Struktura lidského genomu

Historický úvod

Základní poznatky o struktuře lidského genomu (DNA, nukleosomy, chromatinové vlákno)

Metodické přístupy

Chromosomy (stavba, členění, teritoria - CT)

Globální struktura genomu (stavba CT, radiální vs angulární distribuce, pohyblivost molekul a CT)

Jádro buňky (Robert Brown, 1831)

Buňky a jejich jádra jádra

Jádro předává dědičnou informaci (Haeckel 1866)

V jádře je obsažena kyselá látka – nuklein (DNA) (Miescher 1869)

Nukleová kyselina vs protein (Miescher 1874)

Dělení buněk (Walther Flemming, 1882)

<u>Walther Flemming:</u> zkoumal dělení buněk, první pozoroval chromosomy, zavedl pojem mitóza a chromatin

První představy o struktuře genomu

Dlouhou dobu se vědci domnívali, že nukleová kyselina v jádře buňky je rozprostřena náhodně všude se stejnou pravděpodobností.

Pozorování mitotických chromosomů však vedlo již koncem 19. století některé badatele k závěru, že také v interfázi si mohou chromosomy uchovat svou identitu (genetickou a strukturální) (Rabl 1885, Boveri 1888).

<u>Theodor Boveri:</u> dědičnost je vázána na chromosomy (1887), po znovuobjevení Mendlových zákonů Hugo de Vriesem (1900) pokračuje ve výzkumu dědičnosti.

Základní poznatky o struktuře genomu

Primární a sekundární struktura DNA Nukleosom a chromatinové vlákno Chromosomy a genom

Primární a sekundární struktura DNA

Watson a Crick, 1953

Nukleosom

Roger Kornberg, 1974

Chromatinové vlákno

DNA, nukleosomy, chromatin, chromosom a genom

Metodická část

Techniky používané pro studium struktury lidského genomu Buňky a jejich fixace FISH a 3D-FISH In vivo techniky (SRL, GFP) Kombinované značení Konfokální mikroskopie Analýza obrazu

Fluorescenční in situ Hybridizace (FISH)

Chromosomová DNA

G

A

T

C

Τ

A

A

Druhy sond pro FISH

- a) Sondy specifické pro určité geny (sekvence)
- b) Sondy specifické pro repretitivní sekvence v okolí centromer
- c) Sondy specifické pro telomery
- d) "Paintingové" sondy pro celé chromosomy

Chromosomy obarvené FISH technikou

3D-FISH a konfokální mikroskopie

Maximální obraz Všech řezů

Galerie optických řezů

3D reconstrukce CT

Weierich et al., (2003) in press

Značení buněk metodou SRL (scratch replication labeling) užitím nukleotidů konjugovaných s fluorochromem

(SRL on neuroblastoma cells with **Cy3-dUTP** - fixed 30⁻ after labelling)

Schermelleh et a. (2001) Chromosome Res. 9:77-80

Vizualizace vazebných míst proteinu V DNA *in vivo* pomocí GFP

SRL pomocí Cy3-dUTP (červená) a segregace chromosomových teritorií u jader HeLa buněk s histonem H2B konjugovaným s GFP (zelená)

after at least 6 cycles

1st cycle

3rd cycle

Sekvenční vizualizace užitím imunochemických a FISH technik

<u>1.značení (užitím</u> <u>protilátek)</u>

Topoisomeráza alfa

R:000 G:000 B:000 X:34 Y:501

- 🗆 X

Teritorium HSA 17

Cytometrie s vysokým rozlišením (automatizovaná konfokální mikroskopie)

ZEISS A100 + CARV

LEICA + CSU-10a

Software pro snímání obrazu a jeho analýzu

Umožňuje nastavení řady uživatelských parametrů pro snímání (pozice na sklíčku, meandrovité snímání, počet řezů, krok vertikálního posunu, počet a druh fluorochromů, rozsah intenzit apod.)

Analýza se provádí buď manuálně nebo automaticky. Při automatické analýze lze obvykle zadat řadu parametrů pro segmentaci obrazu a 3D analýzu signálů

Automatická analýza obrazu

Automatická analýza obrazu

X

Chromosomy

<u>Úvod - mitotické a interfázní chromosomy</u> Barvení chromosomů (klasika, FISH) Významné elementy chromosomů CT a jejich části jsou disjunktní Subdomény CT Chromosom jako náhodný polymer Nenáhodná vnitřní struktura CT

Klasické barvení chromosomů

Lidské chromosomy obarvené pomocí multicolor FISH

Významné sekvence na chromosomech

Centromery – identifikovatelné jako místa konstrikce, v nichž jsou chromatidy spojeny k sobě, odpovědné za segregaci CT, fixovány na určité místo v CT, mají určitou sekvenci. Tyto sekvence mohou být stejné nebo podobné pro více CT.

Chromosomová teritoria (CT)

První experimenty, které vedly k závěru, že chromosomy se nacházejí v jádře v podobě ohraničených domén, byly pokusy T. Cremera v létech 1982-1984. Zavedení FISH podstatně urychlilo poznání chromosomů jak v mitóze, tak v interfázi.

Funkční uspořádání genomu v jádře

Jadérko

Transkripce

Chromosomy

<u>Úvod - mitotické a interfázní chromosomy</u> Barvení chromosomů (klasika, FISH) Významné elementy chromosomů CT a jejich části jsou disjunktní Subdomény CT Chromosom jako náhodný polymer Nenáhodná vnitřní struktura CT

Struktura CT – CT je tvořeno subdoménami

Verschure et al., 1999 – H2B+GFP a nascentní mRNA (BrUTP) + Cy3 ukazuje, že mRNA se nachází mezi chromatinem vizualizovaným pomoci GFP.

Struktura CT - schéma

Chromosomy

<u>Úvod - mitotické a interfázní chromosomy</u> Barvení chromosomů (klasika, FISH) Významné elementy chromosomů CT a jejich části jsou disjunktní Subdomény CT Chromosom jako náhodný polymer Nenáhodná vnitřní struktura CT

Náhodný (Gausovský) polymer v jádře buňky (jsou zobrazeny 2 body polymeru R a R´)

A random-walk/giant-loop model Interfázního jádra (Sachs et al., 1995)

Multi-loop subcompartment model (Münkel et al., 1999)

Existence disjunktních CT

Existence subdomén uvnitř CT

Schéma modelu

Chromosomy

Úvod - mitotické a interfázní chromosomy Barvení chromosomů (klasika, FISH) Významné elementy chromosomů CT a jejich části jsou disjunktní Subdomény CT Chromosom jako náhodný polymer Nenáhodná vnitřní struktura CT

Použití více DNA prob pro tentýž chromosom

Signály z první hybridizace lze rozlišit v druhé

1st hybridization – 6 probes

2nd hybridization – 3 probes

Cytometrie s vysokým rozlišením – nalezení signálů

Topografické parametry jsou vypočteny pro každý signál – souřadnice x, y, z v těžišťovém systému jádra, intensita, výška, velikost apod.

Polární struktura chromosomových teritorií

<45°

CT 8 in Go-lymphocytes

Go-lymphocytes Stimulated lym

Orientace CT v jádrech buněk

Buněčná jádra rotujeme tak, abychom dostali CT na jednu osu
Vypočte se střední poloha CT na této ose

Transformace CT v jádře buňky

- 3) Těžiště CT posuneme podél osy do jednoho bodu střední polohy
- 4) Vezmeme tenký řez jádrem kolem roviny vedoucí přes střed jádra a střed CT

Orientace CT v jádře buňky

Výše popsaným způsobem dostaneme reálné polohy genetických lokusů vzhledem k CT a také do značné míry vzhledem k jádru. Transformace odstraní fluktuace polohy genetických elementů jež jsou způsobené fluktuacemi CT uvnitř jádra

Struktura chromosomových teritorií

Závěry o nenáhodném uspořádání chromosomových teritorií:

- Úhly trojúhelníku jež vznikne ze tří genetických elementů stejného CT v jádře jsou v mnoha případech menší než 60°, tj. hodnota, kterou lze očekávat pro náhodnou strukturu.
- 2) Orientace jader se zviditelněnými CT a jejich genetickými elementy poskytuje důkaz o orientaci a polaritě CT.

Rozdělení genetických elementů v jádře pro různé typy buněk a různé živočišné druhy (radiální distribuce)

Úhlové distribuce pro geny a CT - interpretace

Vzájemné vzdálenosti genetických elementů – výpočet a porovnání s experimentem

Vazba genetických elementů (CT) mezi sebou

Genom se příliš nehýbe

Polohy chromosomů v jádře se mohou lišit

Chr. 22

Polohy genetických elementů v jádře

Řezy středem jádra z různých jader přeložené přes sebe pro dva geny (c-MYC a ABL)

Vzdálenosti genů od středu jádra

ABL, IGH a C-MYC v buňkách HL-60 a v G_0 lymfocytech

Radiální uspořádání chromosomů v jádře (genově bohaté a časně se replikující oblasti (červeně) a genově chudé a pozdě replikující oblasti (zeleně)

Two color replication labeling of SH-EP N14 cells with Cy3-dUTP and FITC-dUTP

Schermelleh et a. (2001) Chromosome Res. 9:77-80

Uspořádání chromatinu homologního k lidským chromosomům #18 a #19 se u lymfoidních buněk zachovalo v průběhu evoluce vyšších primátů

Tanabe et al. (2002), PNAS 99: 4424-9

Distribuce časně se replikujícího chromatinu microchromosomů a pozdně se replikujícího chromatinu makrochromosomů v interfázi kuřecích buněk a embryonálních fibroblastů a neuronů

Habermann et al. (2001) Chromosome Res. 9:569-84

Rozdělení genetických elementů v jádře pro různé typy buněk a různé živočišné druhy (radiální distribuce)

Úhlové distribuce pro geny a CT - interpretace

Vzájemné vzdálenosti genetických elementů – výpočet a porovnání s experimentem

Vazba genetických elementů (CT) mezi sebou

Genom se příliš nehýbe

Úhlové distribuce

Rozdělení úhlů mezi spojnicemi střed jádra – gen pro homologní dvojice genů. Jeden z genů dvojice leží na ose x, druhý je v ploše obrázku.

Rozdělení úhlů gen-střed-gen

Geny ABL, c-MYC, BCR, centromera C1 v buňkác Go-lymfocytů

Rozdělení genetických elementů v jádře pro různé typy buněk a různé živočišné druhy (radiální distribuce)

Úhlové distribuce pro geny a CT - interpretace

Vzájemné vzdálenosti genetických elementů – výpočet a porovnání s experimentem

Vazba genetických elementů (CT) mezi sebou

Genom se příliš nehýbe

Vzdálenosti mezi homologními a heterologními genetickými elementy

Rozdělení genetických elementů v jádře pro různé typy buněk a různé živočišné druhy (radiální distribuce)

Úhlové distribuce pro geny a CT - interpretace

Vzájemné vzdálenosti genetických elementů – výpočet a porovnání s experimentem

Vazba genetických elementů (CT) mezi sebou

Genom se příliš nehýbe

Polohy dvou genů na chromosomech 9 a 22

Vzdálenosti dvou genů na heterologních chromosomech

Chromosomy 8 a 22

Chromosomy 9 a 22

Typické pro řadu dvojic genů a buněčných typů ABL a BCR geny v Go-lymfocytech

Vazba mezi genetickými lokusy

Vazba mezi geny

Rozdělení genetických elementů v jádře Radiální distribuce, hustota provděpodobnosti Úhlové distribuce pro geny a CT - interpretace Vzájemné vzdálenosti genetických elementů – výpočet a porovnání s experimentem Genom se příliš nehýbe, ke změnám dochází v mitóze

HeLa buňky stabilně exprimující H2B-GFP

Jak se bude chovat nevysvícený chromatin v průběhu cyklu ?

Walter et al. (2003) J. Cell Biol. 160: 685

Rozdělení genetických elementů v jádře Radiální distribuce, hustota provděpodobnosti Úhlové distribuce pro geny a CT - interpretace Vzájemné vzdálenosti genetických elementů – výpočet a porovnání s experimentem Genom se příliš nehýbe, ke změnám dochází v mitóze Změny genomu: diferenciace, reparace, apoptóza, transformace

Globální struktura u nádorových buněk

Změny struktury genomu v průběhu diferenciace (Bártová et al., 2000, 2001, 2002)

HL-60 cells

granulocytes

Změny struktury genomu v průběhu diferenciace (Bártová et al., 2000)

Změny struktury genomu po indukci fúzního proteinu PML/RARa (Falk M. et al., 2003)

protein PML (nuclear bodies)

fusion protein PML/RARα (microspeckles)

Změny struktury genomu indukované zářením

Změny struktury genomu v průběhu apoptózy

Fragmentace CT 11 (zobrazeno CT, centromera a překryv obou obrazů)

Apoptická tělíska a rozpad CT 21

Rozdělení genetických elementů v jádře Radiální distribuce, hustota provděpodobnosti Úhlové distribuce pro geny a CT - interpretace Vzájemné vzdálenosti genetických elementů – výpočet a porovnání s experimentem Genom se příliš nehýbe, ke změnám dochází v mitóze Změny genomu: diferenciace, reparace, apoptóza, transformace

Globální struktura u nádorových buněk

Radiální rozdělení genetických lokusů v buňkách HL-60 a v buňkách střevní tkáně

Spatial distributions of the BCR, ABL and c-MYC genes in HL-60

Spatial distributions of the BCR, ABL, and c-MYC genes in colon cells

Mean values of radial distributions: $45.0\pm2.2\%$ (ABL), $42.3\pm2.6\%$ (BCR), $60.8\pm0.7\%$ (c-MYC), $56.9\pm1.3\%$ (cen1), $61.5\pm1.4\%$ (cen 8) a $65.8\pm1.0\%$ (cen 9). The parameters do not differ significantly for HL-60, HT-29 and colon tissue cells.
Radiální distribuce fúzního genu BCR/ABL

ABL-BCR distances in control and leukemic cells

Spatial distributions of BCR, ABL, and BCR/ABL

Radiální distribuce fúzních genů v buňkách Ewingova sarkomu

Radial 3D distributions of EWS and FLI genes in human lymphocytes Radial 2D distributions of EWS, FLI and both fusion loci in Ewing sarcoma cells

Struktura lidského genomu

Závěry:

- 1) Genetické elementy v jádrech lidských buněčných linií jsou lokalizovány přednostně v radiálních vzdálenostech jež jsou specifické pro daný element; chromosomová teritoria tudíž vykazují radiálně závislou vnitřní strukturu
- 2) Nenáhodné radiální uspořádání je podobné u různých typů buněk a zachovalo se i v průběhu vývoje vyšších primátů a pravděpodobně i v průběhu delší evoluce
- 3) Genetické elementy různých chromosomů jsou lokalizovány nezávisle na sobě, a proto jsou chromosomová teritoria v jádrech buněk lokalizována nezávisle (tj náhodně) jedno na druhém
- 4) Genetické elementy a tím i CT mohou být vázány k sobě; frakce buněk s vázánými elementy se může lišit v závislosti na typu buněk
- Chromatin je v interfázi málo pohyblivý (vazba k matrici?, málo prostoru), CT nemění vzájemné polohy, ty se mohou měnit v mitóze.
- 6) Při diferenciaci", po ozáření při apoptóze a po indukci fúzního proteinu dochází ke změnám struktury.
- 7) V nádorových buňkách je globální struktura podobná avšak v něčem se může lišit.