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1. Macroscopic Maxwell equations

Microscopic Maxwell equations:

Ob 1 0
divezg—/z,rote:—g,divb:(),%rotbzsoa—?qtj. (1.1.1)

Spatial averages:

: . oP

{e} .E {b} ..B {k}=p—divP +pe,{j} =J + e +rotM+Jepr. (1.1.2)
Here
P ... macroscopic charge density,
P ... macroscopic polarization,
J ... macroscopic current density,
M ... macroscopic magnetization.
For rigorous definitions and derivations of MME, see chapter 6 of Jackson's textbook.
Pext, Jext -.. contributions due to external charge carriers.
Macroscopic Maxwell equations:

0B oD
divD = P‘|‘Pe;rt; rot E = —E, divB = O, rot H = W +J —|—Je$t. (113)

Here D = ¢oE + P is the electric displacement and H = (B /) — M the magnetic field
(B will be called the magnetic induction in the following).
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2. Response functions
Relations D ... E, J ... E, H ... B:

D(r,t) = /dr’ dt’e(r — v’ t — tE(' ), (1.2.1)

J(r t) = /dr’ dt'oc(r — ', t —t"E' 1), (1.2.2)

H(r,t) = /dr’ dt’l(r —r' t—t"B(', ). (1.2.3)
v

It has been assumed that the material under consideration is - on a macroscopic scale -
homogeneous (— r — r’ in the arguments) and isotropic (— in each case a single response
function, independent on the polarization of E or B).

Fourier transforms of these relations (FT f(w) of f(t) defined as [ dtf(t)e™",

FT f(q) of f(r) defined as \/LV [ drf(r)eiar);

D(q,w) = €(q,w)E(q,w), J(q,w) = oc(q,w)E(q,w) , H(q,w) = %(q, w)B(q,w) .

(1.2.4)
€(q,w) ... permittivity (due to bound charge carriers),
oc(q,w) ... conductivity (due to free charge carriers),
1

p(q, w) ... inverse magnetic permeability.
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3. Fourier transforms of macroscopic Maxwell equations

FT of M. equations:

iq - €(q,w)E(q,w) = p(q,w) + pest(q, w) , (1.3.1)

iq X E(q,w) = iwB(q,w), (1.3.2)

iq-B(q,w) =0, (1.3.3)

iq X %(q,w)B(q, w) = —iwe(q,w)E(q,w) + oc(q,w)E(q,w) + Jext(q,w) . (1.3.4)
The equations can be understood as equations for amplitudes of a plane wave solution,

E(r,t) = Ey '™ B(r t) = By e'4™% etc. (1.3.5)

Next we address two important cases:

(i) purely transverse solutions with Eq 1. q, q-Ey =0, By L q, q- By =0,

in the absence of external charge carriers (i.e., pert = 0, Jeut = 0);

(i) purely longitudinal solutions with E || q, By = 0, also in the absence of external charge
carriers.
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4. Transverse solutions of the Maxwell equations

(i) By combining the second and the fourth M. e. we obtain
1 1 .
ol w)a’E(q,w) = —iwe(q, w)E(q,w) + oc(q, w)B(q,w).

This provides the following important relation between q and w:

q’ = (%)2 e1(q,w) (1.4.1)
with _ )
c1(@0) = la,e) + ——ocla ) + L [1 - %<q,w>] , (1.4.2)

€r = €/€0, 1/pr = pio/ 1.
£1(q,w) ... transverse dielectric function or simply dielectric function.

Remarks:

o lf e, € R, > 0, in the relevant range of variables, it is possible to find real wave vectors
satisfying q> = %25L(q, w) and plane wave solutions.

e If this condition is not satisfied, there are no plane wave solutions; but there are solutions
with a complex wave vector q = q’ + iq”, ~ e/lld+id")r—wi],
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5. Longitudinal solutions of the Maxwell equations

(i) In the longitudinal case, B = 0. By combining the first Maxwell equation, the continuity
equation,

0
~o - J(aw) = wplaw), (L5.1)

and J(q,w) = o¢(q,w)E(q,w) we obtain

VJ =

~ q
iq-€(q.)B(q.w) = Soc(,©)B(d.«).
It can be seen that solutions are possible only for
?
ei(q,w) =0, g(q,w) = (q,w) + w—q)ac(q, w). (1.5.2)

5||(q,w) ... longitudinal dielectric function, which differs from the tranverse one, ¢, in that
the last term of |, corresponding to magnetization currents, is absent.
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6. Alternative approach to the dielectric function

The above approach is formally complicated due to the presence of three basic response func-
tions: €(q,w), oc(q,w), %L(q, w). These are connected to the three components of the current

density {j}: 9P J rot M. Instead it is possible to define a quantity D’, involving all the
y at

three components, as the spatial average of the quantity d’ given by
od’ Oe
— =c9—+]J- 1.6.1
o = 0% +J ( )
The corresponding macroscopic Maxwell equations read
0B 1 oD’
divD' = peyt, ot E = 57 divB =0, %rotB = T + Jert - (1.6.2)
The relation between D’ and E:
D'(r,t) = /dr di'e(r — v/, t — t"E(r',t') ,D'(q,w) = e(q,w)E(q, w) . (1.6.3)
Here ¢ is a tensor (dielectric tensor) that can be expressed as
ACHD) Qv Qv
— = O — —— |, 1.6.4
€0 8||(q7 w) q2 +5J_(qaw) < W q2 ( )

where ¢)(q,w) and £ (q,w) were already introduced. It can be seen that the total conduc-
tivity oy,+ connecting {j} and E is given by

oot (q, w) = —iwle(q, w) — €. (1.6.5
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7. Refractive index

In the following we limit ourselves to the transverse case. The q vector of a plane wave

solution satisfies
W

2
2
q° = <E> e1(q,w). (1.4.1)
It can be seen that in case of a negative or complex €, - the index L will be omitted
in the following - there are no plane wave solutions, but there are solutions with a complex
wave vector q = q' + iq” satisfying

@ =q°—q” +2iqq" = (%)2 e(q,w). (1.7.1)
Any such vector g can be expressed as
q= N(q,w)%nq, (1.7.2)
where X
N =n+ik =+/e(q,w) (1.7.3)

is the so called (in general complex) refractive index and nq is a (in general complex) vector
such that n?l = 1. The sign of the square root is chosen such that & is positive.
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8. Properties of ¢(w)

We focus on the permittivity € and assume that the response is local, i.e.,

e(r—r't—t) =06t —1')[ed(t =)+ f(t —1)] . (1.8.1)
Then we have -
e(q,w) = e(w) = € —|—/_ dr f(1)e™T. (1.8.2)

The displacement D at a time ¢ can be influenced by E at ¢’ < ¢, not by E at ¢’ > t (causality
requirement). The function f(7) is thus nonzero only for 7 > 0 and we can write

e(w) =€+ /OOO dr f(7)e™T. (1.8.3)

The above equation can be viewed as a definition of a complex function of a complex variable
w=w +iw".

e This function nowhere becomes infinite (i.e., has no singularities) in the upper half-plane.
This follows from the fact that f(7) is finite and from the presence of the exponentially
decreasing factor e «'7.

e The function can be assumed not to have any singularity on the real axis.

e The definition cannot be applied to the lower half-plane, since in this case the integral
diverges. The function €(w) can be defined in the lower-half plane only as the analytical
continuation of €(w) of the upper half-plane, and in general has singularities.
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8. Properties of ¢(w)

e It is evident from the definition and from the fact that f(7) is a real function,
that ¢(—w' 4 iw") = €*(w' + iw"). In particular, on the real axis

€(—w) =€ (w), (—w) = —€"(w). (1.8.4)

e The energy dissipated in a material in the presence of a plane-wave-like wave with a complex
g-vector is proportional to €”(w)|Eg|?,

1
§we”(w)\E0|2 (1.8.5)

per unit volume and unit time interval. We assume here, that o = 0 and 1/u, = 1, i.e,,
that the only nonzero component of the current density is %—1;. Note that the derivation of
Eq. (1.8.5) includes the real field, i.e., the real part of the plane wave. It follows that €’ (w) is
nonnegative for positive frequencies and - this follows from ¢’(—w) = —€"(w) - nonpositive
for negative frequencies.

e Regarding the asymptotic behaviour of €(w) on the real axis: at frequencies

far above the highest resonant frequency of the material,

wp
e(w) = ¢ [ — —2] : (1.8.6)
w
where wp = foi; is the plasma frequency, n is the total number of electrons per unit volume,

the contribution of lattice vibrations is neglected.
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8. Properties of ¢(w)

e Considering the above properties of €(w), we can derive the famous Kramers-Kronig rela-
tions. By integrating (e(wg) — €0)/(w — wy) along the contour shown in Fig. 3.1 of Dressel's
textbook we obtain

1 o0 1
é(wo) — €g = —P / Oy (1.8.7)
v o W — W
1 oo/ .
¢'(wy) = ——P / W=, (1.8.8)
v 00 W — Wy

Here P means the principal value of the integral.
e The same approach can be applied to ¢, (w).
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