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What is it?
� CA (= reciprocal averaging of Hill, 1973) is a 

‘form’ of PCA which uses a different 
association coefficient (X2);

� Like PCA, eigenvector ordination method to 
reduce the dimensionality of a multivariate 
data set;

� Unlike PCA however data can be qualitative, 
semi-quantitative and quantitative data = 
VERY useful in microfacies analysis;

� Data need to be dimensionally homogeneous 
(same units) and > or = 0 !



Remember…
In PCA eigenvectors and their eigenvalues are calculated on the 
covariance/correlation matrix = association matrix summarizing relationships 
between the variables (components).
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Eigenvectors give the dimensions of strongest correlation in the data set (PC’s) 
and because the covariance/correlation matrix is square and symmetric, they 
are perpendicular (= linearly independent) to each other and explain each a 
fraction of the total variance.
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Association coefficients !

In PCA the use of the covariance or the correlation coefficient r has strong 
implications:
1) 2 samples with absence of a component will be considered as similar 

= the zero’s problem, is that ok for us?
2) Make no sense for presence/absence or semi-quantitative data 

(ranks);
3) Work only to characterize LINEAR relationships between variables! 

Components always found together but whose abundances are not in linear 
relationship would not be considered as an association by these coefficients…

The choice of the association coefficient is critical because all 
subsequent analysis is done on the resulting association matrix!

In our case these are all major problems.



Microfacies versus Relays:
� Sedimentary environments can be relatively well partitioned (1) or on the contrary grade progressively into each other (2).
� In the first case a microfacies (cluster analysis) approach is appropriate, in the second it will be rather artificial and a crude representation of the reality.

A progressive gradient (whatever it’s nature) 
typically induces a systematic shift of the 

relative importance of the various 
components (or species). Such a systematic 
and progressive change is called a relay. CA 
offers a powerful tool for gradient analysis

(used extensively in ecology).



Modern flat-topped platform: 
Bahamas - Andros1



Modern carbonate ramp: 
Southern coast of the Persian 

Gulf

2



Why is CA adapted ?
Because it uses a different coefficient of association (X2) and because it 

works on contingency tables.

The X2 distance compares the conditional probabilities between 
rows (or columns) of the original frequency matrix (contingency 

table).

n rows (i) = samples
m columns (j) = components

Yij = count (absolute 
frequency) of component j in 

sample i (can be 0-1 or 
rankings)



Let’s say we start by comparing rows (samples) in fct of their variables. First we 
calculate conditional probabilities (= relative frequencies) by rows:

Yij/Y+i = probability that sample i contains 
component j knowing that sample i contains 

Y+i components = marginal probability

The distance between the two first rows in fct of the variables 
(components) is calculated by:

2

Sum of frequencies 
for each column

p1j p2j

X2 metric



1/Y+j makes sure that distance does not increase for larger frequencies. 

Operation is repeated for all rows and then for all columns. Two matrix 
are produced with the X2 values, m x m between components and one n x 
n between samples. Eigenvectors/-values give the Principal Axes (PC’s) 

and the contribution of each in R-mode (components) and Q-mode 
(samples).

Sum of all X2 in each matrix = the total inertia. NOT variance because 
data are normally not continuous (0/1, ranks), but equivalent concept 

of spread of the data cloud. Each eigenvalue therefore gives the 
contribution of its associated eigenvector (Principal Axis) to the total 

inertia.

Both matrix are square and symmetric!



Because of Y+j/Y++ relationships between rows and columns in the 
original frequency matrix (contingency table) are preserved > modes 
Q and R are equivalent. Allows to compare directly components and 

samples in the new reduced space.

Note also that if both Y1j and Y2j are 0 it does not increase or decrease the 
X2 distance, the pair is neutral, it is not taken into account in the distance 

between rows 1 and 2!

Example?
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The component which is absent from the first two samples, cancels itself out; 
thus χ2 metric deals with double-zeros.

Note however that if a component j is rare its column sum Y+j is small and this 
species contributes a great deal to the X2 … CA is therefore strongly influenced 

by rare components (variables).



Method
1) The data are put in the form of a contingency table with frequencies 

(counts ij) = matrix Y;
2) Absolute frequencies are transformed in relative frequencies (= 

probabilities);
3) ‘X2 distances’ are calculated for each pair of columns (R-mode) and 

rows (Q-mode), this produce two new square matrix m x m and n x 
n;

4) Eigenvectors and eigenvalues are calculated for these matrix in 
order to find the orthogonal directions of maximum inertia 
(~’variance’) in the new data cloud;

5) The sum of the eigenvalues = total inertia and each eigenvector 
(Factor Axis or Principal Axis) has its associated eigenvalue which 
gives its contribution to the total inertia.



Example 1

m x m

m

n

Total inertia = sum of 
eignevalues = 0.7938

So all factors explain 79.38% of the 
variance of the original contingency 

table and…

Factor 1 explains 0.4262/0.7938 = 
53.7% of the inertia of the X2 matrix, 
NOT of the original contingency table!



Interpretation

Loadings PC1/2 scatter 
plot



Arch effect
Occurs when, although not LINEARLY 
correlated, factor axes are all linked with a 
power function of the first factor. Uni-
dimensional phenomenon controls most of 
the structure of the data set.

In a long ecological or 
sedimentological gradient there is 

usually a succession of 
components (species) with more 

or less unimodal distributions 
(reflecting optimal range of 

conditions). So if samples are 
compared on the basis of the 

presence/absence or abundance 
of these species/components the 

distance relationship is 
necessarily non linear.



Ordination axes (PC’s) try to maximally separate the 
species/components while remaining uncorrelated with one another. 
If PC1 is enough to order the samples and species/components, an
independent PC2 (no meaning) can only be obtained by folding the

first axis in the middle and bringing the ends together.

Ordination methods aim at 
rendering this non-linear 

relationships in an 
Euclidian space and two-

dimensions plots.



In PCA this effect is especially strong because distance coefficient used 
considers extreme samples on both end of the gradient with increasing 
number of non-overlapping components (increasing number of double-

zeros in the matrix) as increasingly similar (shorter distance). This 
results in an inwards folding along PC1. 

In CA samples at both ends of the gradient which have no 
components in common have a similarity 0 (maximum distance) and 

are at both ends of the arch in a scatter plot PC1/2. There is no 
closing effect.



The arch effect can therefore be used:
1) to detect environmental gradients and 
2) to characterize them. 

• Because there is no inwards folding in 
CA, the coordinates of the variables and 
samples on PC1 can be used to display 
how variables behave along the 
gradients and where samples are 
located on it = Relay Index (RI).
• The RI can be further used to plot the 
position of the samples in the gradient 
sratigraphically. 
•This can reveal a very powerful method 
in carbonate sedimentology.



Example 2



The data… do you see something?



Relay and 
interpretation



Relation between Relay Index and
Microfacies

Samplesin CA
Microfacies



Example 3
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Detrended CA species

samples

� Detrending aims at 
supressing the arch effect 
and spreading the data 
points along PC1. 
� Two main methods:
-Segments
-Polynomials
� Segments do NOT 
preserve distances between 
points (arbitrary divisions). 
Polynomials don’t solve the 
terminal gradient 
compression.
BOTH are very dodgy and 

better avoided!



PCA

CA

DCA

Comparison of ‘relay 
management’ between the 
main ordination methods on 

an artificial data set

And the winner is…
CA



In PAST 1.33
� The PCA routine finds the eigenvalues and eigenvectors of the matrix containing the X2 distances between all data points:

- Scatter plot of samples (rows) in the CA coordinate system 
(main factor axes 1-3);

- Variables can be plotted also in the same coordinate 
system;

- A ‘Relay plot’ is also available with CA first PC as the 
vertical axis and the original data point value (abundances) 
on the horizontal axis (samples in rows, variables in 
columns). It shows the variables ordered along a potential 
gradient;

- Detrended CA is also performed by PAST in two steps: 
straightening and spreading.



In AnalLog 1.82 
Visual Basic program for the analysis of petrographical data developped by 
A. Lees (formerly at Catholic University of Louvain – UCL, Belgium, now 

retired but still active in carbonate sedimentology). Freeware available upon 
request (alanlees@gofree.indigo.ie).

Does CA (based on a routine published by T. Foucart, 1982) but serves also 
as customisable petrographical database and draws petrographical logs. 

Developped by carbonate sedimentologists for carbonate 
sedimentologists… ☺ Only problem is export of graphics.

The CA routine offers:
-Scatter plots of samples and components on the same scale;
- Plots of the components along the relay;
- Stratigraphical plot of the relay index;
- Various plotting options (log, moving average etc.).



Final words
� CA is very powerful and largelly under-used in sedimentology and

palaeoecology;

� Ordination (PCA-CA) can (should?) be combined with cluster 
analysis, not especially antagonistic: 

- Cluster analysis looks at pairwise distances among samples = 
fine relationships,
- Ordination (CA, PCA) considers the variability of the whole
association matrix and thus brings out general gradients;

� Methods exist to superimpose the two approaches;
� Problem of extreme values in CA because of the X2. Very sensitive 

to rare species/components which tend to be located at the
extremes in the ordination plot.
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- http://149.170.199.144/multivar/intro.htm
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