F6121 Základy fyziky pevných látek – příklady do cvičení

1	1 Drudeho model volných elektronů 1.1 Poissonovo rozdělení	1	L 1					
	1.2Jouleho teplo		1					
2	Sommerfeldův model volných elektronů							
	2.1 Nízkorozměrný elektronový plyn		2					
	2.2 Betheho–Sommerfeldův rozvoj		2					
	2.3 Teplotní závislosti v Sommerfeldově modelu		2					
	2.4 Číselné odhady; 2D plyn volných elektronů		2					
	2.5 Tepelná vodivost		2					
3	3 Krystalová struktura	:	3					
	3.1 Kuprátové roviny		3					
	3.2 Operace symetrie 2D krystalových mřížek		3					
	3.3 Osy rotace v prostorových mřížkách		3					
	3.4 Hustota diamantu		3					
	3.5 Součinitele zaplnění		3					
	3.6 Hexagonální těsně uspořádaná mřížka		3					
	3.7 Dvourozměrné mřížky		4					
	3.8 Reciproké mřížky a 1. Brillouinova zóna kubických mřížek		1					
	3.9 Mezirovinné vzdálenosti a úhly		1					
4	4 RTG difrakce na krystalech	Ę	5					
	4.1 Strukturní faktor, vyhasínání difrakcí		5					
	4.2 Difrakční úhly \ldots		ē					
	4.3 Difrakchi efekty spojene s konecnoù velikosti krystalu	· · · · · · · · · · · · · · · · · · ·	כ ר					
	4.4 RIG diffakce ha $\mathbf{A}_{\mathbf{x}}\mathbf{C}_{60}$		Э					
5	5 Elektron v periodickém potenciálu	(3					
	5.1 Jednorozmerny potencial		о с					
	5.2 Model Kroning–Penney		3 7					
	5.3 Dyourozmerna rermino piocna		1 7					
	5.5 Odbad šířky zakázaného písu – motoda téměř volných elektronů		1 7					
	5.6 Motoda těsné vazby pro s-pás v fec mřížeo		י 7					
	5.0 Metoda tesné vazby pro n -pásy ve čtvercové mřížce		י 7					
	5.7 Metoda teshe vazby pro p pasy ve etvereove infizee		'					
6	6 Kvaziklasická aproximace	8	3					
	6.1 Elektrony v okolí minima pásu	8	3					
	6.2 Oscilace v homogennim elektrostatickém poli	8	3					
7	7 Polovodiče	ę	9					
	7.1 Příměsový stav		9					
	7.2 Statistika nositelů náboje v polovodiči typu N		9					
	7.3 Hallův jev pro dva typy nositelů		9					
	7.4 Intrinsický polovodič		9					
8	8 Kmity mřížky v harmonickém přiblížení	10)					
	8.1 Kmity dvouatomového řetězce		0					
	8.2 Kmity lineární mřížky s dalekodosahovou interakcí		0					
	8.3 Konstantní rychlost zvuku		0					
	8.4 Měkký fononový mód	10	0					
	8.5 Rychlost zvuku v křemíku		J					
	8.6 Tepelna kapacıta jednoduchė 1D a 2D mřížky		1					
	8.7 Hustota stavú akustické tononové větve	11	1					

1 Drudeho model volných elektronů

1.1 Poissonovo rozdělení

V Drudeho modelu je pravděpodobnost, že se elektron srazí za elementární časový úsek dt, rovna dt/ τ .

- 1. Dokažte, že elektron libovolně vybraný v daný časový okamžik se nesrazil v předchozích t sekundách s pravděpodobností $e^{-t/\tau}$.
- 2. Dokažte, že pravděpodobnost toho, že doba mezi dvěma následujícími srážkami je v intervalu (t, t + dt), je $e^{-t/\tau} dt/\tau$.
- 3. Dokažte, že doba od poslední srážky vystředovaná přes všechny elektrony je $\tau.$
- 4. Dokažte, že střední doba mezi dvěma srážkami pro libovolně vybraný elektron je $\tau.$

1.2 Jouleho teplo

Kus kovu se nachází v homogenním elektrostatickém poli E, teplota kovu je konstantní. Vyberme libovolný elektron z elektronového plynu a předpokládejme, že tento elektron vykonal srážku v čase t = 0 a další srážku v čase t.

- 1. Dokažte, že střední energie předaná elektronem při druhé uvažované srážce je $(eEt)^2/2m$.
- 2. Dokažte, že střední energie předaná elektronem při libovolné srážce je $(eE\tau)^2/m$.
- 3. Nechť má kus kovu tvar válce s plochou podstavy S a výškou L a nechť je intenzita elektrického pole E rovnoběžná s výškou válce. Z výsledku části 2 odvoď te vztah pro elektrický odpor válce.
- 4. Najděte tepelný výkon generovaný při průchodu proudu a ověřte, zda v Drudeho modelu platí známý vztah $P=RI^2.$

1.3 Elektrická vodivost kovů

- 1. Vypočtěte hustotu volných elektronů v mědi, je její hustot
a $\rho_{\rm Cu}=8960\,{\rm kg\,m^{-3}}$ a relativní atomová hmotnost 63.5.
- 2. Měděným vodičem s příčným průřezem $0.2 {\rm cm}^2$ prochází proud 1A. Jaká je střední driftová rychlost elektronů?
- 3. Vypočtěte pohyblivost elektronů v sodíku, je–li jeho specifická vodivost $\sigma = 0.23 \cdot 10^8 \,\Omega^{-1} \,\mathrm{m}^{-1}$ a koncentrace nositelů náboje $2.652 \cdot 10^{28} \,\mathrm{m}^{-3}$.
- 4. Specifická elektrická vodivost mědi je $\sigma=6\cdot 10^7\,\Omega^{-1}\,\mathrm{m}^{-1}.$ Určete relaxační dobu elektronu.
- 5. Určete střední volnou dráhu vodivostních elektronů v sodíku. Jeho specifická vodivost je $\sigma=0.23\cdot 10^8~\Omega^{-1}~{\rm m}^{-1}.$

2 Sommerfeldův model volných elektronů

2.1 Nízkorozměrný elektronový plyn

Pro jednorozměrný, dvourozměrný a trojrozměrný plyn volných elektronů najděte:

- 1. souvislost k_F a \mathcal{E}_F a hustoty elektronů n (počet elektronů na jednotku délky, plochy resp. objemu)
- 2. souvislost k_F a veličiny r_s definované jako poloměr koule¹ s objemem rovným objemu připadajícímu v elektronovém plynu na jeden elektron
- 3. energiovou hustotu stavů g(E)

Pozn.: Vzájemnou konzistentnost výsledků je možné ověřit vztahem $\int_0^{\mathcal{E}_F} g(E) \, \mathrm{d} E = n.$

2.2 Betheho-Sommerfeldův rozvoj

Ukažte, že integrál $\int_0^\infty H(E) f_{FD}(E) dE$ je možné aproximovat rozvojem

$$\int_0^\infty H(E) f_{FD}(E) \, \mathrm{d}E = \int_0^\mu H(E) \, \mathrm{d}E + \frac{\pi^2}{6} (k_B T)^2 H'(\mu) + \frac{7\pi^4}{360} (k_B T)^4 H'''(\mu) + \mathcal{O}\left[\left(\frac{k_B T}{\mu}\right)^6\right]$$

2.3 Teplotní závislosti v Sommerfeldově modelu

Pomocí Betheho–Sommerfeldova rozvoje určete teplotní závislost chemického potenciálu $\mu(T)$, střední hodnoty hustoty energie u(T) a tepelnou kapacitu 3D elektronového plynu. Předpokládejte přitom, že v uvažovaném intervalu teplot je $T/T_F \ll 1$ a stačí tedy vzít pouze první opravu z příkladu 2.2.

2.4 Číselné odhady; 2D plyn volných elektronů

- 1. S využitím předchozích výsledků spočtěte Fermiho mez k_F , Fermiho energii \mathcal{E}_F , Fermiho rychlost v_F , Fermiho teplotu T_F , střední energii elektronu $\langle E \rangle$ a hustotu energie u v elektronovém plynu s hustotu odpovídající stříbru ($n = 5.85 \cdot 10^{28} \text{ m}^{-3}$). Dále stanovte chemický potenciál a střední hustotu energie při teplotě 300 K. Jaká je tepelná kapacita elektronového plynu? Porovnejte se skutečnou hodnotou a pokuste se vysvětlit případný rozdíl.
- 2. Určete chemický potenciál dvourozměrného elektronového plynu. Díky příznivému průběhu hustoty stavů není v tomto případě třeba aproximací.

2.5 Tepelná vodivost

Spočtěte tepelnou vodivost elektronového plynu v Sommerfeldově modelu. Porovnejte výsledek s tepelnou vodivostí v Drudeho modelu kovu a s tabulkovými hodnotami pro reálné kovy.

¹rozumí se zobecněná *D*-dimenzionální koule, která je zadána vztahem $\sqrt{x_1^2 + \ldots + x_D^2} \le r_s$

3 Krystalová struktura

3.1 Kuprátové roviny

Ve většině vysokoteplotních supravodičů se lze setkat s tzv. kuprátovými rovinami, které jsou tvořeny atomy mědi a kyslíku uspořádanými jako na následujících obrázcích. Atomy mědi jsou znázorněny plnými kroužky, atomy kyslíku prázdnými.

- 1. Vyznačte bázové vektory, primitivní buňku a atomy báze krystalové mřížky z levého obrázku.
- Ve skutečnosti leží atomy kyslíku střídavě nad a pod kuprátovou rovinou, což je v pravém obrázku označeno znaménky + a -. Vyznačte bázové vektory, primitivní buňku a atomy báze i v tomto případě.

• 0	• 0	• •	•	•	\oplus	Θ	\bullet \oplus	•
0	0	0	0	\ominus	e	Ð	\ominus	\oplus
• 0	• 0	• •	•	•	θ	\bullet	\bullet \ominus	•
0	0	0	0	\oplus	\in	\ni	\oplus	\ominus
• 0	• 0	• •	•	•	\oplus	Θ	\bullet \oplus	ullet
0	0	0	0	\ominus	e	Ð	\ominus	\oplus
• 0	• •	• •	•	•	\ominus	\bullet	\bullet \ominus	•

3.2 Operace symetrie 2D krystalových mřížek

Najděte všechny bodové operace symetrie následujících krystalových mřížek a srovnejte je s operacemi symetrie prosté mřížky.

×	ž	ž	a fe	¥	¥	¥	¥
ž	ъ¥с	Å	e fe	¥	¥	¥	¥
ž	ъ ў с	- A C	e fe	¥	٭	٭	≯
ž	ž	ž	z Fe	¥	¥	¥	¥

3.3 Osy rotace v prostorových mřížkách

Dokažte, že trojrozměrné prostorové mřížky mohou mít pouze 2-, 3-, 4- a 6-četné osy symetrie.

3.4 Hustota diamantu

Spočtete hustotu diamantu, víte-li, že jeho mřížkový parametr je a=3.57 Å a relativní atomová hmotnost uhlíku je 12.

3.5 Součinitele zaplnění

Vypočtěte součinitele zaplnění při umístění koulí maximálního poloměru do uzlů prostorové mřížky pro tyto mřížky: prostá kubická, kubická plošně centrovaná, kubická prostorově centrovaná a diamantová.

3.6 Hexagonální těsně uspořádaná mřížka

Vypočtěte poměrc/a pro hexagonální těsně uspořádanou mřížku.

3.7 Dvourozměrné mřížky

Najděte reciproké mřížky a několik prvních Brillouinových zón (alespoň pět) pro dvourozměrnou čtvercovou a hexagonální mřížku.

3.8 Reciproké mřížky a 1. Brillouinova zóna kubických mřížek

Najděte reciproké mřížky a první Brillou
inovu zónu pro kubické mřížky – prostou, prostorově centrovanou a plošně centrovanou. Por
ovnejte rozměry první Brillou
inovy zóny prosté mřížky s mřížkovým parametrem a=3Å a vlnová čísla typická pro viditelné a RTG záření. Najděte souvislost objemu primitivní buňky přímé a reciproké mřížky.

Pozn.: Tato souvislost je obecná a lze ji nejsnadněji získat přímo pomocí definice reciproké mřížky.

3.9 Mezirovinné vzdálenosti a úhly

Najděte vztahy pro mezirovinné vzdálenosti a mezirovinné úhly pro tyto syngonie: kubická, tetragonální a ortorombická.

4 RTG difrakce na krystalech

Intenzita RTG záření rozptýleného krystalem je úměrná kvadrátu absolutní hodnoty Fourierova obrazu elektronové hustoty s argumentem rovným rozptylovému vektoru

$$I \sim |
ho_{el}^{FT}(oldsymbol{Q})|^2 \ , \qquad oldsymbol{Q} = oldsymbol{K}_f - oldsymbol{K}_i \ .$$

Zapišme elektronovou hustotu v krystalu ve tvaru

$$\rho_{el}(\boldsymbol{r}) = \Omega(\boldsymbol{r}) \sum_{\boldsymbol{R}} \sum_{j=1}^{N} \rho_j(\boldsymbol{r} - \boldsymbol{r}_j - \boldsymbol{R}),$$

kde $\Omega(\mathbf{r})$ je tvarová funkce krystalu, \mathbf{R} značí vektory poloh elementárních buněk (tvoří prostorovou mřížku), j indexuje atomy v elementární buňce, \mathbf{r}_j jejich polohy v rámci elementární buňky a $\rho_j(\mathbf{r})$ je nábojová hustota charakteristická pro daný atom. Fourierova transformace dává

$$\rho_{el}^{FT}(\boldsymbol{Q}) = \frac{1}{V_{PB}} \sum_{\boldsymbol{G}} \Omega^{FT}(\boldsymbol{Q} - \boldsymbol{G}) F(\boldsymbol{G}) , \quad F(\boldsymbol{G}) = \sum_{j=1}^{N} e^{-i\boldsymbol{G}\cdot\boldsymbol{r}_{j}} f_{j}(\boldsymbol{G}) , \quad f_{j}(\boldsymbol{k}) = \int d^{3}\boldsymbol{r} \, \rho_{j}(\boldsymbol{r}) e^{-i\boldsymbol{k}\cdot\boldsymbol{r}} .$$

Zde V_{PB} je objem primitivní buňky, Ω^{FT} geometrický faktor, $F(\mathbf{G})$ je strukturní faktor a f_j je atomový rozptylový faktor atomu j.

4.1 Strukturní faktor, vyhasínání difrakcí

Vypočtěte strukturní faktor difrakce na krystalech s touto strukturou: kubická plošně centrovaná mřížka, kubická prostorově centrovaná mřížka, mřížka se sfaleritovou strukturou a mřížka s diamantovou strukturou. Zjistěte, které difrakce vyhasnou.

4.2 Difrakční úhly

Vypočtěte všechny možné difrakční úhly při difrakci záření o vlnové délce 0.1541 nm (charakteristická čára $CuK\alpha_1$) na krystalu Si (mřížkový parametr 0.54309 nm).

4.3 Difrakční efekty spojené s konečnou velikostí krystalu

Spočítejte Fourierovu transformaci nábojové hustoty malého krystalu s prostou kubickou mřížkou

$$\rho_{el}(x,y,z) = \sum_{j_1=-N_x}^{N_x} \sum_{j_2=-N_y}^{N_y} \sum_{j_3=-N_z}^{N_z} \rho_0(x-j_1a,y-j_2a,z-j_3a)$$

a srovnejte výsledek s výrazem pro ρ_{el}^{FT} obsahujícím geometrický faktor. Odpovídá elektronová hustota zadaná v tomto příkladu elektronové hustotě uvažované výše, nebo je zde nějaký rozdíl? Diskutujte o souvislosti konečné velikosti krystalu s divergencí rozptýleného rentgenového záření.

4.4 RTG difrakce na $A_x C_{60}$

Experimentálně bylo zjištěno, že difrakční pík (200) fcc mřížky fulerenu C_{60} (mřížkový parametr a = 14.11 Å) je velmi slabý. Předpokládejte, že nábojová hustota fulerenu je reprezentována nábojem rovnoměrně rozloženým na povrchu koule s poloměrem 3.5 Å. Spočítejte strukturní faktor molekuly C_{60} v této aproximaci a s jeho pomocí ukažte, že difrakční pík (200) je mnohem slabší než pík (111).

5 Elektron v periodickém potenciálu

5.1 Jednorozměrný potenciál

Metodou rozvoje do rovinných vl
n najděte vlastní energie elektronu v jednodimenzionálním potenciálu s periodo
uazadaném funkcí

$$U(x) = -V_0 \sum_{n=-\infty}^{\infty} \exp\left[-\frac{(x-na)^2}{\sigma^2}\right]$$

jehož Fourierovy složky jsou

$$U_G = -V_0 \sqrt{\pi} \frac{\sigma}{a} \exp\left(-\frac{\sigma^2 G^2}{4}\right), \qquad G = \frac{2\pi n}{a}$$

Z vlastních energií pro dostatečný počet Blochových vektorů v 1. Brillouinově zóně sestavte pásové schéma. Při numerickém řešení použijte následující hodnoty parametrů: $a = 0.5 \,\mathrm{nm}$, $\sigma = 0.1a$. Srovnejte výsledky pro $V_0 = 2 \,\mathrm{eV}$ a $V_0 = 10 \,\mathrm{eV}$ s disperzními relacemi volných elektronů.

Pozn.: Při srovnávání je výhodné použít energii vztaženou na střední hodnotu potenciálu, tj. $E - U_{G=0}$.

5.2 Model Kroning–Penney

Vyřešte Schrödingerovu rovnici pro elektron v jednorozměrném periodickém potenciálovém poli, které má tvar

Ukažte, že vlastní hodnoty energie jsou dány rovnicí

$$\cos k(a+b) = \cos a\kappa_1 \cos b\kappa_2 - \frac{1}{2} \left(\frac{\kappa_2}{\kappa_1} + \frac{\kappa_1}{\kappa_2}\right) \sin a\kappa_1 \sin b\kappa_2 ,$$

kde

$$\kappa_1 = \frac{\sqrt{2mE}}{\hbar}$$
 a $\kappa_2 = \frac{\sqrt{2m(E-U_0)}}{\hbar}$

Najděte disperzní relaci $E_n(k)$ pro několik nejnižších pásů. Vyřešte problém numericky pro vhodně zvolené číselné konstanty, např. a = 4 Å, b = 1 Å a $V_0 = 5$ eV.

5.3 Dvourozměrná Fermiho plocha

Na následujícím obrázku jsou zachyceny energiové pásy pro elektron pohybující se v dvourozměrné analogii potenciálu z úlohy 5.1. S použitím těchto grafů načrtněte Fermiho plochu pro látku s jedním, dvěma a třemi elektrony v primitivní buňce. Pro ilustraci je připojen graf příspěvků jednotlivých pásů do hustoty stavů.

Rozsahy energií prvních čtyř pásů jsou 0.00 eV – 2.07 eV, 1.93 eV – 5.23 eV, 3.40 eV – 6.89 eV a 3.46 eV – 8.04 eV.

5.4 Pásové schéma volných elektronů

Uvažme prostou kubickou mřížku. Sestrojte redukované pásové schéma pro volné elektrony ve směru [100] a [111].

5.5 Odhad šířky zakázaného pásu – metoda téměř volných elektronů

Uvažme dvourozměrnou čtvercovou mřížku s potenciálem $U(x, y) = -4U_0 \cos\left(\frac{2\pi x}{a}\right) \cos\left(\frac{2\pi y}{a}\right)$. Najděte přibližnou velikost šířky zakázaného pásu v bodě $M = \left(\frac{\pi}{a}, \frac{\pi}{a}\right)$, tj. v rohu první Brillouinovy zóny.

5.6 Metoda těsné vazby pro s-pás v fcc mřížce

Odvoď
te disperzní relace pásu vycházejícího z s-stavů atomů umístěných v uzlech kubické plošně centrované mřížky. Uvažujte pouze maticové elementy mezi nejbližšími soused
y $t = \langle s | \Delta U | s' \rangle$. Překryv s-orbitalů na sousedních atomech zaned
bejte. Výsledek znázorněte graficky obvyklým způsobem, tj. podél lomené čáry
 $L - \Gamma - X - K - \Gamma$.

5.7 Metoda těsné vazby pro *p*-pásy ve čtvercové mřížce

Uvažujme o dvourozměrné čtvercové mřížce s jednoatomovou bází. Najděte disperzní relace pásů odvozených z dvakrát degenerovaných *p*-orbitalů p_x a p_y . Vlnové funkce těchto orbitalů mají tvar $\psi_{p_x}(x,y) = x f(\sqrt{x^2 + y^2})$ a $\psi_{p_y}(x,y) = y f(\sqrt{x^2 + y^2})$. Při výpočtu se omezte pouze na maticové elementy mezi nejbližšími sousedy a matici překryvových integrálů aproximujte jednotkovou maticí. Pásové schéma zobrazte podél lomené čáry $M - \Gamma - X$.

6 Kvaziklasická aproximace

6.1 Elektrony v okolí minima pásu

Pro elektrony v okolí minima pásu platí

$$E(m{k}) = E(m{k}_0) + rac{\hbar^2}{2}(m{k} - m{k}_0)^T \hat{M}^{-1}(m{k} - m{k}_0) \qquad \hat{M}^{-1} = egin{pmatrix} m_T^{-1} & 0 & 0 \ 0 & m_T^{-1} & 0 \ 0 & 0 & m_L^{-1} \end{pmatrix} \,,$$

kde m_T a m_L jsou transverzální a longitudinální efektivní hmotnosti. Ekvienergiové plochy mají tedy tvar rotačních elipsoidů.

1. Ukažte, že cyklotronová frekvence je

$$\omega_c = \frac{eB}{2\sqrt{m_T m_L}}$$

leží-li homogenní magnetické pole v rovině xy.

2. Vypočtěte elektronovou tepelnou kapacitu.

6.2 Oscilace v homogenním elektrostatickém poli

Elektrony vodivostního pásu odvozeného od s-orbitalů atomů v prosté kubické mřížce mají v přiblížení těsné vazby disperzní relaci

$$E(\mathbf{k}) = E_s - 2t \left[\cos(k_x a) + \cos(k_y a) + \cos(k_z a)\right] .$$

Najděte časový průběh rychlosti a polohy elektronu v homogenním elektrickém poli $\mathbf{E} = (E_x, 0, 0)$, je-li toto pole zapnuto v čase t = 0, kdy se elektron nachází ve stavu s $\mathbf{k} = (0, 0, 0)$. Jaký je příspěvek elektronu do elektrické vodivosti materiálu?

7 Polovodiče

7.1 Příměsový stav

Polovodič InSb má zakázaný pás o šířce $E_g = 0.23 \,\text{eV}$, statickou permitivitu $\varepsilon = 18$ a efektivní hmotnost elektronů $m_{ef} = 0.15 \, m_e$. Vypočtěte ionizační energii donoru, poloměr dráhy odpovídající základnímu stavu a minimální koncentraci donorů, při níž se začíná projevovat překrývání elektronových drah sousedních příměsových atomů (vzniká příměsový pás).

7.2 Statistika nositelů náboje v polovodiči typu N

V polovodiči je 10^{13} donorů v cm³, které mají ionizační energii $E_D = 1$ meV a efektivní hmotnost $m_{ef} = 0.01 m_e$. Žádné akceptorové atomy nejsou přítomny a polovodič je nedegenerovaný, tj. $E_g \gg k_B T$. Odhadněte koncentraci vodivostních elektronů při T = 4 K a hodnotu Hallovy konstanty.

7.3 Hallův jev pro dva typy nositelů

Předpokládejte, že koncentrace vodivostních elektronů a děr v polovodiči jsou n a p, relaxační doby τ_e a τ_h a efektivní hmotnosti m_e a m_h . Ukažte, že Hallův koeficient je

$$R_H = \frac{1}{e} \frac{p - nb^2}{(p + nb)^2}$$

kde $b = \mu_e/\mu_h$ je poměr pohyblivostí. Při výpočtu zanedbejte členy s B^2 .

7.4 Intrinsický polovodič

Germanium má nepřímý zakázaný pás o šířce 0.67 eV. Ve vodivostním pásu je osm L minim ve tvaru rotačních elipsoidů s efektivními hmotnostmi $m_T = 1.6 m_e$ a $m_L = 0.08 m_e$. Maximum valenčního pásu se nachází v bodě Γ a vybíhají z něj dvakrát degenerovaný pás těžkých děr s izotropní efektivní hmotností 0.28 m_e a dvakrát degenerovaný pás lehkých děr s izotropní efektivní hmotností 0.044 m_e . Vypočtěte intrinsickou koncentraci nositelů náboje při teplotě 300 K.

Pásová struktura germania podle článku Wachs, A. L., Miller, T., Hsieh, T. C., Shapiro, A. P., Chiang. T. C.: Phys. Rev. B 32 (1985) 2326

8 Kmity mřížky v harmonickém přiblížení

8.1 Kmity dvouatomového řetězce

Uvažte normální módy lineárního řetězce, ve kterém jsou hmotnosti atomů střídavě M_1 a M_2 . Silové konstanty interakce mezi nejbližšími atomy jsou rovny f a tyto atomy jsou vzdáleny a/2. Najděte disperzní relace. Ukažte, že pro $M_1 = M_2$ se výsledek redukuje na disperzní relaci jednoatomového řetězce.

Pozn.: Zajímavý je graf $\omega/\omega_0,$ kde $\omega_0^2=f/\mu,$ pro měnící se $\alpha=M_1/M_2$ při konstantní efektivní hmotnosti $\mu=M_1M_2/(M_1+M_2).$

8.2 Kmity lineární mřížky s dalekodosahovou interakcí

Předpokládejme jednorozměrný krystal, v němž existuje interakce i mezi dalekými sousedy. Harmonický člen v potenciální energii nechť je tvaru

$$U^{\text{harm}} = \sum_{n} \sum_{m>0} \frac{1}{2} K_m (u_n - u_{n+m})^2$$

Najděte disperzní relaci takového krystalu a její dlouhovlnnou limitu.

8.3 Konstantní rychlost zvuku

Jak musí být voleny konstanty K_m v předchozí úloze, aby disperzní relace byla čistě lineární, $\omega = c|k|$?

8.4 Měkký fononový mód

Uvažte lineární řetězec složený z iontů stejné hmotnosti, ale střídajícího se náboje $\pm e$. Meziatomový potenciál se skládá z krátkodosahové interakce se silovou konstantou C a z elektrostatické (daleko-dosahové) interakce. Ukažte, že elektrostatickou interakci lze popsat silovou konstantou mezi n-tými nejbližšími sousedy

$$C_n = \frac{(-1)^n e^2}{2\pi\varepsilon_0 (na)^3}$$

kde a je vzdálenost nejbližších sousedů. Najděte disperzní relaci a nakreslete její graf pro vhodně volené parametry.

8.5 Rychlost zvuku v křemíku

S použitím následujícího obrázku určete rychlost zvuku v křemíku ve směrech [100], [110] a [111].

Fononové disperzní křivky a hustota stavů podle článku Giannozzi, P., de Gironcoli, S., Pavone, P., Baroni, S.: Phys. Rev. B 43 (1991) 7231

8.6 Tepelná kapacita jednoduché 1D a 2D mřížky

Uvažujme o jednoduché jednorozměrné resp. dvourozměrné mřížce s jedním atomem v primitivní buňce, pro jejíž transverzální kmity platí pohybové rovnice

$$m\ddot{u}_{i} = K(u_{i-1} - 2u_{i} + u_{i+1})$$

$$m\ddot{u}_{ij} = K(u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{ij})$$
(1D)
(2D)

Najděte disperzní relace kmitů mřížky a teplotní závislost jejího specifického tepla při velmi nízkých teplotách.

8.7 Hustota stavů akustické fononové větve

Nechť je disperzní relace některé akustické fononové větve dána vztahem

$$\omega(\boldsymbol{q}) = \omega_0 \sqrt{\sum_{j=1}^D \sin^2 \frac{q_j a}{2}}$$

Numerickým výpočtem zjistěte hustotu stavů od této akustické větve pro dimenzi mřížky D = 1, 2, 3. Tuto hustotu stavů srovnejte s Debyeovým modelem.