Impact of the introduction of the ant *Pheidole megacephala* on native invertebrates in a Australian rain forest

Fig. 3 Mean (+ SE) of non-ant invertebrate abundance and ordinal richness within rain forest as found by 10 foliage beats and 10 litter samples at infested (II-3) and uninfested plots (UI-3)

Fig. 1 Mean (+ SE) *Pheidole megacephala* abundance and native ant abundance and richness per sample within the rain forest as found by 20 pitfall traps, 10 foliage beats and 10 litter samples at infested (*I1-3*) and uninfested plots (*U1-3*)

The invasive ant *Linepithema* (= *Iridiomyrmex*) *humile* in northern California (USA)

Results of fixed-distance ant-baiting experiment: bait in 1 m distance from nest entrance; * - significant difference of *L. humile* to native ant species.

The effect of the soil-dwelling ant *Lasius flavus* on soil properties and below-ground plant biomass in Slovakian grasslands

Fig. 1. (A) Bulk density, (B) carbon concentration, and (C) available phosphorus concentration (means \pm SD) in mounds (black bars) and control plots (gray bars) sampled at three and four depths, respectively.

Fig. 2. (A) Root biomass, (B), internode length, and (C) internode diameter (means ± SD) in ant mounds (black bars) and control plots (gray bars) sampled at four and two depths, respectively.

Sampling of soil animals

Large soil corer (macrofauna)

Small soil corer (mesofauna)

Fig. 28. Soil corers. a and b. The O'Connor split corer: a. showing compartments (after O'Connor, 1957); b. assembled. c. Soil corer with sample tubes (after Dhillon & Gibson, 1962). d. Soil corer for the canister extractor (after Macfadyen, 1961).

Sampling of soil animals

Electro-octet method for the extraction of earthworms in the field

Sampling of soil animals

Ground photoeclectors (emergence traps)

Fig. 1a—c. Ground photo-eclector (emergence trap). a) total view; b) sampling box (light trap) with pipes and upper metal construction; c) pitfall trap (sectional diagram); particulars see text

Funke, W., 1977: Food and energy turnover of leaf-eating insects and their influence on primary production. In: Ellenberg, H. (ed.) Integrated Experimental Ecology

Extraction of soil (litter) samples (dry / wet)

- Macrofauna
- Microarthropods
- Heating from above possible
- Cooling from below possible

Baermann Funnel

- Wet Funnel Extraction (not necessarily with heating from above, cooling from below possible)
- Nematoda (Beamann)
- Enchytraeidae (O'Connor)
- other semiaquatic fauna

Wet extraction of soil (litter) samples

Dry extraction of soil (litter) samples

Fig. 35. Kempson bowl extractor (after Kempson, Lloyd & Ghelardi, 1963).

Dry extraction of soil (litter) samples

Fig. 34. Multiple canister extractor (after Macfayden, 1961): a. canister, core and sieve plate; b. whole apparatus.

Extraction of soil (litter) samples

Extraction apparatus for dry extraction of sample series (Kempson, Macfadyen)

Dry extraction of soil (litter) samples

Fig. 32. A large Berlese funnel with modification.

Extraction of soil (litter) samples: washing of soil through sieves

- Siebschale, WÜ - Wasserüberlauf, WZ - Wasserzulauf.

Extraction of soil (litter) samples: flotation

Fig. 30. a. Soil washing apparatus (modified from Salt & Hollick, 1944). b. Ladell can and associated equipment during the air agitation phase of flotation (diagrammatic).

Litter bag experiments

- course of decomposition and the effect of soil biota

One advanced design of litter bags:

Litter bag experiments

- course of decomposition and the effect of soil biota

Decomposition of nettle leaves in various positions along a pH transect on the slope of a basalt hill: basalt top, middle slope, foot of hill (limestone), in % of initial dry weight; coarsest mesh width Decomposition of various types of nettle litter on the foot of the hill (limestone): leaves, stems, fine roots, coarse roots, in % of initial dry weight; coarsest mesh width

What controles the community / food web structure?

Top-down or bottom-up?

(predation or availability of food resources)

- Litter enrichment experiments (food, habitat structure, moisture)
- Predator exclosure experiments

- Mesocosm experiments, e.g. enriching the soil by food sources as glucose to stimulate microbial growth (respiration)

What exactly is the trophic position of a given organism?

- Food preference experiments (choice)
- Analysis of gut content
- Direct observation
- Labelling of potential food with ¹⁴C (radioactive isotope)

Using stable isotopes (C, N) to estimate trophic position

- ¹⁵N / ¹⁴N ratio (δ ¹⁵N)
- Enrichment in ¹⁵N per trophic level in organisms (on average by 3.4 ‰)
- Range of ¹⁵N / ¹⁴N ratios in given community indicates number of trophic levels
- ¹⁵N / ¹⁴N increases with soil depth (thus species collonizing deeper soil layers might contain higher ¹⁵N concentrations despite belonging to lower trophic level)

Using stable isotopes to estimate trophic position

Trophic position and food resources of the soil animal community in two beech forests (Göttinger Wald – on limestone, mull humus, Solling – on acidic sandstone, raw humus)