3.12 Exercises

E 3-1

A spectrometer operates with a Larmor frequency of 600 MHz for protons. For a particular set up the RF field strength, $\omega_{1} /(2 \pi)$ has been determined to be 25 kHz . Suppose that the transmitter is placed at 5 ppm ; what is the offset (in Hz) of a peak at 10 ppm ? Compute the tilt angle, θ, of a spin with this offset.

For the normal range of proton shifts ($0-10 \mathrm{ppm}$), is this 25 kHz field strong enough to give what could be classed as hard pulses?

E 3-2

In an experiment to determine the pulse length an operator observed a positive signal for pulse widths of 5 and $10 \mu \mathrm{~s}$; as the pulse was lengthened further the intensity decreased going through a null at 20.5μ s and then turning negative.

Explain what is happening in this experiment and use the data to determine the RF field strength in Hz and the length of a 90° pulse.

A further null in the signal was seen at $41.0 \mu \mathrm{~s}$; to what do you attribute this?

E 3-3

Use vector diagrams to describe what happens during a spin echo sequence in which the 180° pulse is applied about the y axis. Also, draw a phase evolution diagram appropriate for this pulse sequence.

In what way is the outcome different from the case where the refocusing pulse is applied about the x axis?

What would the effect of applying the refocusing pulse about the $-x$ axis be?

E 3-4

The gyromagnetic ratio of phosphorus-31 is $1.08 \times 10^{8} \mathrm{rad} \mathrm{s}^{-1} \mathrm{~T}^{-1}$. This nucleus shows a wide range of shifts, covering some 700 ppm .

Estimate the minimum 90° pulse width you would need to excite peaks in this complete range to within 90% of the their theoretical maximum for a spectrometer with a B_{0} field strength of 9.4 T .

E 3-5

A spectrometer operates at a Larmor frequency of 400 MHz for protons and hence 100 MHz for carbon-13. Suppose that a 90° pulse of length $10 \mu \mathrm{~s}$ is applied to the protons. Does this have a significant effect of the carbon-13 nuclei? Explain your answer carefully.

E 3-6

Referring to the plots of Fig. 3.26 we see that there are some offsets at which the transverse magnetization goes to zero. Recall that the magnetization is rotating about the effective field, $\omega_{\text {eff }}$; it follows that these nulls in the excitation
come about when the magnetization executes complete 360° rotations about the effective field. In such a rotation the magnetization is returned to the z axis. Make a sketch of a "grapefruit" showing this.

The effective field is given by

$$
\omega_{\mathrm{eff}}=\sqrt{\omega_{1}^{2}+\Omega^{2}}
$$

Suppose that we express the offset as a multiple κ of the RF field strength:

$$
\Omega=\kappa \omega_{1} .
$$

Show that with this values of Ω the effective field is given by:

$$
\omega_{\mathrm{eff}}=\omega_{1} \sqrt{1+\kappa^{2}}
$$

(The reason for doing this is to reduce the number of variables.)
Let us assume that on-resonance the pulse flip angle is $\pi / 2$, so the duration of the pulse, τ_{p}, is give from

$$
\omega_{1} \tau_{\mathrm{p}}=\pi / 2 \text { thus } \tau_{\mathrm{p}}=\frac{\pi}{2 \omega_{1}}
$$

The angle of rotation about the effective field for a pulse of duration τ_{p} is $\left(\omega_{\text {eff }} \tau_{\mathrm{p}}\right)$. Show that for the effective field given above this angle, $\beta_{\text {eff }}$ is given by

$$
\beta_{\mathrm{eff}}=\frac{\pi}{2} \sqrt{1+\kappa^{2}}
$$

The null in the excitation will occur when $\beta_{\text {eff }}$ is 2π i.e. a complete rotation. Show that this occurs when $\kappa=\sqrt{15}$ i.e. when $\left(\Omega / \omega_{1}\right)=\sqrt{15}$. Does this agree with Fig. 3.26?

Predict other values of κ at which there will be nulls in the excitation.

E 3-7

When calibrating a pulse by looking for the null produced by a 180° rotation, why is it important to choose a line which is close to the transmitter frequency (i.e. one with a small offset)?

E 3-8

Use vector diagrams to predict the outcome of the sequence:

$$
90^{\circ}-\text { delay } \tau-90^{\circ}
$$

applied to equilibrium magnetization; both pulses are about the x axis. In your answer, explain how the x, y and z magnetizations depend on the delay τ and the offset Ω.

E 3-9

Consider the spin echo sequence to which a 90° pulse has been added at the end:

$$
90^{\circ}(x)-\text { delay } \tau-180^{\circ}(x)-\text { delay } \tau-90^{\circ}(\phi) .
$$

The axis about which the pulse is applied is given in brackets after the flip angle. Explain in what way the outcome is different depending on whether the phase ϕ of the pulse is chosen to be $x, y,-x$ or $-y$.

E 3-10

The so-called " $1-\overline{1}$ " sequence is:

$$
90^{\circ}(x)-\text { delay } \tau-90^{\circ}(-x)
$$

For a peak which is on resonance the sequence does not excite any observable magnetization. However, for a peak with an offset such that $\Omega \tau=\pi / 2$ the sequence results in all of the equilibrium magnetization appearing along the x axis. Further, if the delay is such that $\Omega \tau=\pi$ no transverse magnetization is excited.

Explain these observations and make a sketch graph of the amount of transverse magnetization generated as a function of the offset for a fixed delay τ.

The sequence has been used for suppressing strong solvent signals which might otherwise overwhelm the spectrum. The solvent is placed on resonance, and so is not excited; τ is chosen so that the peaks of interest are excited. How does one go about choosing the value for τ ?

E 3-11

The so-called " $1-1$ " sequence is:

$$
90^{\circ}(x)-\text { delay } \tau-90^{\circ}(y) .
$$

Describe the excitation that this sequence produces as a function of offset. How it could be used for observing spectra in the presence of strong solvent signals?

