Electron microscopy and microanalysis

Radek Škoda Institute of Geological Sciences, Faculty of Science Masaryk University

Why an electron microscope?

- Optical microscope uses light and optical lenses
 - Magnification limited by wavelength of light 400-600 nm
 - Image observed directly by eyes
- Electron microscope uses a beam of accelerated electrons and electromagnetic lenses
 - Wavelength of accelerated electrons is down to 6 pm
 - Scanning electron microscope magnification up to 300 000 x
 - Transmission electron microscope magnification up to 1 500 000 x
 - image not observed directly, but using detectors, electronic and screens
 - Interaction of accelerated electrons with a sample causes a production of different kinds of radiation and particles
 - their detection is used for better characterization of the sample

Basic terms

• Electron microscope

- Transmission electron microscope (TEM, HRTEM)
 - Electron beam penetrates through the sample, the signal is detected below the sample
 - Magnification up to 1 500 000 x.
 - Individual atoms can be seen (HRTEM)
- Scanning electron microscope (SEM, REM)
 - Electron beam is moving on the sample surface
 - Magnification 3x-300 000x
- Electron microanalysis
 - Method of chemical analysis based on detection of characteristic X-ray generated by interaction of accelerated electrons with a sample
 - Requires very small sample area
- Electron microprobe
 - Electron microscope specially designed to microanalysis.

TEM Jeol JEM-2100

Electron microprobe CAMECA SXFive

Scanning electron microscope

- Vacuum system
- Electron gun
- Electron optic
- Chambre for samples

 Motorized stage X,Y,Z,R,T
- detectors
 - BSE, SE, CL, EBSD, EDS, WDS, …

Electron gun

- Produces electrons in a form of electron beam
- Electrons escapes from filament when gained a cerain energy
- 3 types of electron sources
 - Thermionic sources
 - "field emission" sources
 - "thermal-field" sources

termionic sources

- Thermoemission energy given in a form of a heat
 - Tungsten filament
 - LaB₆ crystal

work function for individual elements

Element	eV	Element	eV	Element	eV	Element	eV	Element	eV
Ag:	4.52 – 4.74	AI:	4.06 – 4.26	As:	3.75	Au:	5.1 – 5.47	B:	~4.45
Ba:	2.52 – 2.7	Be:	4.98	Bi:	4.31	C:	~5	Ca:	2.87
Cd:	4.08	Ce:	2.9	Co:	5	Cr:	4.5	Cs:	2.14
Cu:	4.53 – 5.10	Eu:	2.5	Fe:	4.67 – 4.81	Ga:	4.32	Gd:	2.9
Hf:	3.9	Hg:	4.475	In:	4.09	lr:	5.00 – 5.67	K:	2.29
La:	3.5	Li:	2.93	Lu:	~3.3	Mg:	3.66	Mn:	4.1
Mo:	4.36 – 4.95	Na:	2.36	Nb:	3.95 – 4.87	Nd:	3.2	Ni:	5.04 – 5.35
Os:	5.93	Pb:	4.25	Pd:	5.22 – 5.6	Pt:	5.12 – 5.93	Rb:	2.261
Re:	4.72	Rh:	4.98	Ru:	4.71	Sb:	4.55 – 4.7	Sc:	3.5
Se:	5.9	Si:	4.60 – 4.85	Sm:	2.7	Sn:	4.42	Sr:	~2.59
Ta:	4.00 – 4.80	Tb:	3	Te:	4.95	Th:	3.4	Ti:	4.33
TI:	~3.84	U:	3.63 – 3.90	V:	4.3	W :	4.32 – 5.22	Y:	3.1
Yb:	2.6	Zn:	3.63 – 4.9	Zr:	4.05	LaB6	2.5	CeB6	2.5

http://en.wikipedia.org/wiki/Work_function

tungsten filament

- bended W wire 100-150 um in diameter
- Heated up to 2700 K
- lifetime 100-1000 hours

- Accelerating volage between cathode and anode is in the range 0.2-40 KV, usually 10 to 30 kV
 - focal point (10-100 um) "effective source" of electrons

Anode has a hole inside to allow electrons passing through

JEOL K-type filament

wehnelt cylinder in the gun

Wenhelt principle and function

Effect of filament heating to production of electrons

LaB₆ source

Cathode - lanthanum hexaboride

Ground off to a tip

Low "work function" 2.5 eV

Higher electron flux at lower heating temperature (compare to W filament) = brighter electron image

Longer lifetime (compare to W filament), X months

http://www.semitracks.com/index.php/blog/archive-blog-posts

http://www.tedpella.com/apertures-and-filaments_html/Kimball-lab6-cathodes.htm

cold Field Emission source

- Emission of electrons by strong electric field > 1 GV/m
- Cathode monocrystal of W, ended by a tiny tip
 - Electrostatic potential depends on E_f work function of the cathode
 - Requires high vacuum 1.5 10⁻⁷ Pa or better

Thermal Field Emission source

- Field emission from a heated cathode
- Shottky-type source
- Layer of ZrO_2 on the surface lowers work function
- Does not require such high vacuum
- Lower electrostatic fields comparing to cold FE
- circa 10 x higher electron current flux in comparison to cold FE

Heating to 1000-1800 K lowers the needs of very high electrostatic field

Suppressor – filters out the thermal electrons

First anode – electron extraction

Second anode – electron acceleration

Emission current up to 200 uA

Virtual source formation in field-emission gun. Distance d depends on voltage ratio V_0/V_1 .

http://www.nanophys.kth.se/nanophys/facilities/ nfl/manual/sem-adjust/semadj2.html

Comparison od W, LaB₆, cold and thermal FEG

http://www.ammrf.org.au/myscope/sem/practice/principles/gun.php

http://www.ammrf.org.au/myscope/

Comparison od W, LaB₆, cold and thermal FEG

Reed, 2005: Electron Microprobe Analysis and scanning Electron Microscopy in Geology.

Comparison od W, LaB₆, and thermal FEG

Sample: Evaporated gold particles Acc. V.: 10kV Mag.: 5000x Probe Current - 100 nA

5μm

electron optics

Additional alignment of the electron source/beam

Principle of elmg lenses

 A charged (q) particle moving through a magnetic field of strength B, with a speed v will feel a Lorentz force (F) with a magnitude of:

 $\mathbf{F} = q\mathbf{v} \times \mathbf{B}$

The force changed the direction of the movement and not the energy (speed) of the particle.

Defects of elmg. lenses

Spherical Aberration

Can be minimized by insertion of the aperture

Chromatic Aberration

is minimal, bcs the electrons have the same energy

condenser lens

- Electron beam is divergent when passing through anode
- Condenser lens(es) collimates or converges the beam.
- Position of the focal point controls the amount of electrons passing through the aperture
 - Current regulation in range (X0 pA-X00 nA)

Additional beam current regulator

Fluctuation of the heating current or condenser lens coil current caused little variation of the beam current

1-condenser lens
PFL-probe-forming lens - objective lens
2-limiting aperture of the regulator
3-collecting aperture of the regulator
4-elm lens power supply
5-amplifier, electronic
6-sample

Objective lens

• Probe forming lens, focuses electron beam to the sample surface, defocuses electron beam

9(+)

apertur

SI(LI) detector

rst ('condensing') lens

and ('objective') len

viewing microscope

Stigmator and scanning coils

 stigmator – set of coils for corrections of abberation and shape of the beam

 Scanning coils for moving (scanning) of the electron beam on the sample surface

With astigmatism

Over focus

Exact focus

Under focus

Interaction of the electron beam with a sample

Interaction of the electron beam with a sample

- Interaction od accelerated electrons with mass of sample causes production of several kinds of photons and electrons.
 - Elastic collision changing of trajectory with minimal changes of energy
 - Back scattered electrons BSE
 - Transmitted electrons TE
 - inelastic collision loosing of energy, interactions with electrons in atom's shells of sample
 - Secondary electrons SE
 - Photons in visible range cathodoluminescence CL
 - Auger electrons
 - Characteristic X-ray
 - Continual X-ray
 - heat
- Detection of these signals can be used for a detailed characterization of the sample

Excitation volume

- A space, where interactions take a place
- Increases with increasing electrons
 energy
- Decreases with increasing mean Z of sample
- The shape depends on a beam size and a mean Z

Interaction volume for electrons in a bulk sample. Distances are for 20 kV electrons in Cu. For A1, multiply by 3

Target	5 keV	10 keV	20 keV	30 keV
Aluminium	0.41 µm	1.32	4.2	8.3
Copper	0.15	0.46	1.47	2.89
Gold	0.085	0.27	0.86	1.70

Back-scattered electrons- BSE

- Elastic interations
- BSE –Back-Scattered Electrons

.5

.4

.3 η

.2

.1

- **BEI Backscattered Electron Image** ٠
- $E_e \approx E_0, \Delta E < 1 \text{ eV}$
- Generally, BSE are considered all electrons >50eV
- Production of BSE η_b (back-scattering coefficient), ٠ is dependent on a mean atomic number Z of sample

 $Z = w_1 z_1 + w_2 z_2 + w_3 z_3 \dots + w_n z_n$ η = -0.0254 + 0.016 Z -0.000186 Z²+ 8.3 x 10⁻⁷Z³ $Z_{SiO_2} = 0.4674 \text{ x } 14 + 0.5326 \text{ x } 8 = 10.8044$

z 10

20

30

40

50

60

70

45

48

50

ŋ

Scintillation type of BSE detector

• "ROBINSON" type of detector

semiconductor type of BSE detector

solid state detector

BSE images

chemical variability of Ca-Pb phosphate mineral Ca-rich pyromorphite

bazaltic rock with olivine and other minerals

Secondary electrons - SE

Ese (eV) BSE

- SE Secondary Electrons
- SEI Secondary Electrons Image
- SE are emitted form electron shells of atoms due to collision with primary
- energy up to 50 eV usually 2-10 eV
- SE can escape from only a thin surface layer ~500 Å, owing to their low energy
- The number of escaped electrons is mainly a function of morphology, effect of Z is minimal.
- One accelerated electron (10-30 keV) release about $\delta = 0.1-0.2$ SE

Detection of SE

Everhart and Thornley detector

SE images

Synthetic zeolite

Polen particle

carbon nanovires

Photoshopized SEM images

cathodoluminescence

- Production of photons in visible range
 - Shows changes in concentration of the CL activators (Mn, REE,...) in ppm
 - Information about growth history, zonation
- Scintillation detector panchromatic image
- CL spectrometer spectral characteristic of CL light

CL of natural diamond caused by variation of N content

X-rays

continuum X-ray

- Continuum
 - Inelastic collision
 - Braking radiation bremsstrahlung
 - Energy 0 eV to ~ U_{acc}

- ~ 0.X % of accelerated e⁻ hit e⁻ in atom shell and knock it out – SE
- The vacancy in orbital is filled by jumping of e⁻ from higher energy orbitals
- The transition is followed by emission of quantum of E in form of X-ray photon
- Several types of transition
- K, L, M lines

http://www.matter.org.uk/tem/electron_atom_interaction/x-ray_and_auger.htm

Source			Sh	ell Filled			
Shell	к	L	LII	LIII	M _{III}	MIV	MV
LI LII LIII	Κ _{α/2} (50) Κ _{α(1} (100)						
M ₁ M ₁₁ M ₁₁₁ M ₁₁₇ M ₁₇₇	Кβ ₃ (1) Кβ ₁ (20) Кβ _{5'} Кβ _{5'}	Lβ ₄ (5) Lβ ₃ (6) Lβ ₁₀ Lβ ₉	L _η (1) L _{β17} L _{β1} (50)	L _L (2) Lt (0.01) L _S (0.01) L _{C(2} (10) L _{C(1} (100)			
N ₁ N ₁₁ N ₁₁₇ N ₁₇₇ N ₇₇₁ N ₇₇₁	К _{β2"} (5) К _{β2'} К _{β4} К _{β4}	L _{γ2} (1) L _{γ3} (2)	L ₇₅ (0.1) L ₇₁ (10) L _V L _V	Lβ ₆ (0.1) Lβ ₁₅ (1) Lβ ₂ (20)	$M_{\gamma_2}(1) \\ M_{\gamma_1}(1)$	Μβ ₁ (50)	Μα ₂ (100) Μα ₁ (100)
0 ₁ 0 ₁₁ 0 ₁₁₁ 0 _{1V} 0 _V	K _{δ2} (0.1) K _{δ1} , (0.1)	L _{γ4} L _{γ4}	L _{Y8} L _{Y6}	Լ _{ցշ} Լ _{ցշ} Լց _շ			

Electron microanalysis

- Relatively non-destructive method to analyse the chemical composition of "usually" inorganic sample
- Small sample needed few microns
- Detection of characteristic X-ray from the sample

Electron microanalysis

• Energy-dispersive X-Ray spectroscopy (EDS, EDX)

- quantum nature of radiation
- semiconductor type of detector
- Wavelength-dispersive X-Ray spectroscopy (WDS, WDX)
 - wave nature of radiation
 - based on the X-ray diffraction
- Accelerating voltage 15 kV for silicates, 20-25 kV for sulphides and alloys

energy dispersive spectroscopy

- Semiconductor detector Si:Li
 - area 10-40mm²
 - bias 500-600V
- X-ray generates pairs electron-hole
- The higher E of X-ray, the more pairs of electron-hole => higher current pulse
- Old types: Na U
- Modern types: (Be) B U
- Cooling od detector (LN₂, peltier module)

energy dispersive system (EDS, EDX)

- advantages
 - The whole spectrum at once
 - Fast analysis 30, 60 s
 - Cheaper than WDS
- disadvantages
 - Poor resolution 130 -150 eV per channel
 - Common overlaps Pb-Bi-S, Mo-S, As-Mg, Na-Zn, Ba-Ti
 - Higher detection limit 0.1-1.0 hm.%

energy dispersive system (EDS, EDX)

- Peak position on x-axis energy
- Peak height (area) concentration
- Concentration of element
 - Ratio between peak area of unknown (sample) and peak area of standard

• $C_{unk} = I_{unk} / I_{std} \times C_{std}$

wavelength dispersive system (WDS, WDX)

- Based of wave characteristic of radiation
- Based on X-ray diffraction on a crystal monochromator
- Radiation source, monochromator and detector lay on a Rowland circle
- If the Bragg equation is comply, a radiation is diffracted towards a detector.
- If not, a radiation is absorbed by a crystal

- $n\lambda = 2d \sin\theta$
- where, n = an integer (1, 2, 3...), λ = wavelength, d = d-spacing of the crystal, and θ = incident angle (measured from crystal surface)

WDS-crystals

WDS crystals

- Lithium fluoride 200 (LIF), 2d = 4.028 Å
- Potassium acid pthalate 1011 (KAP), 2d = 26.6
 Å
- Ammonium dihydrogen phosphate 011 (ADP), 2d = 10.648 Å
- Rubidium acid pthalate (RAP), 2d = 26.1 Å
- Pentaerythritol 002 (**PET**), 2d = 8.742 Å
- Thallium acid pthalate 1011 (TAP), 2d = 25.75 Å, and
- Lead sterate or Lead octodecamoate (ODPB), 2d = 100 Å

WDS – arrangement

WDS - detector

- Proportional gas detector
- "gas flow" of sealed type
- argon methane 9:1, krypton
- Diffracted X-ray ionize gas in detector
 - methane works as a discharge quencher

thin window

wavelength dispersive system (WDS, WDX)

- advantages
 - Excellent spectral resolution 6 eV per channel
 - Low detection limits 0.0X wt.%
 - Less spectral coincidences
 - Up to 5 spectrometers
- disadvantages
 - Analysis takes more time X minutes
 - Sensitive to quality of the surface
 - More expensive device
 - Measure only selected elements

WDS – principles of measurement

- countrate on the peak maxima
- countrate on background.
- Countrate depends on:
 - concentration, analytical line, accelerating voltage and beam current
 - cts.s⁻¹.nA⁻¹ (for certain kV)
- Comparison of countrate (I) of unknown with the countrate of standards – concentration (c)
- $c_{unk} = I_{unk} / I_{std} \times c_{std}$

EDS, WDS - ZAF corrections

• theoretically

$$C_{unk}^{A} = C_{std}^{A} \left(\frac{I_{unk}^{A}}{I_{std}^{A}} \right)$$

where C_{unk}^A = concentration of A in the unknown, C_{std}^A = concentration of A in the standard, I_{unk}^A = the background-corrected intensity of A X-rays in the unknown, and I_{std}^A = background-corrected intensity of A X-rays in the standard.

- Z correction to BSE
 - The more production of BSE, the less electrons can generate characteristic X-ray
 - Production of BSE depends on Z
 - Correction for loss of characteristic X-rays due to production of BSE
- A characteristic X-rays is partially absorbed by matter of sample
 - absorption depends of X-ray energy and chemical composition of the sample
- F absorbed X-ray can cause an emission of secondary X-rays of lower energy
 - fluorescence

Sample preparation for electron microscopy and microanalysis

Sample preparation for electron microscopy and microanalysis

- High vacuum devices
- Sample surface must be electrically conductive
 - For analysis C
 - For images only Au, Ir, Pd,...
- High vacuum devices (environmental microscopes)
 - Observe the sample without coating
 - Higher pressure (worse vacuum) in chambre
- For proper microanalysis
 - polished surface perpendicular to the electron beam

Au, Pt, It coating

- For electron microscopy
- Morphological samples
- Magetron sputtering coaterd
- About 20-30 minutes a batch

Carbon coating

- Carbon vacuum coater
- For microanalysis
- Selfheated graphite electrods emitte carbon atoms
- Graphite electrods, carbon string
- Batch time 0.5-3 hours.
- Necessary to clean the surface form a dirty and oily stuff
- For high high-quality analysis is necessary make a homogeneous thickness and the same thickness as on standards
- Carbon layer is sensitive to scratch

Analytical outputs of Cameca SX 100 electron microprobe

Spot WDS analysis

- Minimal grain size (3x3 µm)
- Focused beam ~0,5 µm to a large area analysis 50x50 µm
- 5 elements at once
- Time of analysis 3-20 minutes
- Depends on number of elements and required detection limit.

Oxide																
DataSet/Po	TriD2	CaO	Fe2O3	Mn2O3	Na2O	SiO2	AI2O3	MgO	K2O	Cr2O3	BaO	P2O5	Total	Comment	Date	
1/1.	0.081	0	4.308	16.59	0.004	34.818	44.17	0.112	0	0.004	0	0.008	100.102	koj5		5/5/2006 9:32
2/1.	0.083	0.017	4.352	17.06	0	34.252	43.579	0.118	0.001	0.013	0.001	0	99.49	koj5		5/5/2006 9:36
3/1.	0.06	0	4.32	17.434	0.041	34.296	43.955	0.105	0.012	0.007	0.012	0.032	100.275	koj5		5/5/2006 9:41
4/1.	0.061	0.003	4.265	16.478	0.028	34.058	44.28	0.124	0	0.005	0	0.017	99.361	koj5		5/5/2006 9:55
Det.Lim pp	m															
DataSet/Po	Trit	Ca	Fe	Mn	Na	Si	Al	Mg	K	Cr	Ва	Р	0	Comment	Date	
1/1.	220	381	887	662	471	434	437	204	1	280	696	374		koj5		5/5/2006 9:32
2/1.	209	335	774	626	482	394	431	217	326	272	643	341		koj5		5/5/2006 9:36
3/1.	219	344	848	611	428	402	428	215	299	268	650	319		koj5		5/5/2006 9:41
4/1.	225	362	845	675	452	430	420	214	312	275	679	347		koj5		5/5/2006 9:55
StdDev wt%	6															
DataSet/Po	Třit	Ca	Fe	Mn	Na	Si	AI	Mg	K	Cr	Ва	Р	0	Comment	Date	
1/1.	0.02	0.031	0.244	0.378	0.039	0.363	0.551	0.022	0	0.023	0.055	0.031		koj5		5/5/2006 9:32
2/1.	0.019	0.029	0.237	0.378	0.038	0.352	0.539	0.023	0.027	0.023	0.053	0.028		koj5		5/5/2006 9:36
3/1.	0.02	0.028	0.238	0.384	0.04	0.353	0.543	0.022	0.026	0.022	0.054	0.028		koj5		5/5/2006 9:41
4/1.	0.02	0.03	0.242	0.377	0.04	0.358	0.552	0.023	0.026	0.023	0.055	0.03		koj5		5/5/2006 9:55

Line profile

X-ray mapping

	10ms	100ms	1000ms
64x64	45s	6m 30s	1h 8m 16s
128x128	2m 44s	27m 20s	4h 33m 4s
256x256	10m 15s	1h 49m 13s	18h 12m 16s
512x512	43m 4s	7h 16m 54s	72h 49m 4s

Angle WDS scan

