- F7241 Fyzika plazmatu 1 / doc. Zajíčková

(rozdělovací funkce, teorie stěnové vrstvy)

- F3180 Výboje v plynech / prof. Cernák + Dr. Krumpolec

(klasifikace výbojů a teoorie formování jednotlivých výbojů)

 F4280 Technologie depozice tenkých vrstev a povrchových úprav / prof. Vašina + doc. Zajíčková (plazmochemie, plazmové zdroje pro PVD a PECVD)

Course requirements

- Understanding the presented topics, especially:

- Definitions of different discharge modes and types.
- Transition mechanisms between discharge modes.
- Conditions and properties of different discharge types.
- Analytical calculations, estimating plasma properties at various conditions.
- ... (see details below)
- Oral exam

Individual consultations available:

- Adam Obrusník
- Tomáš Hoder
- 3 Fyzika plazmatu 2

Literature

- RAIZER, Y.P. Gas discharge physics, Springer, 1991
- COBINE, J.D. Gaseous conductors, Dover Publications, New York, 1958
- CHEN, Francis F. Introduction to plasma physics and controlled fusion. 2nd ed. New York: Plenum Press, 1984. xv, 421. ISBN 0306413329.
- BITTENCOURT, J. A. *Fundamentals of plasma physics*. 3rd ed. Sao José dos Campos: National Institute for Space Research, 2003. xxiii, 678. ISBN 85-900100-3-1.
- BAZELYAN E.M., Raizer Y.P. Spark discharge, CRC Press, Taylor&Francis, 1998

Lecture series contents

- 1. Townsend breakdown theory, Paschen's law
- 2. Glow discharge
- 3. Electric arc at low and high pressures
- 4. Magnetized low-pressure plasmas and their role in material deposition methods.
- 5. Brief introduction to high-frequency discharges
- 6. Streamer breakdown theory, corona discharge, spark discharge
- 7. Barrier discharges
- 8. Leader discharge mechanism, ionization and discharges in planetary atmospherres
- 9. Discharges in liquids, complex and quantum plasmas
- 10. Thermonuclear fusion, Lawson criterion, magnetic confinement systems, plasma heating and intertial confinement fusion.

Discharges – what this Lesson covers?

MUNI SCI

Electron avalanche, Townsend criterion, discharge breakdown

Electron avalanche

- At the turn of 19th and 20th century: Townsend a Paschen formulate the basics of gaseous discharges / gas discharges
- 1930s: Experimental observation of electron avalanches in vapor chambers and later in vacuum chambers
- Luminous structures between the cathode and the anode more luminous for higher voltages.

John S. Townsend

С

b

Friedrich Paschen

MUNI

SCI

Electron avalanche – the principle

_Q: What energy do you need to ionize an atom? **A**: 10-15 eV for gases, 5-10 eV for metal vapors

Q: Is that energy higher or lower than e.g.
dissociation of CO2 => CO + O?
A: Ionization is higher, chemical bond energy
typically 1 – 8 eV

Q: Where did the first electron come from?A: There was a "plenty" – background ionization

9 Fyzika plazmatu 2

Electron avalanche – empirical summary

Plane-parallel electrodes with constant E field

- Volume filled with primary electrons (cosmic radiation, radioactivity or external UV)
- When voltage is applied, charged particles move towards the electrodes where they are lost. Volume recombination can be neglected in the first approximation.
- · Electrons are accelerated to energies over the ionization threshold
- In such an experiment, one can observe 3 scenarios:
 - 1. After turning off the external source of ionization, current disappears = non selfsustaining discharge, see range T_0
 - Further voltage increase leads to ionization and creation of avalanches, external ionization source not needed = Townsend discharge (range T₁), described very well by the electron avalanche theory
 - 3. Further voltage increase leads to range T_2 = additional phenomena (e.g. recombination), no longer described by the simple electron avalanche theory.

10 Fyzika plazmatu 2

SCI

Important assumption of further slides

In the derivations below, we assume **Townsend dark discharge**, i.e. we maintain plasma densities low enough that they do not affect the electric field

$$\Delta V = -\frac{\rho}{\varepsilon_0} \approx 0$$

 This holds only before discharge ignition, so the slides below describe how discharges are initiated but not how they operate once they are ignited.

The first Townsend coefficient $\boldsymbol{\alpha}$

Q: How do we mathematically describe the growth of electron density in an electric field?

 $dn_{\rm e} = \alpha n_{\rm e} dx$

$$n_{\rm e} = n_{\rm e,0} e^{\alpha x}$$

- Q: What does the coefficient depend on?
- Type of gas
- Pressure
- E field magnitude
- Energy distribution of electrons
- 12 Fyzika plazmatu 2

MUNI

SCI

The third Townsend coefficient $\boldsymbol{\gamma}$

- When an ion hits the surface, so-called secondary electron emission can occur.
- The probability of such effect is described by a factor \(\gamma\) (or
 ISEE = ion-induced secondary electron emission).
- Values of γ:
 - 0.1 0.2 in laboratory plasmas (ion energy 100s of eV)
 - 0.1 10 by ion milling (ion energy 1 10 keV)

The third Townsend coefficient **y**

- At voltages below 500 eV, potential emission is the main mechanism of ISEE
- Electron no.1 from the conduction band of the metal tunnels through the potential barrier and recombines with the positive ion. The energy gain can be used for releasing electron 2
- Above ca 500 eV, kinetic energy of the ion starts to make a contribution

MUN

SCI

The third Townsend coefficient **y**

- In "clean metals", which are very smooth, ISEE depends on the material work function W_f ion energy must be at least 2W_f for ISEE to occur.
- In real life, ISEE is surprisingly quite material-independent and depends more on surface micro-roughness

[Phelps, A. V., & Petrovic, Z. L. (1999). PSST, 8(3), R21-R44.doi:10.1088/0963-0252/8/3/201]

Figure 1. Electron yields for Ar⁺ and Ar beams incident on various clean metal surfaces versus particle energy. The solid symbols are for Ar⁺ and the open symbols are for Ar. The symbols, metals and references are: \lor , W, [68]; +, \bigtriangledown , Mo, [46]; \square , \blacksquare , Mo, [47]; \blacktriangle , Mo, [70]; , Mo, [66]; \diamondsuit , Au, [71]; \leftthreetimes , Cu, [67]; \boxtimes , Pt, [69] and \square , Ta, [69]. The curves drawn through representative values will be used in our model.

Figure 2. Electron yields for Ar⁺ and Ar beams incident on various dirty metal surfaces versus particle energy. The open symbols are for Ar⁺ and the solid symbols are for Ar. The symbols, metals and references are: \Box , Pt, [69]; \boxtimes , Ta, [69]; \bigtriangledown , Ψ , Au, [49]; \bigcirc , Cu, [75]; \diamondsuit , \blacklozenge , Cu, [45]; \triangle , \blacktriangle , Ta, [80]; \times , W, [79]; \Box , brass, [81]; \heartsuit , unknown, [50] and \blacksquare , CuBe, [51]. The solid curves are plots of the analytical yield expressions for dirty surfaces for Ar⁺ and Ar, while the dashed curves are the representative yield curves for clean surfaces for Ar⁺ ions and Ar atoms from figure 1.

MUN1

SCI

E

What about the second coefficient?

- The second Townsend coefficient β was supposed to better describe the region T2, where glow discharge starts to form.
- It never really caught on because it was way too simplistic a treatment.

As a plasma-physicist, you can sometimes be wrong. The world will still appreciate that you are trying to tackle this beast ©

16 Fyzika plazmatu 2

- To define the breakdown condition, we will use the concept of "current density"
 - $j_{\rm e} = q_{\rm e} n_{\rm e} \mathbf{v}_{\rm drift,e} = q_{\rm e} \mu_e n_e \mathbf{E}$
 - $j_{\rm i} = q_{\rm i} n_{\rm i} \mathbf{v}_{{\rm drift},i} = q_{\rm i} \mu_i n_i \mathbf{E}$
- Where $\mathbf{v}_{drift,x}$ is the drift velocity of a particle and μ_x is the charge carrier mobility. Other symbols usual meaning.
- Thinking in terms of current density is practical because current is always a conserved quantitiy.

17 Fyzika plazmatu 2

- Choose the cathode at x=0 and anode at v x=d
- The cathode emits electrons through ISEE and through a constant external source (e.g UV). Furthermore, we can link the current of ions to electron current density.

$$j_e(0) = j_0 + \gamma j_i(0) = j_0 + \gamma j_e(0)(e^{\alpha d} - 1)$$

- Electron current from the cathode is then:

$$j_e(0) = \frac{j_0}{1 - \gamma(e^{\alpha d} - 1)}$$

And before they reach the anode, they multiply through volume ionization

MUNI SCI

- We derived the total discharge current to be $j_e(d) = \frac{j_0 e^{\alpha d}}{1 \gamma(e^{\alpha d} 1)}$
- If we turn off the external source of electrons, the current stops => non self-sustaining Townsend discharge
- However, the current grows towards infinity if

 $\gamma \left(e^{\alpha d} - 1 \right) = 1$

 This is what we call the discharge breakdown criterion: The amount of ions created by one electron during its passage between the electrodes has to be such, that they create another electron by ISEE.

MUNI SCI

- The ignition condition

$$\gamma(e^{\alpha d}-1)=1$$

Is often written as

$$\gamma(e^{\alpha d}-1)>1$$

because in real life

 $j_e(0) = j_0 + \gamma j_i(0) - j_{loss}$

There are always some electron losses plus maintaining a Townsend discharge is not usually the goal, what we usually want is to ignite a stable self-sustained discharge and

Breakdown voltage, Paschen law

21 Fyzika plazmatu 2

Breakdown voltage

- Practical observation: Voltage between the cathode and the anode has to be higher than a certain value so that a discharge is ignited.
- Typically denoted V_b
- **Q**: What do you think affects the value of V_b
- A: Cathode-anode distance (the actual "constant" is break down E field more than breakdown voltage)
- A: Type of gas and electrode condition => ionization energy affects α , electrode affects γ
- A: On the collision mean free path (so pressure) => more collisions imply higher α

Breakdown voltage

- Generally, we can approximate the Townsend coefficient as

$$\alpha = \frac{f(E,\lambda)}{\lambda}$$

- Since the mean free path depends on $\lambda \sim \frac{1}{N} \sim \frac{1}{p}$ we can define the **reduced Townsend coefficient** $\frac{\alpha}{p} = F\left(\frac{E}{p}\right)$ nebo $\frac{\alpha}{N} = G\left(\frac{E}{N}\right)$

where *N* is gas density in m^{-3} .

- This hints to a special role of the quantity $\frac{E}{N}$ or $\frac{E}{p}$ in Plasma physics.
- It turns out that most transport and ionization coefficients depends, in very good approximation, only on $\frac{E}{N}$ but not on gas density or electric field alone.

- Note: People use either $\frac{E}{N}$ or $\frac{E}{p}$. The former is closer to the physics truth while the latter kinda sorta

E/N in plasma science

= SI unit for E/N is $V \cdot m^2$. Unfortunately, this reaches values of $10^{20} - 10^{25}$ and because physicists are not yet comfortable with saying "zettavolts" or "yottavolts", people use $1 \text{ Td} = 10^{-21} \text{ V} \cdot \text{m}^2$

Paschen law

- From the above, we can derive the analytical formula for discharge breakdown condition

$$\frac{\alpha}{p} = F\left(\frac{E}{p}\right)$$

$$\frac{E}{p} = F_{\rm inv}\left(\frac{\alpha}{p}\right)$$

- Combining that with $\gamma(e^{\alpha d} 1) = 1$ yields $\alpha = \frac{1}{d} \ln(\frac{1}{\gamma} + 1)$
- And if $V_b = E \cdot d$ before the plasma is ignited, it also has to hold that

$$V_b = pd \cdot F_{inv} \left(\frac{1}{pd} \ln \left(\frac{1}{\gamma} + 1 \right) \right)$$

25 Fyzika plazmatu 2

Paschen law

- $V_b = pd \cdot F_{inv}\left(\frac{1}{pd}\ln\left(\frac{1}{y}+1\right)\right)$
- Paschen law states that: For a given gas, the breakdown voltage is a function of the product of pressure and distance.
- The function minimum is called the Stoletow point.

Paschen law

-Q: Try to interpret the Paschen law. Why does the curve grow in both directions?

A: Low pd implies either low pressure or distance – so there are not enough collisions to meet the Townsend criterion. At higher pd and fixed voltage, the value of α decreases because E decreases and it is difficult to meet the Townsend criterion.

Paschen law - quantitatively

- We can obtain α by solving BKE and somehow fit $\frac{\alpha}{p} \approx A \cdot \exp\left(-\frac{Bp}{E}\right)$

Fig. 4.3. Ionization coefficients for a wide range of E/p values (a) in molecular gases, (b) in inert gases. From [4.3]

Plyn	A	B	oblasť $ E /p_0$
	$[\mathrm{cm}^{-1}\mathrm{Torr}^{-1}]$	[Vcm ⁻¹ Torr ⁻¹]	$[Vcm^{-1}Torr^{-1}]$
He	3	34	20 - 150
Ne	4	100	100 - 400
Ar	14	180	100 - 600
Kr	17	240	100 - 1000
Xe	26	350	200 - 800
vzduch	15	365	100 - 800
H_2	5	130	150 - 600
N_2	12	342	100 - 600
CO_2	20	466	500 - 1000
H_2O	13	290	150 - 1000
Hg	20	370	200 - 600

28 Fyzika plazmatu 2

Paschen law - quantitatively

- We can obtain α by solving BKE and somehow fit $\frac{\alpha}{p} \approx A \cdot \exp\left(-\frac{Bp}{E}\right)$

- By substituting into the Paschen law and differentiating, we can get

$$V_{\rm b} = \frac{Bpd}{\ln(Apd) - \ln\left[\ln\left(1 + \frac{1}{\gamma}\right)\right]} \qquad \qquad V_{\rm b,min} = e\frac{B}{A}\ln\left(1 + \frac{1}{\gamma}\right)$$

 Due to various real-life phenomena (finite electrodes, recombinations, other gas-phase collisions), this rarely corresponds to reality. But it is a decent first estimation of the discharge voltage for different gases and gas mixtures.

- Nice overview of the problematics:

[Shishpanov, A. I., Meshchanov, A. V., Kalinin, S. A., & Ionikh, Y. Z. (2017). Processes of discharge ignition in long tubes at low gas pressure. Plasma Sources Science and Technology, 26(6), 065017. doi:10.1088/1361-6595/aa6f7c]

The ionization does not happen instantaneously, it proceeds with a certain **ionization wave velocity**.

This causes a **delay in discharge breakdown w.r.t voltage application**.

A short note on actual discharge ignition

MUNI SCI

- Nice overview of the problematics:

[Shishpanov, A. I., Meshchanov, A. V., Kalinin, S. A., & Ionikh, Y. Z. (2017). Processes of discharge ignition in long tubes at low gas pressure. Plasma Sources Science and Technology, 26(6), 065017. doi:10.1088/1361-6595/aa6f7c]

The ionization does not happen instantaneously, it proceeds with a certain **ionization wave velocity**.

This causes a **delay in discharge breakdown w.r.t voltage application**.

- The time after which the discharge is ignited is expressed as $t_{\rm d} = t_{\rm s} + t_{\rm f} + t_{\rm w}$,

where the symbols ts and tf correspond to random phenomena.

- Based on that, we can express the Laue distribution

 This expression produces "Lauegrams", from which we can read out the probability of discharge ignition and time delay at various voltages

$$\frac{n(t_{\rm d})}{N} = \exp\left[-\frac{t_{\rm d}-(t_{\rm f}+t_{\rm w})}{\overline{t_{\rm s}}}\right]$$

Figure 3. Lauegrams for different pulse amplitudes: $U_0 = 1048$ V (1), 1197 V (2), 1290 V (3). Tube T1, neon, 1 Torr.

Main take-aways

35 Fyzika plazmatu 2

Take-aways from lesson 1

- 1. Be able to formulate and derive Townsend breakdown criterion, be aware of the underlying assumptions and limitations.
- 2. Be able to accurately and exactly describe Paschen law.
- 3. Be aware of the special role of E/N in plasma science and where it comes from.
- 4. General awareness of actual breakdown mechanisms there is a time delay, Lauegrams exist.