

1.2. Representations of Lie groups and Lie algebras

Def. 1.24 Suppose G is a Lie group.

A representation of G on a finite-dim. real vector space V is a Lie group homomorphism $\varphi: G \rightarrow \mathrm{GL}(V)$.

Equivalently, it is a smooth map $\varphi: G \times V \rightarrow V$ s.t.

- $\varphi(g, -): V \rightarrow V$ linear $\forall g \in G$
- $\varphi(e, v) = v \quad \forall v \in V$
- $\varphi(g, \varphi(h, v)) = \varphi(gh, v) \quad \forall g, h \in G, v \in V.$

Remark One often just refers to V as a representation of G in Def. 1.23, if it is understood what the map $\varphi: G \rightarrow \mathrm{GL}(V)$.

Example

① $\mathrm{GL}(V) = G \quad \dim(V) = n$

Defining 1 standard repres on V : $\varphi: \mathrm{GL}(V) \times V \rightarrow V$
 $(A, v) \mapsto Av$
 $= \varphi(A, v)$

Via choice of basis, one can identify
 $\mathrm{GL}(V) \simeq \mathrm{GL}(n, \mathbb{R})$

and ψ with $GL(n, \mathbb{R}) \times \mathbb{R}^n \rightarrow \mathbb{R}^n$
 $(A, v) \mapsto Av$ (matrix mult. of $A \in GL(n, \mathbb{R})$
with a vector in \mathbb{R}^n)

Similarly, any matrix group $H \subseteq GL(V)$ has a standard representation, namely V .

② Adjoint representation of a lie group $'G$ on its lie algebra \mathfrak{g}

Denote by $\text{con}_g : G \rightarrow G$ conjugation in G :
 $\text{con}_g(h) := g h g^{-1} \quad \forall h \in G$.

It is a lie group homomorphism.

$$\text{Ad} : G \rightarrow \text{GL}(\mathfrak{g})$$

$$\text{Ad}(g) := T_e \text{con}_g : \mathfrak{g} \rightarrow \mathfrak{g}$$

is called the adjoint representation of G on its lie alg. \mathfrak{g} .

Let us check this is really a representation:

$$\begin{aligned} \text{con}_g &= \lambda_g \circ \rho^{g^{-1}} = \rho^{g^{-1}} \circ \lambda_g \implies T_e \text{con}_g = \underbrace{T_{g^{-1}} \lambda_{g^{-1}} \circ T_e \rho^{g^{-1}}}_{= T_g \rho^{g^{-1}} \circ T_e \lambda_g} \\ &= T_g \rho^{g^{-1}} \circ T_e \lambda_g \end{aligned}$$

$$\text{con}_{gh} = \text{con}_g \circ \text{con}_h \Rightarrow \text{Ad}(gh) = \text{Ad}(g) \circ \text{Ad}(h)$$

$$\text{con}_{g^{-1}} = (\text{con}_g)^{-1} \Rightarrow \text{Ad}(g^{-1}) = \text{Ad}(g)^{-1}$$

$\Rightarrow \text{Ad} : G \rightarrow \text{GL}(g)$ is a group homomorphism.

To see that Ad is smooth, we can equiv. show that

$(g, x) \mapsto \text{Ad}(g)(x)$ is smooth. Setting $F : G \times g \rightarrow TG \times TG \times TG$

$F(g, x) = (0_g, x, 0_{g^{-1}})$, we have

$$\underline{\left(T\mu \circ (id_{TG} \times T\mu) \circ F \right)(g, x) = T_{g^{-1}}g \circ T_e \rho g^{-1}x = \text{Ad}(g)x}$$

which is smooth as a composition of smooth maps.

If $G = GL(n, \mathbb{R})$, then

$$cou_A(B) = ABA^{-1}$$

is linear as a map $cou_A: M_{n \times n}(\mathbb{R}) \rightarrow M_{n \times n}(\mathbb{R})$

$$\Rightarrow \text{Ad}(A)(X) = T_{\text{id}} \text{cou}_A(X) = \text{cou}_A(X) = A \times A^{-1}$$

$$\forall X \in gl(n, \mathbb{R})$$

$$\forall A \in GL(n, \mathbb{R})$$

Def. 1.25 Suppose \mathfrak{g} is a real (or complex) Lie algebra over $\mathbb{K} = \mathbb{R}$ (\mathbb{C}).

A representation of \mathfrak{g} on a finite-dim. vector space V over \mathbb{K} is a Lie algebra homomorphism

$$\psi: \mathfrak{g} \rightarrow \mathfrak{gl}(V)$$

i.e. a linear map s.t. $\psi([x, y]) = [\psi(x), \psi(y)]$

$$= \psi(x) \circ \psi(y) - \psi(y) \circ \psi(x)$$

$$\forall x, y \in \mathfrak{g} .$$

Equivalently, a bilinear map $\psi : \mathfrak{g} \times V \rightarrow V$ s.t.

$$\psi([x, y], v) = \psi(x, \psi(y, v)) - \psi(y, \psi(x, v)) \quad \forall x, y \in \mathfrak{g} \quad \forall v \in V.$$

By Prop. 1.12, any representation $\psi : G \rightarrow \mathrm{GL}(V)$ of a lie group G induces a representation

$\psi' = T_e \psi : \mathfrak{g} \rightarrow \mathrm{gl}(V)$ of its lie algebra \mathfrak{g} .

For $G = GL(n, \mathbb{R})$, the standard representation φ of $GL(n, \mathbb{R})$ gives rise to standard representation of $gl(n, \mathbb{R})$

$$\varphi' : gl(n, \mathbb{R}) \times \mathbb{R}^n \rightarrow \mathbb{R}^n$$
$$(X, v) \mapsto Xv$$

Similarly, for any matrix group and its standard representation.

For the adjoint representation of a lie group G ,

$\text{Ad} : G \rightarrow \text{GL}(g)$, the induced representation of g , the Lie algebra of G , called the adjoint representation of g , is given by

$$\text{ad} : g \rightarrow \text{gl}(g)$$

$$\text{ad}(x)(y) = [x, y] \quad \forall x, y \in g.$$

as the following proposition shows.

Prop. 1.26 G Lie group with lie alg. $(\mathfrak{g}, [\cdot, \cdot])$.

① For $x \in \mathfrak{g}$ and $g \in G$, $L_x(g) = R_{\text{Ad}(g)(x)}(g)$.

② For $x, y \in \mathfrak{g}$, $\text{ad}(x)(y) = [x, y]$

③ For $x \in \mathfrak{g}$, $g \in G$ one has

$$\exp(t \underbrace{\text{Ad}(g)(x)}_{\text{Ad}(g(x))}) = g \exp(t x) g^{-1}$$

④ For $x, y \in \mathfrak{g}$ one has

$$\text{Ad}(\exp(x))(y) = e^{\text{ad}(x)}(y) = \sum_{k=0}^{\infty} \underbrace{\frac{1}{k!} \text{ad}(x)^k}_{\text{ad}(x^k)} y = y + [x, y] + \frac{1}{2} t x [x, y] + \dots$$

Proof

① $\lambda_g = \rho^g \circ \text{con}_g$

$$\Rightarrow T_e \lambda_g x = \underbrace{T_e \rho^g}_{\begin{matrix} \uparrow \\ L_x(g) \end{matrix}} \underbrace{T_e \text{con}_g x}_{\begin{matrix} \text{Ad}(g)(x) \\ \hline \end{matrix}} = R_{\text{Ad}(g)(x)}^{(g)} \quad \forall x \in \mathfrak{g}.$$

② Choose a basis x_1, \dots, x_n of \mathfrak{g} , then

$\text{Ad}(g) : \mathfrak{g} \rightarrow \mathfrak{g}$ corresponds to an $n \times n$ matrix $(\alpha_{ij}(g))$ for any $g \in G$ and $\alpha_{ij} : G \rightarrow \mathbb{R}$ are smooth.

Matrix representation of $\text{ad}(x) : \mathfrak{g} \rightarrow \mathfrak{g}$ equals

$$x \cdot a_{ij} = T_e^{\alpha_{ij}} X = (L_x \cdot \alpha_{ij})(e) \quad \forall x \in \mathfrak{g}.$$

Any $y \in \mathfrak{g}$ can be written as $y = \sum_{i=1}^n y_i X_i$

$$\Rightarrow L_y(g) \underset{\textcircled{1}}{=} R_{\underbrace{\text{Ad}(g)(y)}}^{(g)} = \sum_{i,j} y_i \alpha_{ij}(g) R_{X_i}(g)$$
$$\sum_{i,j} \alpha_{ij}(g) y_j X_i$$

$$\Rightarrow \underbrace{[L_x, L_y]}_{\text{Prop. 1.14}} = \sum_{i,j} y_i \underbrace{[L_x, \alpha_{ij} R_{X_i}]}_{(L_x \cdot \alpha_{ij}) R_{X_i}} = \sum_{i,j} y_i (L_x \cdot \alpha_{ij}) R_{X_i}$$

$$\text{Evaluating at } e \text{ yields : } [x, y] = \sum_{i,j} y_j(x, a_{ij}) x_i \\ = \text{ad}(x)(y)$$

③ Since $\text{Ad}(g) = T_e \text{con}_g$, the result follows from

① of Thm. 1.23,

$$\underline{\text{con}_g}(\exp(+x)) = \exp(\widehat{\text{Ad}(g)}(+x)) = \exp(+\text{Ad}(g)(x)) \\ \forall g \in G, x \in g.$$

④ $\text{Ad} : G \rightarrow GL(g)$ Lie group hom.

$$T_e \text{Ad} = \text{ad} : \mathfrak{g} \rightarrow \mathfrak{gl}(\mathfrak{g})$$

By ① of Thm. 1.23 :

$$\begin{aligned}\text{Ad}(\exp(x))(y) &= \exp(\text{ad}(x))(y) \\ &= e^{\text{ad}(x)}(y) \\ &= \sum_{k=0}^{\infty} \frac{\text{ad}(x)^k}{k!} y\end{aligned}$$

□

Prop. 1.27 G Lie group with Lie algebra \mathfrak{g} .

Let $\psi: G \rightarrow GL(V)$ be a represent. of G with induced represent. $\psi': \mathfrak{g} \rightarrow gl(V)$ of \mathfrak{g} .

$$\textcircled{1} \quad \psi(\exp(tx))(v) = \exp(t\psi'(x))(v) \quad \forall t \in \mathbb{R}, \forall x \in \mathfrak{g}, \forall v \in V$$

$$\textcircled{2} \quad \psi'(x)v = \frac{d}{dt} \Big|_{t=0} \psi(\exp(tx))(v)$$

Proof

\textcircled{1} follow from \textcircled{1} of Thm. 1.23 and \textcircled{2} is an immediate consequ. of \textcircled{1} -

1.3 Lie subgroups and virtual Lie subgroups

Prop. 1.28 Suppose H is a Lie subgroup of a Lie group G . Then H is closed as subset of the topolog. space G .

Proof

Any subgrou N of a mfd M is locally closed, i.e.

open in its closure \overline{N} (\iff every point $x \in N$ has a neighborhood U in M s.t. $U \cap N$ is closed in U)

For any subgroup H of a topolog. group G , \bar{H} is also a subgroup of G $\left(h_n \xrightarrow[n \rightarrow \infty]{e_H} h \quad g_n \xrightarrow[n \rightarrow \infty]{e_H} g \Rightarrow h_n g_n \xrightarrow[e_H]{} h \cdot g \in \bar{H} \right)$

If H is a lie subgroup of G , H is open and dense in \bar{H} . Hence, for $g \in \bar{H}$, $\lambda_g(H) \subseteq \bar{H}$ is open in \bar{H} .

Since H is dense in \bar{H} , $\lambda_g(H) \cap H \neq \emptyset$, which implies $g \in H$.

□

Conversely, one has :

Thm. 1.29 Suppose H is a subgroup of a Lie group G that is closed as a subset of the topolog. space G . Then H is a Lie subgroup.

Proof We write \mathfrak{g} for the Lie alg. of G and set

$$\mathfrak{g} := \{ c'(0) : c: \mathbb{R} \rightarrow G \text{ is smooth, } c(0) = e \}$$

and c has values in H

$$\subseteq \mathfrak{g}$$

Claim 1 \mathcal{G} is a linear subspace of \mathfrak{g} .

If $c_1, c_2: \mathbb{R} \rightarrow H \subseteq G$ C^∞ -curves, $c_1(0) = c_2(0) = e$.

Then $c(t) := c_1(t) c_2(at)$ $a \in \mathbb{R}$

i) C^∞ -curve with values in H $c(0) = e$.

$\Rightarrow c'(0) \in \underline{\mathcal{G}}$

$$T_e H (c_1'(0), a c_2'(0)) = \underline{c_1'(0) + a c_2'(0)}$$

Claim 2 Suppose $(x_n)_{n \in \mathbb{N}}$ is sequence in $\mathbb{S} \cdot \mathbb{I}$.

$\lim_{n \rightarrow \infty} x_n = x \in \mathbb{q}$ and let $(t_n)_{n \in \mathbb{N}}$ be a sequence in $\mathbb{R}_{>0}$ with $\lim_{n \rightarrow \infty} t_n = 0$.

Then, if $\exp(t_n x_n) \in H \ \forall n \in \mathbb{N}$, then $\exp(tx) \in H \ \forall t \in \mathbb{R}$.

—
Fix $t \in \mathbb{R}$. For $n \in \mathbb{N}$ let a_n be the largest integer $\leq \frac{t}{t_n}$.

$\Rightarrow a_n t_n \leq t$ and $t - a_n t_n < \underline{t_n}$, so

$$\lim_{n \rightarrow \infty} a_n t_n = t$$

$$\xrightarrow{\text{continuity of } \exp} \lim_{n \rightarrow \infty} \underbrace{\exp(t_n x_n)^{a_n}}_{\in H} = \lim_{n \rightarrow \infty} \exp(a_n t_n x_n) = \exp(tx) \in H$$

Since H is closed.

Claim 3 $\mathcal{G} = \{x \in \mathfrak{g} : \exp(tx) \in H \ \forall t \in \mathbb{R}\}$

$\text{RHS} \subseteq \mathcal{G}$ by Def. of \mathcal{G} .

To show $\mathcal{G} \subseteq \text{RHS}$, let $c: \mathbb{R} \rightarrow H \subseteq G$ be a smooth curve with $c(0) = e$. Then $c'(0) \in \mathcal{G}$.

Then $\exists \varepsilon > 0$ and a C^∞ -curve $v: (-\varepsilon, \varepsilon) \rightarrow \mathfrak{g}$

s.t. $c(t) = \exp(v(t)) \quad \forall t \in [-\varepsilon, \varepsilon] \quad (v(0) = 0 \text{ eq.})$.

$$\Rightarrow c'(0) = \left. \frac{d}{dt} \right|_{t=0} \exp(v(t)) = \overset{\circ}{\underset{\text{Id}_g}{\lim}} \exp v'(0) = v'(0) = \lim_{n \rightarrow \infty} n v\left(\frac{1}{n}\right)$$

Set $t_n = \frac{1}{n}$ and $X_n = \underline{n v\left(\frac{1}{n}\right)}$ for suff. large n .

$$\Rightarrow \exp(t_n X_n) = \exp(v\left(\frac{1}{n}\right)) = c\left(\frac{1}{n}\right) \in H$$

for suff. large n

By claim ② , $\exp(t c'(0)) \in H \quad \forall t \in \mathbb{R}$

Claim Write $g = \mathfrak{g} \oplus \mathfrak{k}$ as a vector space, where \mathfrak{k} is a linear complement of \mathfrak{g} in \mathfrak{g} .

Then \exists an open neighborhood $W \subset \mathfrak{k}$ of $0 \in \mathfrak{k}$ s.t.
 $\exp(W) \cap H = \{\mathfrak{e}\mathfrak{g}\}$.

—
Conversely, assume that's not the case. Then \exists a sequence of elements $y_n \in \mathfrak{k}$ s.t. $\lim_{n \rightarrow \infty} y_n = 0$ and $\exp(y_n) \in H$.

For a norm $\|\cdot\|$ on \mathfrak{k} , put $x_n = \frac{1}{\|y_n\|} y_n$. By passing to a subsequence if necessary, we can assume that

$\lim_{n \rightarrow \infty} x_n = :x \in \mathbb{k}$. Then $\|x\| = 1$, in particular, $x \neq 0$.

Set $t_n = \|y_n\|$. Then $\exp(t_n x_n) = \exp(y_n) \in H$

and Claim ② and ③ show that $x \in \mathcal{G}$, which is a contradiction to $x \neq 0$ and $x \in \mathbb{k}$.

We define the following smooth map

$$F: \mathcal{G} \times \mathbb{k} \rightarrow G$$

$$F(x, y) = \exp(x) \exp(y)$$

Since $T_0 F$ is a linear isomorphism, \exists open neighborhoods

V and W of $O \in \mathcal{G}$ and $O \in \mathcal{K}$ s.t.

$$F|_{V \times W} : V \times W \rightarrow F(V, W) =: U$$

is a diffeomorphism onto an open neighborhood U of e in G .

By shrinking W , we may assume that $\exp(W) \cap H = \{e\}$ by Claim 4.

F restricted to $\underline{V \times \{0\}}$ is a bijection onto $\underline{U \cap H}$.

Indeed, $\exp(V) \subseteq U \cap H$, since $V \subseteq \mathcal{G}$. Moreover, any $x \in U \cap H$ can be written uniquely as $x = \exp(X) \exp(Y)$ for $X \in V$, $Y \in W$.

$$\implies \exp(y) = \exp(-x) \cdot \underset{\in H}{\underset{\underset{\in H}{\uparrow}}{x}} \in H$$

By construction, this implies $\exp(y) = e$, hence $y = 0$.

Therefore, $(U, u := F_{|U \times W}^{-1})$ is a submfld. chart for H defined around $e \in G$ and $(\lambda_h(U), u \circ \lambda_{h^{-1}})$ for $h \in H$ is a submfld. chart around $h \in H$.

□