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What is it?
� PCA allows to explore the relations between multiple variables at 

the same time and to extract the fundamental structure of the data 
cloud;

� Reduces the of data set by finding new set of variables (Factor Axes 
= Principal Components), smaller than the original set of variables, 
that nonetheless retains most of the sample’s information. By 
information I mean the variation present in the sample given by the 
correlations between original variables;

� These Principal Components (PCs) are uncorrelated and are 
ordered by the fraction of the total information each retains. The first 
few may represent some well separated fundamental underlying 
causes;

� Very useful also for screening and classification (using only main 
PC).



Follow the guide butFollow the guide but…… DONDON’’T T 
ask too many question!!ask too many question!!



Basic statistics
� Mean deviation about mean = mean deviation:

� Corrected sum of squares (CSS):

� Sample variance (s2):

I Xi – X I

Σ (Xi – X)2

Σ (Xi – X)2
i=1

n1
n-1

= estimate of the population variance (σ2). n tends to underestimate 
σ2 and n-1 is better. Units are square of sample units.

Units!!



The square root of the variance is in the same unit as the sample 
and is easier to interpret =

• Standard deviation (s): Σ (Xi – X)2
i=1

n1
n-1

X
X

Normal frequency 
distribution

Xi - X

‘standard’ (same unit as 
original measurement) 

measure of the 
dispersion around the 

mean



Covariance and correlation between 2 variables

Based on the corrected sum of products (CSP) Σ (Xi - X) (Yi - Y)
i = 1

i = n

Value is fct of sample size so better to standardize:

Covariance XY = 
CSP
n - 1

N tends to underestimate the population value of cov 
because we know only sample mean. With n-1 the 

sample mean is closer to the population mean.

Still fct of the units of the variables: cov between L and W of a brachiopod will give a 
higher value if L and W are measured in mm than in cm. This effect is removed by 

standardization with s.

(Xi - X) (Yi - Y)
i = 1

i = n

Σ sx sy n - 1
1Pearson’s 

coefficient of      = 
correlation

=  covXY / sxsy  =  r

!NB: Covxx = varx



Pearson’s product-moment correlation coefficient, or just coefficient of 
correlation, is a dimensionless measure of correlation. It ranges between -1 
(straight line, negative slope) to +1 (straight line, positive slope), both 

extremes being complete correlation. VERY sensitive to outliers! Significance 
is fct of sample size and can be estimated by statistical tests.

+ + = +

- - = +

- + = -

+ - = -

CSP has a value related to 
the distribution of points 
among quadrants around 

means. Here points mainly in 
Q1 and Q3 so CSP will be 
large and +. If Q2 and Q4 
large -. If evenly distributed 
in 4 Q values will cancel out 

and CSP close to 0.



The magnitude of the standard deviation is, however, related to the
magnitude of the measurements so it is difficult to assess it meaning
by itself. 
Regardless of the magnitude and of the shape of the distribution
however:

� 75% at least of the observations will lie within 2s from the mean and 
88.89% within 3s;

� These values rise to 95.46% and 99.73% respectively if the     
observations follow a normal distribution.

The standard deviation is used to standardize the data prior to anlysis
in some cases (see later).



Concept
The data in A. are clearly correlated to some degree and therefore the 

three variables (axes) are redundant.
The reference axes can be rotated so that axis 1 now explains most of the 

variance. We could then use axis 1 (new variable) only to describe our 
data and think of an interpretation for the elongation of the data scatter 

along it = reduction of dimensionality.
Axis 1A. B.



Axis z1, the new variable is Principal Component 1 and is just a linear 
combinations of the original variables x1, x2, x3. The coordinates of our 

data points along the new axis can be found by projection.

Axis z1 (PC1)
mean

The second axis explains most of the variance which is not accounted for by 
PC1 (we want that!), it is therefore perpendicular to PC1 and PC1 (Z1) and 

PC2 (Z2) are independent, uncorrelated.

z1z2

x1 x2

x3



Z1Z2

= coordinates of original data 
points along new axes (Principal 

Components)
They are called PC scores and are 
the new data. The results of a PCA 
are often displayed as scatter plots 
of the scores along the main PC’s.

X1

X2

score Z1 ~ a1TX = a11X1 + a21X2
Z2 ~ a2TX = a12X1 + a22X2

T is for transposed (row vector)
In the generalized forms we have p 

variables X1, X2 … Xp

The vector a1 = (a11, a21, …, ap1)
Is chosen such that var (Z1) is 

maximum



Keeping the Zk uncorrelated means that cov (Zk, Zk+1) = 0    k = 1 to p

And maximizing the variance of each Z could be done by increasing the values 
of the ak so another condition is that a1k2 + a2k2 + … + apk2 = 1

Now, it can be shown (don’t ask!) that…

The trick is to maximize the variance of each Principal Component and to 
keep them uncorrelated !

Covariance matrix of 
the original variables 

X1 to Xp

There are as many PC’s as there are original variables (Xp) and their total 
variances are the same. Most of the variance is however hopefully concentrated 

in the first few PC’s.

x



In a general way then:     Z = AX

appap

paa

...1
.........
1...11A is a matrix: Vector a1T with weights a11…a1p

And because the Principal Components (Zp) are uncorrelated (by definition) the 
covariance matrix of the Zp =

)var(...00
............
0...)2var(0
0...0)1var(

Zp

Z
Z

=   A Sx AT

In linear algebra the rows of A (colums AT) are the eigenvectors (= sets of 
loadings = PC) of the matrix Sx and the elements in the leading diagonal of 

Sz are its corresponding eigenvalues. So the eigenvalues represent the 
amount of variance explained by each eigenvector (PC).

SZ =



This is resolved by iterations to find the ap (=loadings or weights) that 
maximize the variance of each new variable (Zp = Principal 
Component). It is heavy computation as soon as p becomes greater
than 3 and it requires a computer. The results of an analysis are of this 
type: 

4 variables (same units), 82 samples

~3/4 of the remaining variance

SIZE

CASE 1: vertebrate biometry



CASE 2: soil geochemistry

9 variables, 74 samples

Soils overlying dolomitised lmst and basalt with
mineralized veins. Only first 6 PC’s shown. PC1 = 
dilution by a major (SiO2, organic matter)? Mg 
neutral, both in dolom and basalts + veins? PC2 Ag
and Cu + Zn, Cd and Mg?? PC3 Mg, Sr and Ca likely
host carbonate signature.

CASE 3: foraminifer biometry

9 variables, 91 samples

Measurements of the foraminifer Afrabolivina at
various depths in 2 Fms (Cretaceous). Only 6 
first PC’s shown. PC1 = size, higher + scores = 

smaller size. PC2 shape factor? Foramen 
variables somewhat independent of rest.



CASE 4: foraminifer biometry

Data not standardized for size, no screening Data all divided by D, only uncorrelated variables

Parametres measured (9)
PC1 80.6% (eigenvalue 46.4) 
PC2 and PC3 respectively 

11.9% and 3.2% 
(eigenvalues 6.9 and 1.8).

PC1 (61.8% of total variance) and 
PC2 and PC3 (respectively 22.2 and 

9% of variance)



Procedure
1) Look at the correlation matrix and scatter plots of your data before 

considering PCA, if there is no correlation at all there is no point going 
further along this path;

2) Consider dropping some data if isolated outliers; 
3) Standardize the data if necessary (see next slide);
4) Calculate standard statistic values and a variance-covariance or 

correlation matrix depending on the variables. Same units and magnitude 
important in their relations > covariance [trace variances], different units 
(no sense to do direct comparison between mm and ml…) or magnitude 
not to take into consideration for their relations > correlation [trace 1];

5) Perform the eigenvectors/eigenvalues iterative computation;
6) Plot scatters of the main PC’s, check the loadings and scree plot; decide 

how many PC’s are useful.



How many PC’s?
1) If a new PC does not affect the the proportion of the total variance 

significantly > scree plot. Tendency to take too much;
2) Enough PC’s should be included to explain >= 90% of the total variance. 

Tendency to take too few;
3) PC omitted if its variance < average of all PC’s or less than 1 when the

correlation matrix is used;
4) Joliffe (1986) cut-off value for eigenvalues;
5) Approximate equality of the last k eigenvalues (variances), none contains

more information than any other, the important part of the data variance is
therefore in the p-k PC’s.



Standardization
The standard deviation can be used to scale the original measurements, 
expressing both distributions in terms of a common standard-deviation 
scale and not their original non-comparable units (mm, ml…). 
Substracting the mean from every possible value and dividing by the 
standard deviation shifts the mean to 0 and scales the spread to give a 
standard deviation of 1.

X – XZ = s



Closed data

Ex. If the absolute amount of a major constituent (SiO2) is divided by two while
keeping absolute amounts of all other constituants constant, then the % or ppm
of all other constituents will inevitably increase. Any pair of minor constituents will
tend to appear positively correlated.

Solutions?
1) Any ratio between 2 variables is in principle open (x/SiO2) but not ideal because 

the ratio will vary with variation in the denominator (if major, see above) > chose 
an independent variable? Circularity or reasoning…;

2) X’ = ln (X/Y) where Y is a component used as denominator for all variables 
produces open data (Aitchison, 1984, 1986). Changes the original data so
interpretation less straightforward but the best deal!

Closed data are extremely common in geology (petrology, 
geochemistry,microfacies, palaeoecology etc. > %, ppm). The problem is
that, regardless of the underlying geological process, the value of one
variable will automatically tend to affect the values of the other variable. 
Even worse in PCA because closure effect not linear, does not all come

out in PC1…



In PAST 1.33
� The PCA routine finds the eigenvalues and eigenvectors of the variance-covariance matrix or the correlation matrix:

- In the second option all variables are normalized by 
division by their standard deviations;

- Eigenvalues are given along with percentages of variance 
accounted for by the corresponding PC;

- Scatter plots of the PC’s, biplots (samples, variables) and 
scree plots (eigenvalues) are given as well as loadings 
plot;

- Another algorithm, supposedly superior to the ‘classical’
one is available (Singular Value Decomposition – SVD) but 
gives very similar results except that it centers on 0.



How good is PCA? VERY good but…
� Not adapted for non-metric data types (presence-

absence, ranked data);

� Strictly speaking not a statistical technique as the results
can’t be tested by objective statistical tests, like cluster 
analysis it is judged on the results;

� Lack of objective criteria to select the number of
Principal Components to consider;

� Problem of closed data (%, ppm) and induced
correlations;
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