
1/11

Introduction to Electromagnetic Response of Materials

(Electrodynamics of solids - 2021)
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1. Macroscopic Maxwell equations

Microscopic Maxwell equations:

div e =
κ

ε0
, rot e = −∂b

∂t
, divb = 0 ,

1

µ0
rotb = ε0

∂e

∂t
+ j . (1.1.1)

Spatial averages:

{e} ...E , {b} ...B , {κ} = ρ− divP+ ρext , {j} = J+
∂P

∂t
+ rotM+ Jext . (1.1.2)

Here
ρ ... macroscopic charge density,
P ... macroscopic polarization,
J ... macroscopic current density,
M ... macroscopic magnetization.
For rigorous definitions and derivations of MME, see chapter 6 of Jackson’s textbook.
ρext, Jext ... contributions due to external charge carriers.
Macroscopic Maxwell equations:

divD = ρ+ ρext , rotE = −∂B
∂t

, divB = 0 , rotH =
∂D

∂t
+ J+ Jext . (1.1.3)

Here D = ε0E+P is the electric displacement and H = (B/µ0)−M the magnetic field
(B will be called the magnetic induction in the following).
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2. Response functions

Relations D ... E, J ... E, H ... B:

D(r, t) =

∫
dr′ dt′ε(r− r′, t− t′)E(r′, t′) , (1.2.1)

J(r, t) =

∫
dr′ dt′σC(r− r′, t− t′)E(r′, t′) , (1.2.2)

H(r, t) =

∫
dr′ dt′

1

µ
(r− r′, t− t′)B(r′, t′) . (1.2.3)

It has been assumed that the material under consideration is - on a macroscopic scale -
homogeneous (→ r − r′ in the arguments) and isotropic (→ in each case a single response
function, independent on the polarization of E or B).
Fourier transforms of these relations (FT f(ω) of f(t) defined as

∫∞
−∞ dtf(t)e

iωt,

FT f(q) of f(r) defined as 1√
V

∫
drf(r)e−iq·r):

D(q, ω) = ε(q, ω)E(q, ω) , J(q, ω) = σC(q, ω)E(q, ω) , H(q, ω) =
1

µ
(q, ω)B(q, ω) .

(1.2.4)
ε(q, ω) ... permittivity (due to bound charge carriers),
σC(q, ω) ... conductivity (due to free charge carriers),
1
µ(q, ω) ... inverse magnetic permeability.
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3. Fourier transforms of macroscopic Maxwell equations

FT of M. equations:

iq · ε(q, ω)E(q, ω) = ρ(q, ω) + ρext(q, ω) , (1.3.1)

iq× E(q, ω) = iωB(q, ω) , (1.3.2)

iq ·B(q, ω) = 0 , (1.3.3)

iq× 1

µ
(q, ω)B(q, ω) = −iωε(q, ω)E(q, ω) + σC(q, ω)E(q, ω) + Jext(q, ω) . (1.3.4)

The equations can be understood as equations for amplitudes of a plane wave solution,

E(r, t) = E0 e
i(q·r−ωt) , B(r, t) = B0 e

i(q·r−ωt) etc. (1.3.5)

Next we address two important cases:
(i) purely transverse solutions with E0 ⊥ q, q · E0 = 0, B0 ⊥ q, q ·B0 = 0,
in the absence of external charge carriers (i.e., ρext = 0, Jext = 0);
(ii) purely longitudinal solutions with E0 ‖ q, B0 = 0, also in the absence of external charge
carriers.
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4. Transverse solutions of the Maxwell equations

(i) By combining the second and the fourth M. e. we obtain

− i
ω

1

µ
(q, ω)q2E(q, ω) = −iωε(q, ω)E(q, ω) + σC(q, ω)E(q, ω) .

This provides the following important relation between q and ω:

q2 =
(ω
c

)2
ε⊥(q, ω) (1.4.1)

with

ε⊥(q, ω) = εr(q, ω) +
i

ωε0
σC(q, ω) +

c2q2

ω2

[
1− 1

µr
(q, ω)

]
, (1.4.2)

εr = ε/ε0, 1/µr = µ0/µ.
ε⊥(q, ω) ... transverse dielectric function or simply dielectric function.

Remarks:
• If ε⊥ ∈ R,≥ 0, in the relevant range of variables, it is possible to find real wave vectors
satisfying q2 = ω

c
2ε⊥(q, ω) and plane wave solutions.

• If this condition is not satisfied, there are no plane wave solutions; but there are solutions
with a complex wave vector q = q′ + iq′′, ∼ ei[(q

′+iq′′)r−ωt].
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5. Longitudinal solutions of the Maxwell equations

(ii) In the longitudinal case, B = 0. By combining the first Maxwell equation, the continuity
equation,

∇J = −∂ρ
∂t
, q · J(q, ω) = ωρ(q, ω) , (1.5.1)

and J(q, ω) = σC(q, ω)E(q, ω) we obtain

iq · ε(q, ω)E(q, ω) = q

ω
σC(q, ω)E(q, ω) .

It can be seen that solutions are possible only for

ε‖(q, ω) = 0 , ε‖(q, ω) = εr(q, ω) +
i

ωε0
σC(q, ω) . (1.5.2)

ε‖(q, ω) ... longitudinal dielectric function, which differs from the tranverse one, ε⊥, in that
the last term of ε⊥, corresponding to magnetization currents, is absent.
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6. Alternative approach to the dielectric function

The above approach is formally complicated due to the presence of three basic response func-
tions: ε(q, ω), σC(q, ω),

1
µ(q, ω). These are connected to the three components of the current

density {j}: ∂P
∂t , J, rotM. Instead it is possible to define a quantity D′, involving all the

three components, as the spatial average of the quantity d′ given by

∂d′

∂t
= ε0

∂e

∂t
+ j . (1.6.1)

The corresponding macroscopic Maxwell equations read

divD′ = ρext , rotE = −∂B
∂t

, divB = 0 ,
1

µ0
rotB =

∂D′

∂t
+ Jext . (1.6.2)

The relation between D′ and E:

D′(r, t) =

∫
dr dt′ε(r− r′, t− t′)E(r′, t′) ,D′(q, ω) = ε(q, ω)E(q, ω) . (1.6.3)

Here ε is a tensor (dielectric tensor) that can be expressed as

εµν(q, ω)

ε0
= ε‖(q, ω)

qµqν
q2

+ ε⊥(q, ω)

(
δµν −

qµqν
q2

)
, (1.6.4)

where ε‖(q, ω) and ε⊥(q, ω) were already introduced. It can be seen that the total conduc-
tivity σtot connecting {j} and E is given by

σtot(q, ω) = −iω[ε(q, ω)− ε0]. (1.6.5)
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7. Refractive index

In the following we limit ourselves to the transverse case. The q vector of a plane wave
solution satisfies

q2 =
(ω
c

)2
ε⊥(q, ω) . (1.4.1)

It can be seen that in case of a negative or complex ε⊥ - the index ⊥ will be omitted
in the following - there are no plane wave solutions, but there are solutions with a complex
wave vector q = q′ + iq′′ satisfying

q2 = q′
2 − q′′

2
+ 2iq′q′′ =

(ω
c

)2
ε(q, ω) . (1.7.1)

Any such vector q can be expressed as

q = N̂(q, ω)
ω

c
nq , (1.7.2)

where
N̂ = n+ ik =

√
ε(q, ω) (1.7.3)

is the so called (in general complex) refractive index and nq is a (in general complex) vector
such that n2

q = 1. The sign of the square root is chosen such that k is positive.
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8. Properties of ε(ω)

We focus on the permittivity ε and assume that the response is local, i.e.,

ε(r− r′, t− t′) = δ(r− r′) [ε0δ(t− t′) + f(t− t′)] . (1.8.1)

Then we have

ε(q, ω) = ε(ω) = ε0 +

∫ ∞
−∞

dτf(τ)eiωτ . (1.8.2)

The displacement D at a time t can be influenced by E at t′ ≤ t, not by E at t′ > t (causality
requirement). The function f(τ) is thus nonzero only for τ ≥ 0 and we can write

ε(ω) = ε0 +

∫ ∞
0

dτf(τ)eiωτ . (1.8.3)

The above equation can be viewed as a definition of a complex function of a complex variable
ω = ω′ + iω′′.
• This function nowhere becomes infinite (i.e., has no singularities) in the upper half-plane.
This follows from the fact that f(τ) is finite and from the presence of the exponentially
decreasing factor e−ω

′′τ .
• The function can be assumed not to have any singularity on the real axis.
• The definition cannot be applied to the lower half-plane, since in this case the integral
diverges. The function ε(ω) can be defined in the lower-half plane only as the analytical
continuation of ε(ω) of the upper half-plane, and in general has singularities.
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8. Properties of ε(ω)

• It is evident from the definition and from the fact that f(τ) is a real function,
that ε(−ω′ + iω′′) = ε∗(ω′ + iω′′). In particular, on the real axis

ε′(−ω) = ε′(ω) , ε′′(−ω) = −ε′′(ω) . (1.8.4)

• The energy dissipated in a material in the presence of a plane-wave-like wave with a complex
q-vector is proportional to ε′′(ω)|E0|2,

1

2
ωε′′(ω)|E0|2 (1.8.5)

per unit volume and unit time interval. We assume here, that σC = 0 and 1/µr = 1, i.e.,
that the only nonzero component of the current density is ∂P

∂t . Note that the derivation of
Eq. (1.8.5) includes the real field, i.e., the real part of the plane wave. It follows that ε′′(ω) is
nonnegative for positive frequencies and - this follows from ε′′(−ω) = −ε′′(ω) - nonpositive
for negative frequencies.
• Regarding the asymptotic behaviour of ε(ω) on the real axis: at frequencies
far above the highest resonant frequency of the material,

ε(ω) ≈ ε0

[
1− ω2

P

ω2

]
, (1.8.6)

where ωP = ne2

ε0m
is the plasma frequency, n is the total number of electrons per unit volume,

the contribution of lattice vibrations is neglected.
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8. Properties of ε(ω)

• Considering the above properties of ε(ω), we can derive the famous Kramers-Kronig rela-
tions. By integrating (ε(ω0)− ε0)/(ω − ω0) along the contour shown in Fig. 3.1 of Dressel’s
textbook we obtain

ε′(ω0)− ε0 =
1

π
P

∫ ∞
∞

ε′′(ω)

ω − ω0
dω (1.8.7)

ε′′(ω0) = −
1

π
P

∫ ∞
∞

ε′(ω)− ε0
ω − ω0

dω . (1.8.8)

Here P means the principal value of the integral.
• The same approach can be applied to ε⊥(ω).


