

Def. 1.18 G Lie group with Lie algebra \mathfrak{g} .

Then the exponential map of G is given by

$$\exp : \mathfrak{g} \rightarrow G$$

$$\exp(X) := \text{Fl}_1^{L_X}(e)$$

By definition, $\exp(0) = e$.

Thm. 1.19 G Lie group with Lie alg. \mathfrak{g} and
 $\exp: \mathfrak{g} \rightarrow G$ the exponential map.

① The map \exp is smooth and $T_0 \exp: T_0 \mathfrak{g} \xrightarrow{\simeq} T_e G = \mathfrak{g}$
 equals $Id_{\mathfrak{g}}$ ($=$ identity on \mathfrak{g}).

Hence, \exp restricts to a diffeomorphism from an open
 neighborhood of $0 \in \mathfrak{g}$ in \mathfrak{g} to an open neighborhood of $e \in G$
 in G .

② For $x \in \mathfrak{g}$ and $g \in G$ one has:
 $FL_t^{Lx}(g) = g \cdot \exp(tx)$ and $FL_t^{Rx}(g) = \exp(tx) \cdot g$

Proof

$(x, g) \mapsto L_x(g)$ is a smooth map $g \times G \rightarrow TG$
(by Prop. 1.7).

$\Rightarrow (x, g) \mapsto (0, L_x(g))$ is a smooth v.f. on
 $g \times G$

Its integral curves $t \mapsto (x, FL_t^{L_x}(g))$ are smooth
In particular, $(x, t) \mapsto (x, FL_t^{L_x}(g))$ is smooth
and so is $\exp(x) = FL_1^{L_x}(g)$.

$$\text{Now, } \underline{FL_t^{L_x}(e)} = \underline{FL_1^{L_{tx}}(e)} = \exp(tx)$$

($c: I \rightarrow G$ integral curve of L_x , then $t \mapsto c(at)$

is an integral curve of $\alpha L_x = L_{\alpha x} \quad \forall \alpha \in \mathbb{R}$).

$$\text{and } \underline{FL_t^{L_x}(g)} = g \quad \underline{FL_t^{L_x}(e)} = g \exp(tx)$$

$$FL_t^{R_x}(g) = \exp(tx) g$$

by Prop. 1.15.

$$(T_0 \exp)(x) = \frac{d}{dt} \Big|_{t=0} \exp(tx) = \frac{d}{dt} \Big|_{t=0} FL_t^{L_x}(e) = L_x(e) = x$$

□

Examples

① Consider the commutative Lie group $(\mathbb{R}_{>0}, \cdot)$.

Its Lie algebra is \mathbb{R} with trivial Lie bracket.

The left-1uv. vf generated by $x \in \mathbb{R}$ is

$$L_x(a) = ax$$

\parallel \Rightarrow integral curve of L_x through
 $1 \in \mathbb{R}_{>0}$

$$L_x(c(t)) = c'(t) \quad c(0) = 1$$

\parallel
 $c(t)x$

Solution is $c(t) = e^{tx}$ usual exponential map.

Hence, $\exp: \mathbb{R} \rightarrow \mathbb{R}_{>0}$ is the usual exponential map.

$$\textcircled{2} \quad G = GL(n, \mathbb{R}) \quad , \quad X \in \mathfrak{g} = M_{n \times n}(\mathbb{R}) = \mathfrak{gl}(n, \mathbb{R})$$

$$\begin{aligned} L_X(A) &= AX & L_X(c(t)) &= c'(t) \\ && \parallel & \\ && c(t)X & c(0) = \text{Id} \end{aligned} \quad \left. \begin{array}{c} \\ \\ \end{array} \right\} (*)$$

Unique solution to $\textcircled{2}$ is the matrix exponential

$$\exp(tx) = \sum_{k=0}^{\infty} \frac{t^k}{k!} X^k$$

($\sqrt{ }$ in operator norm $\| \cdot \|$ on $M_{n \times n}(\mathbb{R})$) $\not\in \|X^k\| \leq \|X\|^k$,

which implies that this power series converges
absolutely and uniformly on (compact sets).

$$\exp(x+y) \neq \exp(x) \exp(y) \text{ unless } [x,y] = xy - yx \\ = 0.$$

Def. 1.20 (Exponential coordinates)

G is a lie group with lie alg. \mathfrak{g} , $V \subseteq \mathfrak{g}$ is an
open neighbourhood of $0 \in \mathfrak{g}$ s.t. $\exp|_V : V \rightarrow \exp(V) =: U$
(\cong diffeom. onto an open neighbourhood of $e \in G$).

① Then (U, \exp_V^{-1}) is a local chart for G with $e \in U$ and $(\lambda_g(U), \lambda_g \circ \exp_V^{-1})$ are around $g \in G$.

ii Canonical coordinates of the first kind"

② Choose a basis $\{x_1, \dots, x_n\}$ of \mathfrak{g} , then $v: \mathbb{R}^n \rightarrow G$ given by

$$v(t_1, \dots, t_n) = \exp(t_1 x_1) \cdot \dots \cdot \exp(t_n x_n)$$

restricts to a local diffeom. from a neighborhood $V \circ \Omega \subset \mathbb{R}^n$

onto an open neighborhood U of e in G .

Indeed,

$$\frac{\partial v}{\partial t_i}(0) = X_i$$

and so $T_0 v (a_1, \dots, a_n) = a_1 X_1 + \dots + a_n X_n$

$(U, v|_{U \cap g^{-1}(U)})$ and $(\mathcal{A}_g(U), \mathcal{A}_g|_{U \cap g^{-1}(U)})$ are
coordinates around $e \in G$ and $g \in G$.

"Canonical coordinates of the second kind".

Prop. 1.21 Let $\varphi : H \rightarrow G$ continuous group homomorphism between Lie groups H and G . Then φ is smooth.

Proof

We first show this for $H = (\mathbb{R}, +)$, i.e. φ is a continuous 1-parameter subgroup.

Claim If $\alpha : \mathbb{R} \rightarrow G$ is a continuous 1-param.

subgr., then α is smooth.

By Thm. 1.18, $\exists r > 0$ s.t.

$$\exp : B_{2r}(0) \xrightarrow{\quad \leftarrow \quad} \exp(B_{2r}(0)) =: \underline{B_{2r}(e)} \text{ on } \underline{\mathfrak{g}}$$

$\subseteq \mathfrak{g} \simeq \mathbb{R}^n$

open ball of radius
 $2r$ for some inner product

is a diffeom. onto on open neighborhood $B_{2r}(e)$ of $e \in G$.

Since, $\alpha(0) = e$ and α is continuous, $\exists \varepsilon > 0$
s.t. $\alpha([- \varepsilon, \varepsilon]) \subseteq B_r(e)$.

Now let us define

$$\beta: [-\varepsilon, \varepsilon] \rightarrow B_r(0)$$
$$\subseteq g$$

$$\beta = \exp|_{B_r(0)}^{-1} \circ \alpha$$
$$\frac{\exp(\beta(t))}{\parallel}$$

For $|t| < \frac{\varepsilon}{2}$ we have $\underline{\exp(\beta(2t))} = \alpha(2t) = \alpha(t)\alpha(t)$
 $= \underline{\exp(2\beta(t))}$

$$\Rightarrow \beta(zt) = z\beta(t) \Rightarrow \beta\left(\frac{s}{z}\right) = \frac{1}{z}\beta(s) \quad \forall s \in \mathbb{E}, z \in \mathbb{E}$$

$$\text{By induction we show: } \beta\left(\frac{s}{z^k}\right) = \frac{1}{z^k}\beta(s) \quad \forall s \in \mathbb{E}, z \in \mathbb{E}$$

$$\Rightarrow \text{for } k, n \in \mathbb{N} \quad \forall k \in \mathbb{N}$$

$$\alpha\left(\frac{n\varepsilon}{z^k}\right) = \alpha\left(\frac{\varepsilon}{z^k}\right)^n - \exp\left(\beta\left(\frac{\varepsilon}{z^k}\right)\right)^n = \exp\left(\frac{n}{z^k}\beta(\varepsilon)\right)$$

Since $\alpha(t)^{-1} = \alpha(-t)$ and $\exp(-x) = \exp(x)^{-1}$,

$$(*) \quad \underline{\alpha(t)} = \underline{\exp\left(t \frac{1}{\varepsilon} \beta(\varepsilon)\right)} \quad \forall t \in \left\{ \frac{n\varepsilon}{z^k} : k \in \mathbb{N}, n \in \mathbb{Z} \right\} \\ = : S$$

Since $S \subseteq \mathbb{R}$ is dense and both sides of tx) are continuous, we deduce that

$$\underline{\alpha(t) = \exp\left(t \frac{1}{\varepsilon} \beta(\varepsilon)\right) \quad \forall t.}$$

In particular, α is smooth, because the right-hand side is.

Now consider the general case $\psi: H \rightarrow G$.

Take a basis $\{X_1, \dots, X_n\}$ of \mathfrak{h} . Then

$u^{-1}(t_1, \dots, t_n) = \underline{\exp(t_1 X_1) \dots \exp(t_n X_n)}$ defines a diffeom. from α^r ^{open} neighborhood $D \in \mathbb{R}^n$ to an open neighborhood

effect and its inverse are in chart.

Then

$$\begin{aligned}(\varphi \circ u^{-1})(t_1, \dots, t_n) &= \varphi(\exp(t_1 x_1) \dots \exp(t_n x_n)) \\ &= \varphi(\exp(t_1 x_1)) \dots \varphi(\exp(t_n x_n))\end{aligned}$$

(continuous)

1- parameter subgr., hence

$\Rightarrow \varphi \circ u^{-1}$ is smooth and therefore φ is smooth locally around e .

Therefore, $\underline{\lambda_{\varphi(h)}} \circ \underline{\varphi} = \underline{\varphi} \circ \underline{\lambda_{h^{-1}}}$ is smooth locally around $e \in H$ at $h \in H$.

This shows that φ is smooth locally around any $h \in H$

□

Prop. 1.22 For a lie group G we denote by

$G_0 \subseteq G$ the connected component of G containing $e \in G$, which is called the connected component of the identity of G .

- ① G_0 is a submfd (it is open subset) of the same dimension as G .
- ② G_0 is a subgroup. In fact, it is a normal subgroup of G .

In particular, $G_0 \subseteq G$ is a lie sub group of G
and G/G_0 is also a group, called the component
group of G .

Proof.

① ✓

② $g, h \in G_0 \Rightarrow \exists C^\infty$ -curves $c_g, c_h: [0, 1] \rightarrow G$
s.t. $c_g(0) = e = c_h(0)$ and $c_g(1) = g$
and $c_h(1) = h$.
 $\Rightarrow t \mapsto c_g(t)c_h(t)$ is a C^∞ -curve connecting
 e with gh

$$\Rightarrow gh \in G_0$$

Since $t \mapsto v(c_g(t))$ is a C^α -curve connecting e with g^{-1} , also $g^{-1} \in G_0$ for any $g \in G_0$.

$$\Rightarrow G_0 \subseteq G \text{ is a subgraph.}$$

It is a normal subgroup of G : for $g \in G_0, k \in G$
 $t \mapsto k c_g(t) k^{-1}$ is a C^α -curve connecting e with $k g k^{-1} \in G_0$.

D

Thur. 1. 23 G and H Lie groups with Lie alg.

\mathfrak{g} and \mathfrak{g} . Then :

① If $\varphi: G \rightarrow H$ is a lie group homomorphizer,
then

$$\varphi \circ \underline{\exp_G} = \underline{\exp_H} \circ \underline{\varphi'}$$

where $\varphi' = T_e \varphi: \mathfrak{g} \rightarrow \mathfrak{g}$.

② G_0 coincides with the subgroup generated
by $\exp(\mathfrak{g}) \subseteq G$.

③ If $\varphi, \psi: G \rightarrow H$ are Lie group homomorphisms

s.t. $\varphi' = \psi'$, then $\varphi|_{G_0} = \psi|_{G_0}$.

In particular, if G is connected, then $\varphi = \psi$.

Proof

① Recall that $T_g \varphi L_x(g) = \overline{L_{\varphi'(x)}(\varphi(g))}$ (in the proof of Prop. 1.12)

which implies $\varphi \circ F_t^{L_x} = F_t^{L_{\varphi'(x)}} \circ \varphi$. $\forall x \in g$.

$\Rightarrow \underline{\varphi(\exp(x))} = \varphi(F_t^{L_x}(e)) = F_t^{L_{\varphi'(x)}}(e) = \underline{\exp(\varphi'(x))}$

② If \tilde{G} is the subgr. generated by $\exp(\mathfrak{g})$, then

$\tilde{G} \subseteq G_0$, since $t \mapsto \exp(tx)$ is a C^∞ -curve
connecting e to $\exp(x)$.

To see the converse, note that, since \exp is
a local diffeom. around $0 \in \mathfrak{g}$, $\exp(\mathfrak{g})$
and hence \tilde{G} , contains an open neighbourhood
 $U \subseteq G$ of $e \in G$.

\Rightarrow for $g \in \tilde{G}$, $\underline{I_g}(U)$ is an open neighbourhood of g
contained in \tilde{G} . (we used that \tilde{G} is a subgroup).

Hence, $\tilde{G} \subseteq G$ is open.

But $\tilde{G} \subseteq G$ is also closed, since for $g \in G \setminus \tilde{G}$
 $\lambda_g(\nu(U))$ is an open neighborhood of g contained in
 $G \setminus \tilde{G}$. Hence, $G \setminus \tilde{G}$ is open and therefore
 \tilde{G} is closed.

$$\Rightarrow \tilde{G} = G_0.$$

③ By ①, ψ and ψ' coincide on $\exp(g)$.

Since ψ and ψ' are group homom., also on \tilde{G} .
So the result follows from ②. \square

Example

$\det : GL(n, \mathbb{R}) \rightarrow (\mathbb{R} \setminus \{0\}, \cdot)$ is a lie group
homomorphism
($\det(AB) = \det(A)\det(B)$)

$\det' = T_{Id} \det = \text{trace} : \mathfrak{gl}(n, \mathbb{R}) \rightarrow \mathbb{R}$

By ① of Thm. 1.23 :

$$\boxed{\det(e^x) = e^{\text{tr}(x)}}$$

$$\begin{aligned} \exp = e : \mathfrak{sl}(n, \mathbb{R}) \\ \rightarrow \text{SL}(n, \mathbb{R}) \end{aligned}$$