Cold atoms

Lecture 3. 18th October, 2006

Non-interacting bosons in a trap

Useful digression: energy units

energy	1K	1eV	s ⁻¹
1K	$k_{ m B}/{ m J}$	$k_{\rm B}$ / e	$k_{ m B}$ / h
1eV	$e/k_{\rm B}$	e/J	e/h
s ⁻¹	$h/k_{\rm B}$	h/e	h/J

energy	1K	1eV	s ⁻¹
1K	1.38×10^{-23}	8.63×10^{-05}	$2.08 \times 10^{+10}$
1eV	$1.16 \times 10^{+04}$	1.60×10^{-19}	$2.41 \times 10^{+14}$
s ⁻¹	4.80×10^{-11}	4.14×10^{-15}	6.63×10^{-34}

Trap potential

Parabolic approximation

in general, an anisotropic harmonic oscillator usually with axial symmetry

Ground state orbital and the trap potential

Ground state orbital and the trap potential

Ground state orbital and the trap potential

Filling the trap with particles: IDOS, DOS

For the finite trap, unlike in the extended gas, $\mathcal{D}(E)$ is **not** divided by volume !!

2D $\Gamma(E) \quad \frac{1}{2}E^2 / (\hbar\omega_x \cdot \hbar\omega_y)$ $\mathcal{D}(E) = \Gamma'(E) = E / (\hbar\omega_x \cdot \hbar\omega_y)$

"thermodynamic limit" only approximate ... finite systems better for small $\hbar \omega$ meaning wide trap potentials Filling the trap with particles

 $\mathbf{3D}$ $\Gamma(E) \quad \frac{1}{6}E^3 / (\hbar\omega_x \cdot \hbar\omega_y \cdot \hbar\omega_z)$ $\mathcal{D}(E) = \Gamma'(E) = \frac{1}{2}E^2 / (\hbar\omega_x \cdot \hbar\omega_y \cdot \hbar\omega_z)$

particle number comparable with the number of states in the thermal shell

 $N \approx \Gamma \left(k_{\rm B} T \right)$

 $\begin{array}{ll} \hline 2 \mathbf{D} & T_c \approx \hbar \tilde{\omega} / k_{\mathrm{B}} \cdot N^{\frac{1}{2}} & \tilde{\omega} = (\omega_x \cdot \omega_y)^{\frac{1}{2}} \\ \hline 3 \mathbf{D} & T_c \approx \hbar \tilde{\omega} / k_{\mathrm{B}} \cdot N^{\frac{1}{3}} & \tilde{\omega} = (\omega_x \cdot \omega_y \cdot \omega_z)^{\frac{1}{3}} \\ \hline \text{For 10}^6 \text{ particles,} & \bullet \text{ characteristic energy} \\ & k_{\mathrm{B}} T_c \approx 10^2 \hbar \tilde{\omega} \end{array}$

Filling the trap with particles

 $\mathbf{3D}$ $\Gamma(E) \quad \frac{1}{6}E^3 / (\hbar\omega_x \cdot \hbar\omega_y \cdot \hbar\omega_z)$ $\mathcal{D}(E) = \Gamma'(E) = \frac{1}{2}E^2 / (\hbar\omega_x \cdot \hbar\omega_y \cdot \hbar\omega_z)$

particle number comparable with the number of states in the thermal shell

 $N \approx \Gamma \left(k_{\rm B} T \right)$

 $\begin{array}{lll} \hline 2 \mathbf{D} & T_c \approx \hbar \tilde{\omega} / k_{\mathrm{B}} \cdot N^{\frac{1}{2}} & \tilde{\omega} = (\omega_x \cdot \omega_y)^{\frac{1}{2}} \\ \hline 3 \mathbf{D} & T_c \approx \hbar \tilde{\omega} / k_{\mathrm{B}} \cdot N^{\frac{1}{3}} & \tilde{\omega} = (\omega_x \cdot \omega_y \cdot \omega_z)^{\frac{1}{3}} \\ \hline \mathbf{For 10^6 particles,} & \mathbf{\cdot} \text{ characteristic energy} \\ & k_{\mathrm{B}} T_c \approx 10^2 \hbar \tilde{\omega} & \hbar \tilde{\omega} & \text{important for therm. limit} \end{array}$

Exact expressions for critical temperature etc.

The general expressions are the same like for the homogeneous gas. Working with discrete levels, we have

$$N = \mathcal{N}(T, \mu) = \sum_{j} \left\langle n(\varepsilon_{j}) \right\rangle = \sum_{j} \frac{1}{e^{\beta(\varepsilon_{j} - \mu)} - 1}$$

and this can be used for numerics without exceptions.

In the approximate thermodynamic limit, the old equation holds, only the volume V does not enter as a factor:

$$N = \mathcal{N}(T, \mu) = \frac{1}{e^{\beta(\varepsilon_0 - \mu)} - 1} + \mathcal{N} \int_0^\infty d\varepsilon \frac{1}{e^{\beta(\varepsilon - \mu)} - 1} \mathcal{D}(\varepsilon)$$

In 3D,
$$T_c = (\zeta(3))^{-\frac{1}{3}} \hbar \tilde{\omega} / k_{\rm B} \cdot N^{\frac{1}{3}} = 0.94 \hbar \tilde{\omega} / k_{\rm B} \cdot N^{\frac{1}{3}}$$
$$N_{\rm BE} = N \cdot \left(1 - (T/T_c)^3\right), \quad T < T_c$$

12

How good is the thermodynamic limit

1D illustration (almost doable)

$$N = \sum_{j} \frac{1}{e^{\beta(\hbar\omega \times j - \mu)} - 1} \stackrel{?}{=} \frac{1}{e^{-\beta\mu} - 1} + \int_{0}^{\infty} \mathrm{d}\varepsilon \frac{1}{e^{\beta(\varepsilon - \mu)} - 1} \frac{1}{\hbar\omega}$$

How good is the thermodynamic limit

1D illustration

How good is the thermodynamic limit 1D illustration

How good is the thermodynamic limit 1D illustration

How sharp is the transition

These are experimental data fitted by the formula $N_{\rm BE} = N \cdot (1 - (T/T_c)^3), \quad T < T_c$

The rounding is apparent, but not really an essential feature

Seeing the condensate – reminescence of L2

Without field-theoretical means, the coherence of the condensate may be studied using the **one-particle density matrix**.

Definition of OPDM for non-interacting particles: Take an additive observable, like local density, or current density. Its average value for the whole assembly of atoms in a given equilibrium state:

 $\langle X \rangle = \sum_{\alpha} \langle \alpha | X | \alpha \rangle \langle n_{\alpha} \rangle$ double average, quantum and thermal $= \sum_{\alpha} \langle \alpha | X \sum_{\beta} | \beta \rangle \langle \beta | \alpha \rangle \langle n_{\alpha} \rangle$ insert unit operator $= \sum_{\alpha} \langle \beta [\sum_{\alpha} | \alpha \rangle \langle n_{\alpha} \rangle \langle \alpha |] X | \beta \rangle$ change the summation order $= \sum_{\beta} \langle \beta | \rho X | \beta \rangle$ define the one-particle density matrix $= \operatorname{Tr} \rho X \qquad \rho = \sum_{\alpha} | \alpha \rangle \langle n_{\alpha} \rangle \langle \alpha |$

OPDM in the Trap

- Use the eigenstates of the 3D oscillator
- Use the BE occupation numbers

$$\rho = \sum_{\tilde{v}} |\tilde{v}\rangle \langle \tilde{n}_{\tilde{v}}\rangle \langle \tilde{v}| \qquad \tilde{v} = (v_x, v_y, v_z), \quad v_w = 0, 1, 2, 3, \cdots$$

$$= \sum_{\tilde{v}} |\tilde{v}\rangle \frac{1}{e^{\beta(E_{\tilde{v}} - \mu)} - 1} \langle \tilde{v}|, \quad |\tilde{v}\rangle = |v_x\rangle |v_y\rangle |v_z\rangle$$

$$E_{\tilde{v}} = E_{v_x} + E_{v_y} + E_{v_z} = \hbar \omega_x v_x + \hbar \omega_x v_x + \hbar \omega_x v_x$$

$$I = \hbar \omega_x v_x + \hbar \omega_x v_x + \hbar \omega_x v_x$$

$$I = \hbar \omega_x v_x + \hbar \omega_x v_x$$

$$I = \hbar \omega_x v_x + \hbar \omega_x v_x$$

$$I = \hbar \omega_x v_x + \hbar \omega_x v_x$$

$$I = \hbar \omega_x v_x + \hbar \omega_x v_x$$

$$I = \hbar \omega_x v_x + \hbar \omega_x v_x$$

$$I = \hbar \omega_x v_x + \hbar \omega_x v_x$$

$$I = \hbar \omega_x v_x + \hbar \omega_x v_x$$

$$I = \hbar \omega_x v_x + \hbar \omega_x v_x$$

• Single out the ground state

$$\rho = |000\rangle \frac{1}{e^{-\beta\mu} - 1} \langle 000| + \sum_{\tilde{\nu} \neq (000)} |\tilde{\nu}\rangle \frac{1}{e^{\beta(E_{\tilde{\nu}} - \mu)} - 1} \langle \tilde{\nu}|$$
$$\equiv \rho_{\text{BEC}} + \rho_{\text{TERM}}$$

OPDM in the Trap

- Use the eigenstates of the 3D oscillator
- Use the BE occupation numbers

$$\rho = \sum_{\tilde{v}} |\tilde{v}\rangle \langle n_{\tilde{v}}\rangle \langle \tilde{v}| \qquad \tilde{v} = (v_x, v_y, v_z), \quad v_w = 0, 1, 2, 3, \cdots$$

$$= \sum_{\tilde{v}} |\tilde{v}\rangle \frac{1}{e^{\beta(E_{\tilde{v}} - \mu)} - 1} \langle \tilde{v}|, \qquad |\tilde{v}\rangle = |v_x\rangle |v_y\rangle |v_z\rangle$$
Coherent component, be it condensate or not.
At $T = \hbar\omega/k_{\beta}$, it contains ALL atoms in the cloud
$$\rho = |000\rangle \frac{1}{e^{-\beta\mu} - 1} \langle 000| + \sum_{\tilde{v}\neq(000)} |\tilde{v}\rangle \frac{1}{e^{\beta(E_{\tilde{v}} - \mu)} - 1} \langle \tilde{v}|$$

$$\equiv \rho_{BEC} + \rho_{TERM}$$

OPDM in the Trap, Particle Density in Space

The spatial distribution of atoms in the trap is inhomogeneous. Proceed by definition:

$$n(\mathbf{r}) = \operatorname{Tr} \rho \delta(\mathbf{r}_{op} - \mathbf{r})$$

$$= \operatorname{Tr} \rho \int d \, \overline{\mathbf{r}} \, | \, \overline{\mathbf{r}} \, \rangle \delta(\overline{\mathbf{r}} - \mathbf{r}) \langle \overline{\mathbf{r}} \, | = \operatorname{Tr} \rho \, | \, \mathbf{r} \, \rangle \langle \mathbf{r} \, |$$

$$= \langle \mathbf{r} \, | \, \rho \, | \, \mathbf{r} \, \rangle = \sum_{\tilde{v}} \langle \mathbf{r} \, | \, \tilde{v} \, \rangle \frac{1}{\mathrm{e}^{\beta(E_{\tilde{v}} - \mu)} - 1} \langle \tilde{v} \, | \, \mathbf{r} \, \rangle$$

$$= \sum_{\tilde{v}} \left| \phi_{\tilde{v}}(\mathbf{r}) \right|^2 \frac{1}{\mathrm{e}^{\beta(E_{\tilde{v}} - \mu)} - 1} \qquad \text{as we would write down naively at once naively at o$$

Split into the two parts, the coherent and the incoherent phase

$$n(\mathbf{r}) = \langle \mathbf{r} | \rho | \mathbf{r} \rangle = \langle \mathbf{r} | \rho_{\text{BEC}} | \mathbf{r} \rangle + \langle \mathbf{r} | \rho_{\text{THERM}} | \mathbf{r} \rangle$$

OPDM in the Trap, Particle Density in Space

Split into the two parts, the coherent and the incoherent phase

$$n(\mathbf{r}) = \langle \mathbf{r} | \rho | \mathbf{r} \rangle = \langle \mathbf{r} | \rho_{\text{BEC}} | \mathbf{r} \rangle + \langle \mathbf{r} | \rho_{\text{THERM}} | \mathbf{r} \rangle$$

$$= \langle \mathbf{r} | 000 \rangle \frac{1}{e^{-\beta\mu} - 1} \langle 000 | \mathbf{r} \rangle + \sum_{\tilde{\nu} \neq (000)} \langle \mathbf{r} | \tilde{\nu} \rangle \frac{1}{e^{\beta(E_{\tilde{\nu}} - \mu)} - 1} \langle \tilde{\nu} | \mathbf{r} \rangle$$

$$= \frac{|\phi_{000}(\mathbf{r})|^2}{e^{-\beta\mu} - 1} + \sum_{\tilde{\nu} \neq (000)} |\phi_{\tilde{\nu}}(\mathbf{r})|^2 \frac{1}{e^{\beta(E_{\tilde{\nu}} - \mu)} - 1}$$

$$= \frac{|\phi_{000}(\mathbf{r})|^2}{|\mathbf{n}|^2 - 1} + \sum_{\tilde{\nu} \neq (000)} |\phi_{\tilde{\nu}}(\mathbf{r})|^2 \frac{1}{e^{\beta(E_{\tilde{\nu}} - \mu)} - 1}$$

$$= \frac{|\phi_{000}(\mathbf{r})|^2}{|\mathbf{n}|^2 - 1} + \sum_{\tilde{\nu} \neq (000)} |\phi_{\tilde{\nu}}(\mathbf{r})|^2 \frac{1}{e^{\beta(E_{\tilde{\nu}} - \mu)} - 1}}$$

OPDM in the Trap, Particle Density in Space

Split into the two parts, the coherent and the incoherent phase

$$n(\mathbf{r}) = \langle \mathbf{r} | \rho | \mathbf{r} \rangle = \langle \mathbf{r} | \rho_{\text{BEC}} | \mathbf{r} \rangle + \langle \mathbf{r} | \rho_{\text{THERM}} | \mathbf{r} \rangle$$

$$= \langle \mathbf{r} | 000 \rangle \frac{1}{e^{-\beta\mu} - 1} \langle 000 | \mathbf{r} \rangle + \sum_{\vec{\nu} \neq (000)} \langle \mathbf{r} | \vec{\nu} \rangle \frac{1}{e^{\beta(E_{\vec{\nu}} - \mu)} - 1} \langle \vec{\nu} | \mathbf{r} \rangle$$

$$= \left| \phi_{000}(\mathbf{r}) \right|^{2} \frac{1}{e^{-\beta\mu} - 1} + \sum_{\substack{\vec{\nu} \neq (000) \\ | \mathbf{a} \text{ borious } \mathbf{n}_{\text{THERM}}(\mathbf{r})} \right| \frac{1}{e^{\beta(E_{\vec{\nu}} - \mu)} - 1} \frac{1}{|\mathbf{a} \text{ borious } \mathbf{n}_{\text{THERM}}(\mathbf{r})}$$

$$\overline{n_{\text{BEC}}(\mathbf{r}) = \left| \phi_{0x}(x) \right|^{2} \left| \phi_{0y}(y) \right|^{2} \left| \phi_{0z}(z) \right|^{2} \frac{1}{e^{-\beta\mu} - 1}} = \frac{1}{a_{0x}a_{0y}a_{0z}\pi^{3}} e^{-\frac{x^{2}}{a_{0x}^{2}} - \frac{y^{2}}{a_{0y}^{2}} - \frac{z^{2}}{a_{0z}^{2}}} \frac{1}{e^{-\beta\mu} - 1}}$$
The characteristic lengths directly observable

We approximate the thermal distribution by its classical limit. Boltzmann distribution in an external field:

$$f_B(\mathbf{r}, \mathbf{p}) = e^{\beta(\mu - W - U(\mathbf{r}))}$$

$$n_{\text{THERM}}(\mathbf{r}) = \int d^3 \mathbf{p} \cdot f_B(\mathbf{r}, \mathbf{p})$$

$$\propto e^{-\beta U(\mathbf{r})}$$

$$= e^{-\frac{1}{2}\beta m(\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2)}$$

We approximate the thermal distribution by its classical limit. Boltzmann distribution in an external field:

$$f_B(\mathbf{r}, \mathbf{p}) = e^{\beta(\mu - W - U(\mathbf{r}))}$$

$$n_{\text{THERM}}(\mathbf{r}) = \int d^3 \mathbf{p} \cdot f_B(\mathbf{r}, \mathbf{p})$$

$$\propto e^{-\beta U(\mathbf{r})}$$

$$= e^{-\frac{1}{2}\beta m(\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2)}$$

For comparison:

$$n_{\text{BEC}}(\mathbf{r}) = \left| \phi_{0x}(x) \right|^2 \left| \phi_{0y}(y) \right|^2 \left| \phi_{0z}(z) \right|^2 \frac{1}{e^{-\beta\mu} - 1}$$
$$= \frac{1}{a_{0x}a_{0y}a_{0z}\pi^3} e^{-\frac{x^2}{a_{0x}^2} - \frac{y^2}{a_{0y}^2} - \frac{z^2}{a_{0z}^2}} \frac{1}{e^{-\beta\mu} - 1}$$

We approximate the thermal distribution by its classical limit.

Boltzmann distribution in an external field:

 $a_{0x}a_{0y}a_{0z}\pi$

Two directly observable characteristic lengths

$$f_{B}(\mathbf{r},\mathbf{p}) = e^{\beta(\mu - W - U(\mathbf{r}))}$$

$$n_{\text{THERM}}(\mathbf{r}) = \int d^{3} \mathbf{p} \cdot f_{B}(\mathbf{r},\mathbf{p})$$

$$\approx e^{-\beta U(\mathbf{r})}$$

$$= e^{-\frac{1}{2}\beta m(\omega_{x}^{2}x^{2} + \omega_{y}^{2}y^{2} + \omega_{z}^{2}z^{2})}$$

$$= e^{-\frac{1}{2}\beta m(\omega_{x}^{2}x^{2} + \omega_{y}^{2}y^{2} + \omega_{z}^{2}z^{2})}$$
For comparison:

$$\overline{n_{\text{BEC}}(\mathbf{r}) = \left|\phi_{0x}(x)\right|^{2} \left|\phi_{0y}(y)\right|^{2} \left|\phi_{0z}(z)\right|^{2}}$$

$$= \frac{1}{a_{0}, a_{0}, a_{0}, \pi^{3}} e^{-\frac{x^{2}}{a_{0y}^{2}} - \frac{z^{2}}{a_{0z}^{2}}} \frac{1}{e^{-\beta\mu} - 1}$$

We approximate the thermal distribution by its classical limit.

Boltzmann distribution in an external field:

 $f(\mathbf{r},\mathbf{n}) - \beta \overline{(\mu - W - U(\mathbf{r}))}$

Two directly observable characteristic lengths

$$\int_{B}(\mathbf{r}, \mathbf{p}) = \mathbf{C}$$

$$n_{\text{THERM}}(\mathbf{r}) = \int d^{3} \mathbf{p} \cdot f_{B}(\mathbf{r}, \mathbf{p})$$

$$\approx e^{-\beta U(\mathbf{r})}$$

$$= e^{-\frac{1}{2}\beta m(\omega_{x}^{2}x^{2} + \omega_{y}^{2}y^{2} + \omega_{z}^{2}z^{2})}$$

$$= a_{0}\sqrt{k_{B}T/\hbar\tilde{\omega}} \quad a_{0}$$

$$\tilde{\omega} = (\omega_{x} \cdot \omega_{y} \cdot \omega_{z})^{\frac{1}{3}}$$
For comparison:
$$n_{\text{BEC}}(\mathbf{r}) = \left|\phi_{0x}(x)\right|^{2} \left|\phi_{0y}(y)\right|^{2} \left|\phi_{0z}(z)\right|^{2} \frac{1}{e^{-\beta\mu} - 1}$$

$$= \frac{1}{a_{0x}a_{0y}a_{0z}\pi^{3}} e^{-\frac{x^{2}}{a_{0x}^{2}} - \frac{x^{2}}{a_{0z}^{2}} - \frac{z^{2}}{a_{0z}^{2}}} \frac{1}{e^{-\beta\mu} - 1}$$
anisotropy
given by analogous
definitions of the
two lengths
for each direction

1999 - Nature 18 Feb., (Vol.397, p.594)

L.V.Hau, S.E.Harris, Z.Dutton, C.H.Behrozi

Light speed reduction to 17 metres per second in an ultracold atomic gas

Na - atomy, $T = 450 \text{ nK} (15 \text{ nK nad } T_c)$, 17 m/s (32 m/s)

1999 - Nature 18 Feb., (Vol.397, p.594)

L.V.Hau, S.E.Harris, Z.Dutton, C.H.Behrozi

Light speed reduction to 17 metres per second in an ultracold atomic gas

Na - atomy, $T = 450 \text{ nK} (15 \text{ nK nad } T_c) 17 \text{ m/s} (32 \text{ m/s})$

29

200

100

50 x

-50

-150

1999 - Nature 18 Feb., (Vol.397, p.594)

L.V.Hau, S.E.Harris, Z.Dutton, C.H.Behrozi

Light speed reduction to 17 metres per second in an ultracold atomic gas

Na - atomy, $T = 450 \text{ nK} (15 \text{ nK nad } T_c) 17 \text{ m/s} (32 \text{ m/s})$

30

- the cloud is *macroscopic*
- basically, we see the thermal distribution
- a cigar shape: prolate rotational ellipsoid
- diffuse contours: *Maxwell Boltzmann distribution in a parabolic potential*

1999 - Nature 18 Feb., (Vol.397, p.594)

L.V.Hau, S.E.Harris, Z.Dutton, C.H.Behrozi

Light speed reduction to 17 metres per second in an ultracold atomic gas

Na - atomy, $T = 450 \text{ nK} (15 \text{ nK nad } T_c) 17 \text{ m/s} (32 \text{ m/s})$

Particle Velocity (Momentum) Distribution The procedure is similar, do it quickly:

$$f(\boldsymbol{p}) = \langle \boldsymbol{p} | \boldsymbol{\rho} | \boldsymbol{p} \rangle = \langle \boldsymbol{p} | \boldsymbol{\rho}_{\text{BEC}} | \boldsymbol{p} \rangle + \langle \boldsymbol{p} | \boldsymbol{\rho}_{\text{THERM}} | \boldsymbol{p} \rangle$$

$$= \langle \boldsymbol{p} | 000 \rangle \frac{1}{e^{-\beta\mu} - 1} \langle 000 | \boldsymbol{p} \rangle + \sum_{\vec{\nu} \neq (000)} \langle \boldsymbol{p} | \vec{\nu} \rangle \frac{1}{e^{\beta(E_{\vec{\nu}} - \mu)} - 1} \langle \vec{\nu} | \boldsymbol{p} \rangle$$

$$= \left| \breve{\phi}_{000}(\boldsymbol{p}) \right|^2 \frac{1}{e^{-\beta\mu} - 1} + \sum_{\vec{\nu} \neq (000)} \left| \breve{\phi}_{\vec{\nu}}(\boldsymbol{p}) \right|^2 \frac{1}{e^{\beta(E_{\vec{\nu}} - \mu)} - 1}$$

$$Iaborious f_{\text{THERM}}(\boldsymbol{r})$$

$$f_{\text{BEC}}(\boldsymbol{p}) = \left| \breve{\phi}_{0x}(\boldsymbol{p}_x) \right|^2 \left| \breve{\phi}_{0y}(\boldsymbol{p}_y) \right|^2 \left| \breve{\phi}_{0z}(\boldsymbol{p}_z) \right|^2 \frac{1}{e^{-\beta\mu} - 1}$$

$$\approx e^{-\frac{p_x^2}{b_{0x}^2} - \frac{p_y^2}{b_{0z}^2}} \frac{p_z^2}{1}$$

$$f_{0w} = \frac{\hbar}{a_{0w}}$$

$$32$$

Thermal Particle Velocity (Momentum) Distribution

Again, we approximate the thermal distribution by its classical limit.

Boltzmann distribution in an external field:

 $\beta(\mu - W - U(\mathbf{r}))$

Two directly observable characteristic lengths

$$f_{\text{THERM}}(\boldsymbol{r}) = \int d^{3} \boldsymbol{r} \cdot f_{B}(\boldsymbol{r}, \boldsymbol{p})$$

$$\approx e^{-\beta W}$$

$$= e^{-\frac{1}{2}\beta m^{-1}(p_{x}^{2} + p_{y}^{2} + p_{z}^{2})}$$

$$f_{\text{BEC}}(\boldsymbol{p}) = \left|\breve{\phi}_{0x}(p_{x})\right|^{2} \left|\breve{\phi}_{0y}(p_{y})\right|^{2} \left|\breve{\phi}_{0z}(p_{z})\right|^{2} - \frac{1}{e}$$

$$g_{T} = b_{0}\sqrt{k_{B}T/\hbar\tilde{\omega}} \quad b_{0}$$

$$\frac{\text{Remarkable:}}{B_{T} = b_{0}\sqrt{k_{B}T/\hbar\tilde{\omega}} \quad b_{0}}$$

$$R_{T} = a_{0}\sqrt{k_{B}T/\hbar\tilde{\omega}} \quad a_{0}$$

$$R_{T} = b_{0}\sqrt{k_{B}T/\hbar\tilde{\omega}} \quad a_{0$$

BEC observed by TOF in the velocity distribution

Figure 7. Observation of Bose-Einstein condensation by absorption imaging. Shown is absorption vs. two spatial dimensions. The Bose-Einstein condensate is characterized by its slow expansion observed after 6 ms time-of-flight. The left picture shows an expanding cloud cooled to just above the transition point; middle: just after the condensate appeared; right: after further evaporative cooling has left an almost pure condensate. The total number of atoms at the phase transition is about 7×10^5 , the temperature at the transition point is $2 \,\mu$ K.

Qualitative features: all Gaussians

♦ wide vz.narrow

♠ isotropic vs. anisotropic

The end

