


What is it?

® CA (= reciprocal averaging of Hill, 1973) is a
‘form’ of PCA which uses a different
association coefficient (X?);

® |ike PCA, eigenvector ordination method to
reduce the dimensionality of a multivariate
data set;

® Unlike PCA however data can be qualitative,
semi-quantitative and quantitative data =
VERY useful in microfacies analysis;

® Data need to be dimensionally homogeneous
(same units) and >or=0!




Remember...

In PCA eigenvectors and their eigenvalues are calculated on the
covariance/correlation matrix = association matrix summarizing relationships

between the variables (components).

Gz —— X (X - X) (Y:-Y)
n-1 i=1

\f_> variances

Eigenvectors give the dimensions of strongest correlation in the data set (PC’s)
and because the covariance/correlation matrix is square and symmetric, they
are perpendicular (= linearly independent) to each other and explain each a

fraction of the total variance.




Association coefficients !

The choice of the association coefficient is critical because all
subsequent analysis is done on the resulting association matrix!

In PCA the use of the covariance or the correlation coefficient r has strong
implications:

1) 2 samples with absence of a component will be considered as similar
= the zero’s problem, is that ok for us?

2) Make no sense for presence/absence or semi-quantitative data
(ranks);

3) Work only to characterize LINEAR relationships between variables!
Components always found together but whose abundances are not in linear
relationship would not be considered as an association by these coefficients...

In our case these are all major problems.




Microfacies versus Relays:

® Sedimentary environments can be relatively well partitioned (1) or on the
contrary grade progressively into each other (2).

® |n the first case a microfacies (cluster analysis) approach is appropriate, in
the second it will be rather artificial and a crude representation of the reality.

A progressive gradient (whatever it's nature) grain types

typically induces a systematic shift of the |

relative importance of the various |

components (or species). Such a systematic

and progressive change is called a relay. CA

offers a powerful tool for gradient analysis
(used extensively in ecology).

| >
environmental gradient
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Why is CA adapted ?

Because it uses a different coefficient of association (X?) and because it
works on contingency tables.

The X? distance compares the conditional probabilities between
rows (or columns) of the original frequency matrix (contingency

table).
)= Glohws n rows (i) = samples
X')' e e Yﬂn m columns (j) = components
Y = ".J R "‘."' 4 = Raws Yij = count (absolute
: )'ij . frequency) of component j in
7.,,' - -.-)l,,,., sample i (can be 0-1 or

rankings)




Let's say we start by comparing rows (samples) in fct of their variables. First we
calculate conditional probabilities (= relative frequencies) by rows:

)%
y X‘) Yij/Y+i = probability that sample i contains
), . component j knowing that sample i contains
74 ) -
Y+i components = marginal probability

The distance between the two first rows in fct of the variables
(components) is calculated by:

TrmEE

2 metric o . 3 1 )"'J.-),"J‘OZ
X2 met D (4a, l)' ’é‘ 7,5(7*1 yfz)

Sum of frequencies /

P1] P2
for each column




1/Y+j makes sure that distance does not increase for larger frequencies.

Operation is repeated for all rows and then for all columns. Two matrix
are produced with the X2 values, m x m between components and one n x
n between samples. Eigenvectors/-values give the Principal Axes (PC’s)

and the contribution of each in R-mode (components) and Q-mode
(samples).

Both matrix are square and symmetric!

Sum of all X? in each matrix = the total inertia. NOT variance because
data are normally not continuous (0/1, ranks), but equivalent concept
of spread of the data cloud. Each eigenvalue therefore gives the
contribution of its associated eigenvector (Principal Axis) to the total
inertia.




Because of Y+j/Y++ relationships between rows and columns in the
original frequency matrix (contingency table) are preserved > modes
Q and R are equivalent. Allows to compare directly components and

samples in the new reduced space.

Note also that if both Y1j and Y2j are 0 it does not increase or decrease the
X2 distance, the pair is neutral, it is not taken into account in the distance
between rows 1 and 2!

Example? ] _[y o]
45 10 15 0 10|80
Y = (25 8 10 0 3|46

7 15 20 14 12|68
[v.,,1 [77 33 45 14 25] 194

0.563 0.125 0.188 0.000 0.125
— |y, /¥, ] =0543 0174 0217 0.000 0.065
0.103 0221 0294 0206 0.176
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1 (2 Yoy

Dis (x,,X,) = Z [ - _ij
j=1y+j

(0.563-0.543)°  (0.125-0.174)"  (0.188-0.217)° ] 2
77 33 45
Dis (). %,) = (00" (0.125-0.065)"
| 14 25 |

=0.015

The component which is absent from the first two samples, cancels itself out;
thus y? metric deals with double-zeros.

Note however that if a component jis rare its column sum Y+ is small and this
species contributes a great deal to the X? ... CA is therefore strongly influenced
by rare components (variables).




& Method

1) The data are put in the form of a contingency table with frequencies
(counts ij) = matrix Y;

2) Absolute frequencies are transformed in relative frequencies (=
probabilities);

3) ‘X? distances’ are calculated for each pair of columns (R-mode) and
rows (Q-mode), this produce two new square matrix m x m and n x
n;

4) Eigenvectors and eigenvalues are calculated for these matrix in
order to find the orthogonal directions of maximum inertia
(~'variance’) in the new data cloud;

5) The sum of the eigenvalues = total inertia and each eigenvector
(Factor Axis or Principal Axis) has its associated eigenvalue which
gives its contribution to the total inertia.




TABLE 6.37 Counts of Conodont Tests Recovered from 10-kg Samples of Rock; Columns are Conodont Varieties; Rows are Strati-
graphic Units that are Members in a Section of Missourian Age in Eastern Kansas; Megacyclothem Classifications are Outside Shale

Exa I I I p I e 1 (0), Shoal Limestone (S), Upper Limestone (U), Middle Limestone (M), “Phantom Black Shale” (P), Black Shale (B) :

Counts of Conodonts

m
Idiognathodus
N Class Rock Unit Adetognathus ~ Ozarkodina  Aethotaxis delicatus I elegantulus ~ Magnilaterella  Hindeodella  Idioprioniodus ~ Gondolella  Others ~ TOTAL
A B C D E F G H | J
1. M South Bend Ls. 13 10 0 0 37 (o] 0 0 0 0 60
2. O Rock Lake Sh. 0 0 0 0 11 0 0 0 0 0 11
3 U Stoner Ls. 4 2 1 51 26 1 0 0 0 0 85
4. B Eudora Sh. 0 4 1 207 350 0 0 34 14 3 606
5 M Captain Creek Ls. 8 28 6 0 60 0 0 0 0 0 102
6. O Vilas Sh. 145 20 5 0 10 0 0 0 0 0 180
7. U Spring Hill Ls. 5 134 8 0 353 1 0 4 0 0 505
8 4P Hickory Creek Ls. 20 60 0 0 920 0 0 0 0 0 100
n 9, M Merriam Ls. 115 255 10 0 1140 0 0 0 0 0 1520
10. S Bonner Springs Sh. 1 0 0 0 3 0 0 0 0 0 4
M 8 Farley Ls. 31 21 7 0 4 1 0 0 0 0 61
12 — Island Creek Sh. 100 5 0 0 5 0 0 0 0 0 110
13. U Argentine Ls. 0 39 1 0 80 0 1 0 0 0 121
14. P Quindaro Sh. 10 70 0 0 538 0 0 5 0 0 623
15. M Frisbee Ls. 3 78 5 ) 0 450 0 0 3 0 0 539
T i . 16. O  LaneSh. 0 0 0 0 28 0 0 0 0 0 28
- 17. U Raytown Ls. 38 20 3 100 267 3 0 25 0 0 456
Ota Inertla Sum Of 18. B Muncie Creek Sh. 15 8 0 243 515 o] 10 85 55 13 946
i = 19. M Paola Ls. 10 130 10 200 900 0 0 50 0 0 1300
elgnevalues 07938 2. O Chanute Sh. 117 20 0 63 57 0 0 7 0 0 264
TOTAL 258 389 31 367 1928 4 5 82 32 7 3104
TABLE 6.38 x? Similarity Matrix, Eigenvalues, and First Two Eigenvectors Calculated for Conodont Abundance Data; Also Given are
R- and Q-Mode Correspondence Factor Loadings for First Two Factors
X2 SIMILARITY MATRIX el 3
75T —
A B (¢} D E F G H I J i S
mxm A .3843 .0037 .0257 -.0273 -.1136 ° .0056 -.0079 —.0239 —.0204 ~.0098
B .0037 .0568 0196 —.0645 .0088 .0015 -.0076 -.0292 —.0268 -.0129
c .0257 0196 0216 -.0119 -.0117 .0063 -.0026 —.0066 -.0070 —.0034
D -.0273 —.0645 -.0119 .1655 —.0477 .0090 .0150 .0620 .0486 .0233
E -.1136 .0088 -.0117 -.0477 .0592 -.0066 —.0052 -.0159 —.0136 —.0066 .
F .0056 .0015 .0063 0090  —.0066 0075 —.0010 0006  —.0024  —.0011 So all factors explain 79.38% of the
G  -.0079 -.0076 -.0026 0150 —.0052 -.0010 .0091 0129 0179 .0088 . .. .
H -0289 -.0292  -.0066 0620  —.0159 0006 0129 0365 0330 0160 variance of the original contingency
I —.0204 —.0268 -.0070 0486 -.0136 —.0024 0179 .0330 .0430 0210
J ~.0098 -.0129 —.0034 0233 —.0066 —.0011 .0088 .0160 0210 0102 table and...
Total Total Similarity
Vector Eigenvalue Similarity (%) (Cumulative %)
1 4262 53.7003 53.7003
2 2634 33.1837 86.8841 . -
3 ‘0468 bl o8 7776 Factor 1 explains 0.4262/0.7938 =
] 4.8532 7.6308 ; ; :
- - - s 53.7% of the inertia of the X? matrix,
6 .0044 5488 99.4487 iai i |
z fie yinic o _ NOT of the original contingency table!
8 .0008 .0988 99.9997
9 .0000 .0003 100.0000
10 .0000 .0000 100.0000




Loadings

Correspondence Axis Loadings

R Mode Q Mode
Conodont | Il Unit - | 1]

A 2.2655 1229 1 .5628 —.3344
B 0715 - —.5492 2 -.3362 —.3372
C .6038 —.4064 3 —.0968 1.3119
D —.1938 1.2193 4 —.3338 .7964
E —-.2195 -.1730 5 .1589 -.5199
.5546 6 2.8147 .0333

G —.4512 1.4456 7 —.1593 -.5114
H -.3037 1.0531 8 —.2333 —.3696
I —.4768 1.6680 9 .0349 —.4195
J . —.4761 1.6703 10 .6154 —.1930
11 1.8068 -.3260

12 3.1445 1537

13 —.1850 —-.5511

14 —.2260 —-.3911

15 —.2395 —.4309

16 —-.3362 -.3372

17 .0168 4110

18 —.3055 8712

19 —-.2515 .0998

20 1.3905 5737
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Arch effect

Occurs when, although not LINEARLY
correlated, factor axes are all linked with a
power function of the first factor. Uni-
dimensional phenomenon controls most of
the structure of the data set.

Axis 2

T2

I'._.

In a long ecological or
sedimentological gradient there is
usually a succession of
components (species) with more
or less unimodal distributions
(reflecting optimal range of
conditions). So if samples are
compared on the basis of the
presence/absence or abundance
of these species/components the
distance relationship is
necessarily non linear.




| =
1 S Ordination methods aim at
ll i L . . .
I i , rendering this non-linear
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Ordination axes (PC’s) try to maximally separate the
species/components while remaining uncorrelated with one another.
If PC1 is enough to order the samples and species/components, an
independent PC2 (no meaning) can only be obtained by folding the

first axis in the middle and bringing the ends together.




In PCA this effect is especially strong because distance coefficient used
considers extreme samples on both end of the gradient with increasing
number of non-overlapping components (increasing number of double-
zeros in the matrix) as increasingly similar (shorter distance). This
results in an inwards folding along PC1.

s
r
I

1 PCA or PCoA 10 | CA or PCoA
(distance = [}) (a) (distance = D)

-,

4.0 -
Z =
e :
o 3 " b =
p: 2.0 = 0.5
s U
0.0 A 0.0 - ik . -
2.0 0.5 - V ’ -
Sp. | | 3 K
p : ¢
4.0 T T e -1.0 e T _]rll_,_!_
-0.0 -4.0 -2.0 0.0 2.0 4.0 6.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 3

PCA axis | CA axis [

In CA samples at both ends of the gradient which have no
components in common have a similarity 0 (maximum distance) and
are at both ends of the arch in a scatter plot PC1/2. There is no
closing effect.




The arch effect can therefore be used:

1) to detect environmental gradients and

2) to characterize them.

« Because there is no inwards folding in
CA, the coordinates of the variables and
samples on PC1 can be used to display
how variables behave along the
gradients and where samples are
located on it = Relay Index (RI).

* The Rl can be further used to plot the
position of the samples in the gradient
sratigraphically.

*This can reveal a very powerful method
In carbonate sedimentology.
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The data...
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Detrended CA

» Detrending aims at
supressing the arch effect
and spreading the data ; ;

points along PCA1. B samples "%

CA Axis 2
RO
: @

> Two main methods: ?

-Segments 20 CA Axis | +80

-Polynomials -

-3.0

+2.0

> Segments do NOT 2
preserve distances between 5
points (arbitrary divisions).

Polynomials don’t solve the :
terminal gradient R S 0 O 0 4
compression. S

DCA Axis 2
w0
@

+0.0
(6]
~

BOTH are very dodgy and :
-0.5 +4.0

better avoided! DCA Axis 1
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In PAST 1.33

® The PCA routine finds the eigenvalues and eigenvectors
of the matrix containing the X2 distances between all
data points:

Scatter plot of samples (rows) in the CA coordinate system
(main factor axes 1-3);

Variables can be plotted also in the same coordinate
system;

A ‘Relay plot’ is also available with CA first PC as the
vertical axis and the original data point value (abundances)
on the horizontal axis (samples in rows, variables in
columns). It shows the variables ordered along a potential
gradient;

Detrended CA is also performed by PAST in two steps:
straightening and spreading.




AnalLog182

1**+ In AnalLog 1.82

Visual Basic program for the analysis of petrographical data developped by
A. Lees (formerly at Catholic University of Louvain — UCL, Belgium, now
retired but still active in carbonate sedimentology). Freeware available upon
request (alanlees@gofree.indigo.ie).

Does CA (based on a routine published by T. Foucart, 1982) but serves also
as customisable petrographical database and draws petrographical logs.
Developped by carbonate sedimentologists for carbonate
sedimentologists... © Only problem is export of graphics.

The CA routine offers:

-Scatter plots of samples and components on the same scale;
- Plots of the components along the relay;

- Stratigraphical plot of the relay index;

- Various plotting options (log, moving average etc.).




Final words

CA is very powerful and largelly under-used in sedimentology and
palaeoecology;

Ordination (PCA-CA) can (should?) be combined with cluster
analysis, not especially antagonistic:

- Cluster analysis looks at pairwise distances among samples =
fine relationships,

- Ordination (CA, PCA) considers the variability of the whole
association matrix and thus brings out general gradients;

Methods exist to superimpose the two approaches;

Problem of extreme values in CA because of the X2. Very sensitive
to rare species/components which tend to be located at the
extremes in the ordination plot.
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® PAST: nttp://folk.uio.no/ohammer/past/

® AnallLog: contact A. Lees at alanlees@gofree.indigo.ie

® (very) Good websites:

- http://ordination.okstate.edu/

- http://www.plantbio.ohiou.edu/epb/instruct/multivariate/multivariate.htm
- http://www.okstate.edu/artsci/botany/ordinate/software.htm#method

- http://149.170.199.144/multivar/intro.htm

The bible...:
Legendre, P. & Legendre, L. 1998. Numerical Ecology. Elsevier.




