3.12 Exercises

E 3-1

A spectrometer operates with a Larmor frequency of 600 MHz for protons. For a particular set up the RF field strength, $\omega_1/(2\pi)$ has been determined to be 25 kHz. Suppose that the transmitter is placed at 5 ppm; what is the offset (in Hz) of a peak at 10 ppm? Compute the tilt angle, θ , of a spin with this offset.

For the normal range of proton shifts (0 - 10 ppm), is this 25 kHz field strong enough to give what could be classed as hard pulses?

E 3–2

In an experiment to determine the pulse length an operator observed a positive signal for pulse widths of 5 and 10 μ s; as the pulse was lengthened further the intensity decreased going through a null at 20.5 μ s and then turning negative.

Explain what is happening in this experiment and use the data to determine the RF field strength in Hz and the length of a 90° pulse.

A further null in the signal was seen at 41.0 μ s; to what do you attribute this?

E 3–3

Use vector diagrams to describe what happens during a spin echo sequence in which the 180° pulse is applied about the y axis. Also, draw a phase evolution diagram appropriate for this pulse sequence.

In what way is the outcome different from the case where the refocusing pulse is applied about the *x* axis?

What would the effect of applying the refocusing pulse about the -x axis be?

E 3–4

The gyromagnetic ratio of phosphorus-31 is 1.08×10^8 rad s⁻¹ T⁻¹. This nucleus shows a wide range of shifts, covering some 700 ppm.

Estimate the minimum 90° pulse width you would need to excite peaks in this complete range to within 90% of the their theoretical maximum for a spectrometer with a B_0 field strength of 9.4 T.

E 3–5

A spectrometer operates at a Larmor frequency of 400 MHz for protons and hence 100 MHz for carbon-13. Suppose that a 90° pulse of length 10 μ s is applied to the protons. Does this have a significant effect of the carbon-13 nuclei? Explain your answer carefully.

E **3–6**

Referring to the plots of Fig. 3.26 we see that there are some offsets at which the transverse magnetization goes to zero. Recall that the magnetization is rotating about the *effective field*, ω_{eff} ; it follows that these nulls in the excitation

come about when the magnetization executes complete 360° rotations about the effective field. In such a rotation the magnetization is returned to the *z* axis. Make a sketch of a "grapefruit" showing this.

The effective field is given by

$$\omega_{\rm eff} = \sqrt{\omega_1^2 + \Omega^2}.$$

Suppose that we express the offset as a multiple κ of the RF field strength:

$$\Omega = \kappa \omega_1.$$

Show that with this values of Ω the effective field is given by:

$$\omega_{\rm eff} = \omega_1 \sqrt{1 + \kappa^2}.$$

(The reason for doing this is to reduce the number of variables.)

Let us assume that on-resonance the pulse flip angle is $\pi/2$, so the duration of the pulse, τ_p , is give from

$$\omega_1 \tau_p = \pi/2$$
 thus $\tau_p = \frac{\pi}{2\omega_1}$.

The angle of rotation about the effective field for a pulse of duration τ_p is $(\omega_{eff}\tau_p)$. Show that for the effective field given above this angle, β_{eff} is given by

$$\beta_{\rm eff} = \frac{\pi}{2}\sqrt{1+\kappa^2}.$$

The null in the excitation will occur when β_{eff} is 2π i.e. a complete rotation. Show that this occurs when $\kappa = \sqrt{15}$ i.e. when $(\Omega/\omega_1) = \sqrt{15}$. Does this agree with Fig. 3.26?

Predict other values of κ at which there will be nulls in the excitation.

E 3–7

When calibrating a pulse by looking for the null produced by a 180° rotation, why is it important to choose a line which is close to the transmitter frequency (i.e. one with a small offset)?

E 3–8

Use vector diagrams to predict the outcome of the sequence:

$$90^{\circ}$$
 – delay $\tau - 90^{\circ}$

applied to equilibrium magnetization; both pulses are about the x axis. In your answer, explain how the x, y and z magnetizations depend on the delay τ and the offset Ω .

E **3–9**

Consider the spin echo sequence to which a 90° pulse has been added at the end:

 $90^{\circ}(x) - \text{delay } \tau - 180^{\circ}(x) - \text{delay } \tau - 90^{\circ}(\phi).$

The axis about which the pulse is applied is given in brackets after the flip angle. Explain in what way the outcome is different depending on whether the phase ϕ of the pulse is chosen to be x, y, -x or -y.

E 3–10 The so-called " $1-\overline{1}$ " sequence is:

 $90^{\circ}(x) - \text{delay } \tau - 90^{\circ}(-x)$

For a peak which is on resonance the sequence does not excite any observable magnetization. However, for a peak with an offset such that $\Omega \tau = \pi/2$ the sequence results in all of the equilibrium magnetization appearing along the *x* axis. Further, if the delay is such that $\Omega \tau = \pi$ no transverse magnetization is excited.

Explain these observations and make a sketch graph of the amount of transverse magnetization generated as a function of the offset for a fixed delay τ .

The sequence has been used for suppressing strong solvent signals which might otherwise overwhelm the spectrum. The solvent is placed on resonance, and so is not excited; τ is chosen so that the peaks of interest are excited. How does one go about choosing the value for τ ?

E 3–11

The so-called "1–1" sequence is:

$$90^{\circ}(x) - \text{delay } \tau - 90^{\circ}(y).$$

Describe the excitation that this sequence produces as a function of offset. How it could be used for observing spectra in the presence of strong solvent signals?