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Preliminary plan/reality in the  fall term

Lecture 1 

…

Lecture 2 

…

Lecture 3 

…

Lecture 4 

…

Lecture 5 

…

Lecture 6 

…

Something about everything (see next slide)              

The textbook version of BEC in extended systems

thermodynamics, grand canonical ensemble, extended 

gas: ODLRO, nature of the BE phase transition

atomic clouds in the traps – independent bosons, what 

is BEC?, "thermodynamic limit", properties of OPDM

atomic clouds in the traps – interactions, GP equation at 

zero temperature, variational prop., chem. potential

Infinite systems: Bogolyubov theory, BEC and symmetry 

breaking, coherent states

Time dependent GP theory. Finite systems: BEC theory 

preserving the particle number

Sep 22

Oct 4

Oct 18

Nov 1

Nov 15



Previous class:

Interacting atoms
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L4:   Scattering length, pseudopotential

Beyond the potential radius, say       ,  the scattered wave 

propagates in free space

For small energies, the scattering is purely isotropic , the s-wave 

scattering. The outside wave is

For very small energies the radial part becomes just

This may be extrapolated also into the interaction sphere

(we are not interested in the short range details)

Equivalent potential ("pseudopotential")

3σ

0sin( )kr
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δψ +
∝

... the scattering leng t, hs sr a a−
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Previous class:

Mean-field treatment of interacting atoms
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This is an educated way, similar to (almost identical with) the 

HARTREE APPROXIMATION we know for many electron systems.

Most of the interactions is indeed absorbed into the mean field and 

what remains are explicit quantum correlation corrections

L4: Many-body Hamiltonian and the Hartree approximation

21 1ˆ ( ) ( )
2 2

a a a b

a a b

H p V U
m ≠

= + + −∑ ∑ ∑r r r

We start from the mean field approximation.
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L4:    Gross-Pitaevskii equation at zero temperature

Consider a condensate. Then all occupied orbitals are the same and 

we have a single self-consistent equation for a single orbital

Putting 

we obtain a closed equation for the order parameter: 

This is the celebrated Gross-Pitaevskii equation.

( ) ( ) ( )22
0 0 0 0

1
( )

2
p V gN E

m
ϕ ϕ ϕ + + = 

 
r r r r

0( ) ( )NΨ ϕ= ⋅r r

( ) ( ) ( )221
( )

2
p V g

m
Ψ Ψ µΨ + + = 

 
r r r r

The lowest level 

coincides with the 

chemical potential

For a static condensate, the order parameter has ZERO PHASE.    

Then

0
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Gross-Pitaevskii equation – homogeneous gas

The GP equation simplifies

For periodic boundary conditions in a box with 
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Field theoretic reformulation              

(second quantization)
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Field operator for spin-less bosons

Definition by commutation relations

basis of single-particle states ( κ complete set  of quantum numbers)

decomposition of the field operator

commutation relations

† † †( ), ( ) ( ), ( ), ( ) 0, ( ), ( ) 0ψ ψ δ ψ ψ ψ ψ     = − = =     r r' r r' r r' r r'

{ }
( )

  ... single particle state,

        

κβ

κ

κ κ β δ ψ κ κ ψ ψ

κ ϕ ψ κ κ ψ

= =

= =
∑
∑r r r r

( ) ( ) ( ) ( )
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3 *

† * †
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Field operator for spin-less bosons – cont'd 

Plane wave representation (BK normalization)

( ) ( )
( )

1/ 2 i 1/ 2 3 i

† 1/ 2 i † 1/ 2 i †

 e  , e
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Operators

Additive observable

General definition of the OPDM

Particle number

3 3 † ( ) ( )d djX Xψ ψ= → = ∫ ∫∑ r r' r r r' r'X X

3 3 † 3 3 †

3 3
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Hamiltonian

Particle number conservation

Equilibrium density operators and the ground state 

Typical selection rule

is a consequence of the gauge invariance of the 1st kind:
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Hamiltonian of the homogeneous gas
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Action of the field operators in the Fock space

basis of single-particle states

FOCK SPACE space of many particle states

basis states … symmetrized products of single-particle states for bosons

specified by the set of occupation numbers   0, 1, 2, 3, …

{ }
{ } 1 2 3

†

1 2 3 1 2 3

1 2 3

1 2 3 1 2 3
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p p

p

p p

p

n n n n n
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=
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= =
∑
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Bogolyubov method
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Basic idea

Bogolyubov method                                               

is devised for  boson quantum fluids with weak interactions – at T=0 now

The condensate dominates.

Strange idea

† †

BE 0 0 BE BE

0

0 0

no interaction weak interaction

1 1

g g
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Approximate Hamiltonian

Keep at most two particles out of the condensate
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Bogolyubov transformation

( ){ } { } 2
2 † † † †21

2 2 2 2

anomaloumean field s

UNgn

m V
gn a a a a a a a a− − − −= + + + + +∑ ∑k k k k k k k k

k
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14424431442443

Last rearrangement

Conservation properties: momentum … YES, particle number … NO

NEW FIELD OPERATORS notice momentum conservation!!

requirementsrequirements

� New operators should satisfy the boson commutation rules

� When introduced into the Hamiltonian,  the anomalous terms have to 

vanish 
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† † † †
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Bogolyubov transformation – result 
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Without quoting the transformation matrix

( )ε
↑
k
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2m
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( ) c k
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c

m

ω = ⋅

=

k

asymptotically

merge

sound region

quasi-particles are 

collective excitations

high energy region

quasi-particles are 

nearly just particles
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More about the sound part of the dispersion law

( ) c k

gn
c

m

ω = ⋅

=

k

Entirely dependent on the interactions, both the magnitude of the velocity 

and the linear frequency range determined by g

Can be shown to really be a sound:

Even a weakly interacting gas exhibits superfluidity; the ideal gas does not.

The phonons are actually Goldstone modes corresponding to a broken 

symmetry

The dispersion law has no roton region, contrary to the reality

The dispersion law bends upwards ⇒ quasi-particles are unstable, can 

decay

2
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2

" VVV UNc
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κ
ρ

∂
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Particles and quasi-particles

At zero temperature, there are no quasi-particles, just the condensate.

Things are different with the true particles. Not all particles are in the 

condensate, but they are not thermally agitated in an incoherent way, they 

are a part of the fully coherent ground state

The total amount of the particles outside of the condensate is

( )( )† † † 2 0a a v b u b u b v b v− −= − + − = ≠k k k k k k k k k k k

3/ 2 1/ 20

3

8

3

s

s

N N
a n

N

a n
π

−
≈

123
the gas parameter

is

the expansion variable



Coherent ground state
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Reformulation of the Bogolyubov requirements

Looks like he wanted 

This is in contradiction with the rule derived above, 

The above equation is known and defines the ground state to be a coherent 

state with the parameter 

For a coherent state, there is no problem with the particle number 

conservation. It has a rather uncertain particle number, but a well defined 

phase:

0

0

, ,   so thata N

a

Ψ Ψ
Ψ
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The end
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On the way to the mean-field Hamiltonian

ADDITIONAL NOTES
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On the way to the mean-field Hamiltonian

ADDITIONAL NOTES

� First, the following exact transformations are performed

( ) ( ) ( )

( ) ( ) ( ) ( )
TRICK!!

2

3 3

3 3

3 3

1 1ˆ ( ) ( )
2 2

( ) d ( ) ( ) d ( )

1 1
( ) d d ' ' '

2 2

1
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d ' '

ˆ ˆ

'

ˆ

ˆ

ˆ
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2

(

'

a a a b

a a a b

a a
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a b a b

a b a b

a b

a b

H p V U
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V V V

U U

U

U

U

V

W V

nδ

δ δ

δ δ δ

≠

≠ ≠

= + + −

= = − ≡ ⋅

= − = − − −

  = − − − − − 
  

∑ ∑ ∑ ∑

∑ ∑∫ ∫

∑ ∑ ∑ ∑∫

∑ ∑∫ r r

r r r

r r r r r r r

r r r r r r r r r r

r r r r r r r r

r

ˆ( )n r' eliminates SI 

(self-interaction)

particle

density operator

( ) ( ){ }3 3 3ˆ ˆ ˆ(
1ˆ d ( ) d d ' ' '
2

) ) )ˆ ( (n nU nH VW δ= + ⋅ + − − −∫ ∫r r rr 'r r rr r r r

ˆ( )n r
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On the way to the mean-field Hamiltonian

ADDITIONAL NOTES

� Second, a specific many-body state is chosen, which defines 

the mean field:

Then, the operator of the (quantum) density fluctuation is defined:

The Hamiltonian, still exactly, becomes

( ){ }
( )

( ) ( ){ }

3 3

3 3

3 3

ˆ d ( ) d ' ( )

1
d d ' ' ( ) ( )

2

1
d d ' ' '
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ˆ
2
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ˆH V U n
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n

∆ δ∆
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− −
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∫ ∫

∫

∫

r r r' r r r'

r r r r
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r r' r
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r r r r r r

ˆ ˆ( ) ( ) ( )n n nΨ Ψ Ψ→ = ≡r r r
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

n n n

n n n n n n n n n n

∆
∆ ∆

= +

= + + −

r r r

r r' r r' r r' r r' r r'
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On the way to the mean-field Hamiltonian

ADDITIONAL NOTES

� In the last step, the third line containing exchange, correlation 

and the self-interaction correction is neglected. The mean-field 

Hamiltonian of the main lecture results:

( ){ }
( )

( ) ( ){ }

3 3

3 3

3 3

ˆ d ( ) d ' ( )

1
d d ' ' ( ) ( )

2

1
d d ' ' '

ˆ( )

ˆ
2

ˆ ˆ( ) ( ) ( )

ˆH V U n

U n

W n

n nU n

n

∆ δ∆

= + + − ⋅

− −

+ − − −

∫ ∫

∫

∫

r r r' r r r'

r r r r

r

r r' r

r r'

r r r r r r

REMARKS

• Second line … an additive constant compensation for double-

counting of the Hartree interaction energy

• In the original (variational) Hartree approximation, the self-interaction 

is not left out, leading to non-orthogonal Hartree orbitals

substitute back

and integrate

(ˆ( )) a

a

n δ= −∑ r rr( )HV r

BACK
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ADDITIONAL NOTES

Variational approach                                            
to the condensate ground state
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Variational estimate of the condensate properties

ADDITIONAL NOTES

���� VARIATIONAL PRINCIPLE OF QUANTUM MECHANICS

The ground state and energy are uniquely defined by

In words,         is a normalized symmetrical wave function of N particles. The 

minimum condition in the variational form is

���� HARTREE VARIATIONAL ANSATZ FOR THE CONDENSATE WAVE F.

For  our many-particle Hamiltonian,

the true ground state is approximated by the condensate for non-interacting 

particles (Hartree Ansatz, here identical with the symmetrized Hartree-Fock)

Sfor allˆ ˆ' '     ' , ' ' 1NE H H= Ψ Ψ ≤ Ψ Ψ Ψ ∈ Ψ Ψ =HHHH

'Ψ

equivalent with the SR ˆ ˆ0      H H Eδ Ψ Ψ = Ψ = Ψ

21 1ˆ ( ) ( ), ( ) ( )
2 2

a a a b

a a b

H p V U U g
m

δ
≠

= + + − = ⋅∑ ∑ ∑r r r r r

( ) ( ) ( ) ( ) ( )1 2 0 1 0 2 0 0, , , , ,p N p NΨ ϕ ϕ ϕ ϕ=r r r r r r r rK K L L
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{ } ( ) ( )

( ) ( )( ) ( )
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2 4
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δϕ ∆ϕ δϕ µ ϕ δϕ ϕ
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EEEE

Variational estimate of the condensate properties

ADDITIONAL NOTES

Here,      is a normalized real spinless orbital. It is a functional variable to be 

found from the variational condition 

Explicit calculation yields

Variation of energy with the use of a Lagrange multiplier:

This results into the GP equation derived here in the variational way:

0 0 0 0 0 0 0with ˆ] ] ] 0   ] ] 1 1 Hδ ϕ δ ϕ ϕ ϕ ϕ ϕ ϕ[ = Ψ[ Ψ[ = Ψ[ Ψ[ = ⇔ =EEEE

0ϕ
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2

2 2 43 3 3
0 0 0 0

1
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2 2
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m
ϕ ∇ϕ ϕ ϕ[ = + + −∫ ∫ ∫r r r r r r r

h
EEEE

( ) ( ) ( ) ( )22
0 0 0

1
( )

2
p V N g

m
ϕ ϕ µϕ + + = 

 
r r r r-1

eliminates self-interaction

BACK
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Variational estimate of the condensate properties

ADDITIONAL NOTES

���� ANNEX  Interpretation of the Lagrange multiplier µ
The idea is to identify it with the chemical potential. First, we modify the notation 

to express the particle number dependence

The first result is that µ is not the average energy per particle:

( )

( )

2 3 4
0 0 0 0 0 0

2 3 4
0 0 0 0 0from

1 1
/ ]/ 1 d

2 2

1
          the GPE 1 d

2

N N N N N N N N

N N N N N N
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ϕ ϕ ϕ ϕ ϕ ϕ

µ ϕ ϕ ϕ ϕ ϕ

= [ = + + −
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∫

∫

r

r

EEEE

( )

( ) ( ) ( ) ( )

2 3 4

22
0 0 0 0

1 1
] 1 d

2 2

1
], ( )

2

N

N N N N N N

N p V N g
m

E p V N g
m

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ µ ϕ

 [ = + + − 
 

 = [ + + = 
 

∫

-1

r

r r r r

EEEE
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Variational estimate of the condensate properties

ADDITIONAL NOTES

Compare now systems with N and N -1 particles:

0 1 0 1 0 1, 1] ] ]N N N N N N N NNN NE Eϕ µ µϕ ϕ µ − −− −≥[ = [ + = += [ +E EE EE EE E EEEE

µN … energy to remove a particle 
without relaxation of the condensate

use of the variational 
principle for GPE

In the "thermodynamic"asymptotics of large N, the inequality tends to equality. 

This only makes  sense, and can be proved, for g > 0.

Reminescent of the                       theorem in the HF theory of atoms. 

Derivation:
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( ) ( ) ( )( )
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1 12 3 4
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1 12 3 4
1 2 2

1 12 3 4
1 2 2

0
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1 1 2 d
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ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

µ ϕ ϕ

−

−

[ = + + −

[ = − + − + − −

− = + + − − − −

∫

∫

∫

r

r

r
144444444444424444444444443
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( ) ( )2 2 2 2 2 2
0 0

1 1
2 2

V m r m x y zω ω= ⋅ = + +r

Variational estimate of the condensate properties

ADDITIONAL NOTES

���� SCALING ANSATZ FOR A SPHERICAL PARABOLIC TRAP

The potential energy has the form

Without interactions, the GPE reduces to the SE for isotropic oscillator

The solution (for the ground state orbital) is

We (have used and) will need two integrals: 

( ) ( )2 2 2
0 0 0 0

31
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1

2
p m r
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ω ϕ ω ϕ + ⋅ = 

 
r rh
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2
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00 0 0 0 0 02
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2
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ϕ ω π

ω
−− ⋅
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h h
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2 2

2 2 2 3
1 2

1
2

d e , d e

u u

I u I u uσ σσ σ π σ σ π
+∞ +∞− −

−∞ −∞

= = = =∫ ∫
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The condensate orbital will be taken in the form

It is just like the ground state orbital  for the isotropic oscillator, but with a 

rescaled size. This is reminescent of the well-known scaling for the ground 

state of the helium atom.

Next, the total energy is calculated for this orbital

The solution (for) is

( ) ( )
2

2 1/ 4
3 2

0

1

2
e ,

r

b
A A bϕ π

−− ⋅
= =r

Variational estimate of the condensate properties

ADDITIONAL NOTES

SCALING ANSATZ
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For an explicit evaluation, we (have used and) will use the identities: 

The integrals, by the Fubini theorem, are a product of three:

Finally,

This expression is plotted in the figures in the main lecture.
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