Cold atoms

Lecture 6.
29 ${ }^{\text {th }}$ November, 2006

Preliminary plan/reality in the fall term

Lecture 1	Something about everything (see next slide)	Sep 22
\ldots	The textbook version of BEC in extended systems	

Lecture 2 thermodynamics, grand canonical ensemble, extended
Oct 4 gas: ODLRO, nature of the BE phase transition
Lecture 3 atomic clouds in the traps - independent bosons, what Oct 18 is BEC?, "thermodynamic limit", properties of OPDM
Lecture 4 atomic clouds in the traps - interactions, GP equation at Nov 1 zero temperature, variational prop., chem. potential
Lecture 5 Infinite systems: Bogolyubov theory Nov 15
Lecture 6 BEC and symmetry breaking, coherent states Nov 29

Lecture 7 Time dependent GP theory. Finite systems: BEC theory preserving the particle number

The class before last: Interacting atoms

L4: Scattering length, pseudopotential

Beyond the potential radius, say 3σ, the scattered wave propagates in free space

For small energies, the scattering is purely isotropic, the s-wave scattering. The outside wave is

$$
\psi \propto \frac{\sin \left(k r+\delta_{0}\right)}{r}
$$

For very small energies the radial part becomes just

$$
r-a_{s}, \quad a_{s} \ldots \text { the scattering length }
$$

This may be extrapolated also into the interaction sphere (we are not interested in the short range details)

Equivalent potential ("pseudopotential")

$$
\begin{array}{r}
U(r)=g \cdot \delta(\boldsymbol{r}) \\
g=\frac{4 \pi a_{s} \hbar^{2}}{m}
\end{array}
$$

The class before last:
Mean-field treatment of interacting atoms

L4: Many-body Hamiltonian and the Hartree approximation

$$
\hat{H}=\sum_{a} \frac{1}{2 m} p_{a}^{2}+V\left(\boldsymbol{r}_{a}\right)+\frac{1}{2} \sum_{a \neq b} \sum_{b} U\left(\boldsymbol{r}_{a}-\boldsymbol{r}_{b}\right)
$$

We start from the mean field approximation.
This is an educated way, similar to (almost identical with) the HARTREE APPROXIMATION we know for many electron systems.

Most of the interactions is indeed absorbed into the mean field and what remains are explicit quantum correlation corrections

$$
\begin{aligned}
& \hat{H}_{\mathrm{GP}}=\sum_{a} \frac{1}{2 m} p_{a}^{2}+V\left(\boldsymbol{r}_{a}\right)+V_{H}\left(\boldsymbol{r}_{a}\right) \\
& V_{H}\left(\boldsymbol{r}_{a}\right)=\int_{b} \mathrm{~d} \boldsymbol{r}_{b} U\left(\boldsymbol{r}_{a}-\boldsymbol{r}_{b}\right) n\left(\boldsymbol{r}_{b}\right)=g \cdot n\left(\boldsymbol{r}_{a}\right) \quad \text { self-consistent } \\
& n(\boldsymbol{r})=\sum_{\alpha} n_{\alpha}\left|\varphi_{\alpha}(\boldsymbol{r})\right|^{2} \\
&\left(\frac{1}{2 m} p^{2}+V(\boldsymbol{r})+V_{H}(\boldsymbol{r})\right) \varphi_{\alpha}(\boldsymbol{r})=E_{\alpha} \varphi_{\alpha}(\boldsymbol{r})
\end{aligned}
$$

L4: Gross-Pitaevskii equation at zero temperature

Consider a condensate. Then all occupied orbitals are the same and we have a single self-consistent equation for a single orbital

$$
\left(\frac{1}{2 m} p^{2}+V(\boldsymbol{r})+g N\left|\varphi_{0}(\boldsymbol{r})\right|^{2}\right) \varphi_{0}(\boldsymbol{r})=E_{0} \varphi_{0}(\boldsymbol{r})
$$

Putting

$$
\Psi(\boldsymbol{r})=\sqrt{N} \cdot \varphi_{0}(\boldsymbol{r})
$$

we obtain a closed equation for the order parameter:

The lowest level coincides with the chemical potential

$$
\left(\frac{1}{2 m} p^{2}+V(\boldsymbol{r})+g|\Psi(\boldsymbol{r})|^{2}\right) \Psi(\boldsymbol{r})=\mu \Psi(\boldsymbol{r})
$$

This is the celebrated Gross-Pitaevskii equation.
For a static condensate, the order parameter has ZERO PHASE.
Then

$$
\begin{aligned}
& \Psi(\boldsymbol{r})=\sqrt{N} \cdot \varphi_{0}(\boldsymbol{r})=\sqrt{n(\boldsymbol{r})} \\
& N[n]=N=\int \mathrm{d}^{3} \boldsymbol{r}|\Psi(\boldsymbol{r})|^{2}=\int \mathrm{d}^{3} \boldsymbol{r} \cdot n(\boldsymbol{r})=N
\end{aligned}
$$

Gross-Pitaevskii equation - homogeneous gas

The GP equation simplifies

$$
\left(-\frac{\hbar^{2}}{2 m} \Delta+g|\Psi(\boldsymbol{r})|^{2}\right) \Psi(\boldsymbol{r})=\mu \Psi(\boldsymbol{r})
$$

For periodic boundary conditions in a box with $V=L_{x} \cdot L_{y} \cdot L_{z}$

$$
\begin{aligned}
& \varphi_{0}(\boldsymbol{r})=\frac{1}{\sqrt{V}} \\
& \Psi(\boldsymbol{r})=\sqrt{N} \cdot \varphi_{0}(\boldsymbol{r})=\sqrt{\frac{N}{V}}=\sqrt{n} \\
& g|\Psi(\boldsymbol{r})|^{2} \Psi(\boldsymbol{r})=\mu \Psi(\boldsymbol{r}) \quad \ldots \text { GP equation } \\
& \left\lfloor\mu=g|\Psi(\boldsymbol{r})|^{2}=g n \mid\right. \\
& \left.\frac{E}{N}=\frac{1}{N} \int \mathrm{~d}^{3} \boldsymbol{r}\left\{\frac{\hbar^{2}}{2 m}(\ln)^{2}+\sqrt{2}\right)+\frac{1}{2} g n^{2}\right\}=\frac{1}{2} g n
\end{aligned}
$$

Previous class:

Field theoretic reformulation (second quantization)

L5: Field operator for spin-less bosons

Definition by commutation relations

$$
\left[\psi(\boldsymbol{r}), \psi^{\dagger}\left(\boldsymbol{r}^{\prime}\right)\right]=\delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right), \quad\left[\psi(\boldsymbol{r}), \psi\left(\boldsymbol{r}^{\prime}\right)\right]=0, \quad\left[\psi^{\dagger}(\boldsymbol{r}), \psi^{\dagger}\left(\boldsymbol{r}^{\prime}\right)\right]=0
$$

basis of single-particle states (κ complete set of quantum numbers) decomposition of the field operator

$$
\begin{aligned}
& \psi(\boldsymbol{r})=\sum \varphi_{\kappa}(\boldsymbol{r}) a_{\kappa}, \quad a_{\kappa}="\langle\kappa \mid \psi\rangle "=\int \mathrm{d}^{3} \varphi_{\kappa}^{*}(\boldsymbol{r}) \psi(\boldsymbol{r}) \\
& \psi^{\dagger}(\boldsymbol{r})=\sum \varphi_{\kappa}^{*}(\boldsymbol{r}) a_{\kappa}^{\dagger}
\end{aligned}
$$

commutation relations

$$
\left[a_{\kappa}, a_{\lambda}^{\dagger}\right]=\delta_{\kappa \lambda}, \quad\left[a_{\kappa}, a_{\lambda}\right]=0, \quad\left[a_{\kappa}^{\dagger}, a_{\lambda}^{\dagger}\right]=0
$$

Plane wave representation (BK normalization)

$$
\begin{aligned}
& \psi(\boldsymbol{r})= V^{-1 / 2} \sum \mathrm{e}^{\mathrm{i} \boldsymbol{k} \boldsymbol{r}} a_{\boldsymbol{k}}, \quad a_{\boldsymbol{k}}=V^{-1 / 2} \int \mathrm{~d}^{3} \boldsymbol{r} \mathrm{e}^{-\mathrm{i} \boldsymbol{k} r} \psi(\boldsymbol{r}) \\
& \psi^{\dagger}(\boldsymbol{r})=V^{-1 / 2} \sum \mathrm{e}^{-\mathrm{i} \boldsymbol{k} r} a_{\boldsymbol{k}}^{\dagger}=V^{-1 / 2} \sum \mathrm{e}^{\mathrm{i} \boldsymbol{k} r} a_{-\boldsymbol{k}}^{\dagger} \\
& {\left[a_{\boldsymbol{k}}, a_{\boldsymbol{k}^{\prime}}^{\dagger}\right]=\delta_{\boldsymbol{k} \boldsymbol{k}^{\prime}}, \quad\left[a_{\boldsymbol{k}}, a_{\boldsymbol{k}^{\prime}}\right]=0, \quad\left[a_{\boldsymbol{k}}^{\dagger}, a_{\boldsymbol{k}^{\prime}}^{\dagger}\right]=0 }
\end{aligned}
$$

L5: Operators

Additive observable

$$
X=\sum X_{j} \quad \rightarrow \quad X=\iint \mathrm{d}^{3} r \mathrm{~d}^{3} \boldsymbol{r}^{\prime} \psi^{\dagger}(\boldsymbol{r})\langle\boldsymbol{r}| X\left|\boldsymbol{r}^{\prime}\right\rangle \psi\left(\boldsymbol{r}^{\prime}\right)
$$

General definition of the OPDM

$$
\begin{aligned}
\langle X\rangle & \left.=\left\langle\iint \mathrm{d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime} \psi^{\dagger}(\boldsymbol{r})\langle\boldsymbol{r}| X \mid \boldsymbol{r}^{\prime}\right\rangle \psi\left(\boldsymbol{r}^{\prime}\right)\right\rangle=\iint \mathrm{d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime}\langle\boldsymbol{r}| X\left|\boldsymbol{r}^{\prime}\right\rangle \underbrace{\left\langle\psi^{\dagger}(\boldsymbol{r}) \psi\left(\boldsymbol{r}^{\prime}\right)\right\rangle}_{\left\langle\boldsymbol{r}^{\prime}\right| \rho|\boldsymbol{r}\rangle} \\
& \equiv \iint \mathrm{d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime}\langle\boldsymbol{r}| X\left|\boldsymbol{r}^{\prime}\right\rangle\left\langle\boldsymbol{r}^{\prime}\right| \boldsymbol{\rho}|\boldsymbol{r}\rangle=\operatorname{Tr} X \rho
\end{aligned}
$$

Particle number

$$
\begin{gathered}
N=\sum 1_{\mathrm{OP}, j} \rightarrow \quad N=\int \mathrm{d}^{3} \boldsymbol{r} \psi^{\dagger}(\boldsymbol{r}) \psi(\boldsymbol{r}) \\
N=\sum a_{\kappa}^{\dagger} a_{\kappa}
\end{gathered}
$$

Hamiltonian

$$
\begin{aligned}
H & =\sum_{a} \frac{1}{2 m} p_{a}^{2}+V\left(\boldsymbol{r}_{a}\right)+\frac{1}{2} \sum_{a \neq} \sum_{b} U\left(\boldsymbol{r}_{a}-\boldsymbol{r}_{b}\right) \\
& =\int \mathrm{d}^{3} \boldsymbol{r} \psi^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})\right) \psi(\boldsymbol{r})+\frac{1}{2} \iint \mathrm{~d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime} \psi^{\dagger}(\boldsymbol{r}) \psi^{\dagger}\left(\boldsymbol{r}^{\prime}\right) U\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \psi\left(\boldsymbol{r}^{\prime}\right) \psi(\boldsymbol{r})
\end{aligned}
$$

Previous class: Bogolyubov method

L5: Basic idea

Bogolyubov method

is devised for boson quantum fluids with weak interactions - at $T=0$ now

$$
\begin{array}{|cc|}
\hline \text { no interaction } & \text { weak interaction } \\
g=0 & g \neq 0 \\
N=N_{\mathrm{BE}}=\left\langle a_{0}^{\dagger} a_{0}\right\rangle \square 1 & N=N_{\mathrm{BE}}+\sum_{\boldsymbol{k} \neq 0}\left\langle a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}\right\rangle \approx N_{\mathrm{BE}} \square 1
\end{array}
$$

The condensate dominates.
Strange idea

$$
\begin{gathered}
N_{0}=\left\langle a_{0}^{\dagger} a_{0}\right\rangle \square 1 \Rightarrow\left\langle a_{0}^{\dagger} a_{0}\right\rangle \square a_{0}^{\dagger} a_{0}-a_{0} a_{0}^{\dagger} \Rightarrow \text { like } c \text {-numbers } \\
\boldsymbol{a}_{0} \approx \sqrt{N_{0}}, \quad \boldsymbol{a}_{0}^{\dagger} \approx \sqrt{N_{0}}
\end{gathered}
$$

$$
N=N_{0}+\sum_{k \neq 0} a_{k}^{\dagger} a_{k} \quad \ldots \text { mixture of } c \text {-numbers and } q \text {-numbers }
$$

L5: Hamiltonian of the homogeneous gas

$$
\begin{aligned}
& H=\sum \frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2} a_{k}^{\dagger} a_{k}+\frac{1}{2} V^{-1} \sum_{k k^{\prime} q} U_{q} a_{k+q}^{\dagger}, a_{k^{\prime} q}^{\dagger} a_{k^{\prime}} a_{k}, \\
& U_{k}=\int \mathrm{d}^{3} \boldsymbol{r} \boldsymbol{e}^{-\mathrm{i} k r} U(\boldsymbol{r})
\end{aligned}
$$

L5: Approximate Hamiltonian

Keep at most two particles out of the condensate

$$
H=\sum \frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+\frac{1}{2} V^{-1} \sum_{k k^{\prime} q} U_{q} a_{k+q}^{\dagger}, a_{\boldsymbol{k}^{\prime}-q}^{\dagger} a_{\boldsymbol{k}^{\prime}} a_{\boldsymbol{k}}
$$

$$
=\sum \frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+\frac{U N_{0}}{2 V} \sum_{\boldsymbol{k}}\left\{a_{\boldsymbol{k}}^{\dagger} a_{-\boldsymbol{k}}^{\dagger}+4 a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+a_{\boldsymbol{k}} a_{-\boldsymbol{k}}\right\}+\frac{U N_{0}^{2}}{2 V}
$$

$$
=\sum \frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+\frac{U N}{2 V} \sum_{\boldsymbol{k}}\left\{a_{\boldsymbol{k}}^{\dagger} a_{-\boldsymbol{k}}^{\dagger}+2 a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+a_{\boldsymbol{k}} a_{-\boldsymbol{k}}\right\}+\frac{U N^{2}}{2 V}
$$

L5: Bogolyubov transformation

Last rearrangement

$$
H=\frac{1}{2} \sum \underbrace{\left(\frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2}+g n\right)}_{\text {mean field }}\left\{a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+a_{-\boldsymbol{k}}^{\dagger} a_{-\boldsymbol{k}}\right\}+\frac{g n}{2} \sum_{\boldsymbol{k}} \underbrace{\left\{a_{\boldsymbol{k}}^{\dagger} a_{-\boldsymbol{k}}^{\dagger}+a_{\boldsymbol{k}} a_{-\boldsymbol{k}}\right\}}_{\text {anomalous }}+\frac{U N^{2}}{2 V}
$$

Conservation properties: momentum ... YES, particle number ... NO
NEW FIELD OPERATORS notice momentum conservation!!

$$
\begin{array}{c|c}
b_{\boldsymbol{k}}=u_{\boldsymbol{k}} a_{\boldsymbol{k}}+v_{k} a_{-k}^{\dagger} & \begin{array}{c}
a_{\boldsymbol{k}}=u_{\boldsymbol{k}} b_{\boldsymbol{k}}-v_{\boldsymbol{k}} b_{-\boldsymbol{k}}^{\dagger} \\
b_{-k}^{\dagger}=v_{k} a_{\boldsymbol{k}}+u_{k} a_{-k}^{\dagger}
\end{array} a_{-\boldsymbol{k}}^{\dagger}=-v_{\boldsymbol{k}} b_{\boldsymbol{k}}+u_{\boldsymbol{k}} b_{-\boldsymbol{k}}^{\dagger}
\end{array}
$$

requirements
(1) New operators should satisfy the boson commutation rules

$$
\begin{gathered}
{\left[b_{k}, b_{k^{\prime}}^{\dagger}\right]=\delta_{\boldsymbol{k} \boldsymbol{k}^{\prime}}, \quad\left[b_{\boldsymbol{k}}, b_{\boldsymbol{k}^{\prime}}\right]=0, \quad\left[b_{\boldsymbol{k}}^{\dagger}, b_{\boldsymbol{k}^{\prime}}^{\dagger}\right]=0} \\
\text { iff } \quad u_{k}^{2}-v_{k}^{2}=1
\end{gathered}
$$

(2) When introduced into the Hamiltonian, the anomalous terms have to vanish

L5: Bogolyubov transformation - result

Without quoting the transformation matrix

$$
\begin{aligned}
& H=\frac{1}{2} \sum_{\text {independent quasiparticles }} \underbrace{\varepsilon(\boldsymbol{k})\left\{a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+a_{-\boldsymbol{k}}^{\dagger} a_{-\boldsymbol{k}}\right\}}+\frac{U N^{2}}{2 V}+\text { higher order constant } \\
& \varepsilon(\boldsymbol{k})=\sqrt{\left(\frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2}+g n\right)^{2}-(g n)^{2}}=\sqrt{\frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2}} \sqrt{\frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2}+2 g n}
\end{aligned}
$$

L5: More about the sound part of the dispersion law

Entirely dependent on the interactions, both the magnitude of the velocity and the linear frequency range determined by $g$$$
\omega(\boldsymbol{k})=c \cdot k
$$

Can be shown to really be a sound:

$$
c=" \sqrt{\frac{\kappa}{\rho}} "=\sqrt{\frac{V \partial_{V V} E}{m \cdot n}}, \quad E=\frac{U N^{2}}{2 V}+\cdots
$$

$$
c=\sqrt{\frac{g n}{m}}
$$

Even a weakly interacting gas exhibits superfluidity; the ideal gas does not.
The phonons are actually Goldstone modes corresponding to a broken symmetry
The dispersion law has no roton region, contrary to the reality
The dispersion law bends upwards \Rightarrow quasi-particles are unstable, can decay

Particles and quasi-particles

At zero temperature, there are no quasi-particles, just the condensate.
Things are different with the true particles. Not all particles are in the condensate, but they are not thermally agitated in an incoherent way, they are a part of the fully coherent ground state

$$
\left\langle a_{k}^{\dagger} a_{k}\right\rangle=\left\langle\left(-v_{k} b_{k}+u_{\boldsymbol{k}} b_{-k}^{\dagger}\right)\left(u_{\boldsymbol{k}} b_{-k}-v_{k} b_{k}^{\dagger}\right)\right\rangle=v_{k}^{2} \neq 0
$$

The total amount of the particles outside of the condensate is

$$
\frac{N-N_{0}}{N} \approx \frac{8}{3 \sqrt{\pi}} \underbrace{a_{s}^{3 / 2} n^{1 / 2}}_{\sqrt{a_{s}^{3} n}} \quad\left(\begin{array}{c}
\text { the gas parameter } \\
\text { is } \\
\text { the expansion variable }
\end{array}\right)
$$

Trying to understand the Bogolyubov method

L5: Action of the field operators in the Fock space

 basis of single-particle states$\{|\kappa\rangle\} \quad\langle\kappa \mid \beta\rangle=\delta_{\kappa \beta} \quad|\psi\rangle=\sum|\kappa\rangle\langle\kappa \mid \psi\rangle, \quad \psi \quad \ldots$ single particle state
$\langle\boldsymbol{r} \mid \kappa\rangle=\varphi_{\kappa}(\boldsymbol{r}) \quad\langle\boldsymbol{r} \mid \psi\rangle=\sum\langle\boldsymbol{r} \mid \kappa\rangle\langle\kappa \mid \psi\rangle$

FOCK SPACE space of many particle states
basis states ... symmetrized products of single-particle states for bosons specified by the set of occupation numbers $\mathbf{0 , 1 , 2 , 3 , \ldots}$ $\left\{\kappa_{1}, \kappa_{2}, \kappa_{3}, \ldots, \kappa_{p}, \ldots\right\}$
$\Psi_{\left\{n_{k}\right\}}=\left|n_{1}, n_{2}, n_{3}, \ldots, n_{p}, \ldots\right\rangle \quad n$-particle state $n=\Sigma n_{p}$
$a_{p}^{\dagger}\left|n_{1}, n_{2}, n_{3}, \ldots, n_{p}, \ldots\right\rangle=\sqrt{n_{p}+1}\left|n_{1}, n_{2}, n_{3}, \ldots, n_{p}+1, \ldots\right\rangle$
$a_{p}\left|n_{1}, n_{2}, n_{3}, \ldots, n_{p}, \ldots\right\rangle=\sqrt{n_{p}}\left|n_{1}, n_{2}, n_{3}, \ldots, n_{p}-1, \ldots\right\rangle$

Average values of the field operators in the Fock states

$$
\begin{aligned}
& a_{p}^{\dagger}\left|n_{1}, n_{2}, n_{3}, \ldots, n_{p}, \ldots\right\rangle=\sqrt{n_{p}+1}\left|n_{1}, n_{2}, n_{3}, \ldots, n_{p}+1, \ldots\right\rangle \\
& a_{p}\left|n_{1}, n_{2}, n_{3}, \ldots, n_{p}, \ldots\right\rangle=\sqrt{n_{p}}\left|n_{1}, n_{2}, n_{3}, \ldots, n_{p}-1, \ldots\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle n_{1}, n_{2}, n_{3}, \ldots, n_{p}, \ldots\right| a_{p}\left|n_{1}, n_{2}, n_{3}, \ldots, n_{p}, \ldots\right\rangle= \\
& \left\langle n_{1}, n_{2}, n_{3}, \ldots, n_{p}, \ldots\right| \sqrt{n_{p}}\left|n_{1}, n_{2}, n_{3}, \ldots, n_{p}-1, \ldots\right\rangle=0
\end{aligned}
$$

Off-diagonal elements only!!!

L5: Hamiltonian conserves the particle number

Particle number conservation

$$
[H, N]=0
$$

Equilibrium density operators and the ground state

$$
P=P(H), \quad[N, P]=0
$$

Typical selection rule

$$
\langle\psi(\boldsymbol{r})\rangle=\operatorname{Tr} \psi(\boldsymbol{r}) P=0
$$

is a consequence of the gauge invariance of the $1^{\text {st }}$ kind:

$$
\operatorname{Tr} \psi P=\operatorname{Tr} \psi \mathrm{e}^{\mathrm{i} \varphi N} P \mathrm{e}^{-\mathrm{i} \varphi N}=\operatorname{Tr}^{-\mathrm{i} \varphi N} \psi \mathrm{e}^{\mathrm{i} \varphi N} P=\mathrm{e}^{-\mathrm{i} \varphi} \operatorname{Tr} \psi P
$$

L5: Hamiltonian conserves the particle number

Particle number conservation

$$
[H, N]=0
$$

Equilibrium density operators and the ground state

$$
P=P(H), \quad[N, P]=0
$$

Typical selection rule

$$
\langle\psi(\boldsymbol{r})\rangle=\operatorname{Tr} \psi(\boldsymbol{r}) P=0
$$

is a consequence of the gauge invariance of the $1^{\text {st }}$ kind:

$$
\operatorname{Tr} \psi P=\operatorname{Tr} \psi \mathrm{e}^{\mathrm{i} \varphi N} P \mathrm{e}^{-\mathrm{i} \varphi N}=\operatorname{Tr}^{-\mathrm{i} \varphi N} \psi \mathrm{e}^{\mathrm{i} \varphi N} P=\mathrm{e}^{-\mathrm{i} \varphi} \operatorname{Tr} \psi P
$$

This is at odds with the Bogolyubov idea

$$
a_{0} \approx \sqrt{N_{0}}, \quad a_{0}^{\dagger} \approx \sqrt{N_{0}}
$$

which leads to

$$
\left\langle a_{0}\right\rangle \approx \sqrt{N_{0}}, \quad\left\langle a_{0}^{\dagger}\right\rangle \approx \sqrt{N_{0}}
$$

L5: Hamiltonian conserves the particle number

Particle number conservation

$$
[H, N]=0
$$

Equilibrium density operators and the ground state

$$
P=P(H), \quad[N, P]=0
$$

Typical selection rule

$$
\langle\psi(\boldsymbol{r})\rangle=\operatorname{Tr} \psi(\boldsymbol{r}) P=0
$$

is a consequence of the gauge invariance of the $1^{\text {st }}$ kind:

$$
\operatorname{Tr} \psi P=\operatorname{Tr} \psi \mathrm{e}^{\mathrm{i} \varphi N} P \mathrm{e}^{-\mathrm{i} \varphi N}=\operatorname{Tr}^{-\mathrm{i} \varphi N} \psi \mathrm{e}^{\mathrm{i} \varphi N} P=\mathrm{e}^{-\mathrm{i} \varphi} \operatorname{Tr} \psi P
$$

This is at odds with the Bogolyubov idea

$$
a_{0} \approx \sqrt{N_{0}}, \quad a_{0}^{\dagger} \approx \sqrt{N_{0}}
$$

which leads to

$$
\left\langle a_{0}\right\rangle \approx \sqrt{N_{0}}, \quad\left\langle a_{0}^{\dagger}\right\rangle \approx \sqrt{N_{0}}
$$

Perhaps the ground state does not conserve the particle number??

First try:
Coherent ground state

Reformulation of the Bogolyubov requirements

Bogolyubov himself and his faithful followers, like LL IX, never speak of the many particle wave function. Looks like he wanted

$$
a_{0}|\Psi\rangle=\Lambda|\Psi\rangle, \quad \Lambda=\sqrt{N} \mathrm{e}^{\mathrm{i} \phi}, \text { so that }
$$

$$
\left\langle a_{0}\right\rangle=\Lambda \quad \text { The ground state }
$$

This is in contradiction with the rule derived above, $\left\langle a_{0}\right\rangle=0$
The above equation is known and defines the ground state to be a coherent state with the parameter Λ
For a coherent state, there is no problem with the particle number conservation. It has a rather uncertain particle number, but a well defined phase:

$$
\begin{array}{ll}
|\Psi\rangle=|\Lambda\rangle=\mathrm{e}^{-|\Lambda|^{2} / 2} \cdot \mathrm{e}^{\Lambda a_{0}^{\dagger}}|\mathrm{vac}\rangle & \text { explicit form } \\
\langle\Lambda| a_{0}|\Lambda\rangle=\Lambda & \text { Bogolyubov condition } \\
\langle\Lambda| a_{0}^{\dagger} a_{0}|\Lambda\rangle=|\Lambda|^{2} & \left\langle n_{0}\right\rangle=N \\
\langle\Lambda| a_{0}^{\dagger} a_{0} a_{0}^{\dagger} a_{0}|\Lambda\rangle=|\Lambda|^{4}+|\Lambda|^{2} & \left\langle n_{0}^{2}\right\rangle=N^{2}+N \\
\Delta N_{0}=|\Lambda| & \Delta n_{0}=\sqrt{N}=\left\langle n_{0}\right\rangle / \sqrt{N} \square\left\langle n_{0}\right\rangle
\end{array}
$$

New vacuum and the shifted field operators

Does all that make sense? Try to work in the full Fock space F rather in its fixed N sub-space N_{N} This implies using the "grand Hamiltonian"

$$
H-\mu N
$$

Let us define the shifted field operator

$$
\begin{aligned}
& b_{0}=a_{0}-\Lambda, \quad b_{0}^{\dagger}=a_{0}^{\dagger}-\Lambda^{*} \\
& {\left[b_{0}, b_{0}^{\dagger}\right]=1, \quad b_{0}|\Psi\rangle=0 \quad \ldots \text { new vacuum }}
\end{aligned}
$$

What next? Example: BE system without interactions - ideal Bose gas

$$
\begin{aligned}
& (H-\mu N)|\Psi\rangle=\sum\left(\frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2}-\mu\right) a_{k}^{\dagger} a_{k}|\Psi\rangle \\
& =-\mu a_{0}^{\dagger} a_{0}|\Psi\rangle=0 \quad \text { for } \quad \mu=0
\end{aligned}
$$

Here, $|\Psi\rangle$ is a true eigenstate, μ coincides with the previous result for the particle number conserving state. Two different, but macroscopically equivalent possibilities.

General case: the approximate vacuum
$H=\int \mathrm{d}^{3} \boldsymbol{r} \psi^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})\right) \psi(\boldsymbol{r})+\frac{1}{2} \iint \mathrm{~d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime} \psi^{\dagger}(\boldsymbol{r}) \psi^{\dagger}\left(\boldsymbol{r}^{\prime}\right) U\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \psi\left(\boldsymbol{r}^{\prime}\right) \psi(\boldsymbol{r})$
Trial function ... a coherent state

$$
g \delta\left(r-r^{\prime}\right)
$$

$$
\psi(r)|\Psi\rangle=\Psi(r)|\Psi\rangle
$$

We should minimize the average grand energy

$$
\begin{aligned}
\langle\Psi| H-\mu N|\Psi\rangle & =\int \mathrm{d}^{3} \boldsymbol{r} \Psi^{*}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})-\mu\right) \Psi(\boldsymbol{r}) \\
& +\frac{1}{2} \iint \mathrm{~d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime} \Psi^{*}(\boldsymbol{r}) \Psi(\boldsymbol{r}) U\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \Psi^{*}\left(\boldsymbol{r}^{\prime}\right) \Psi(\boldsymbol{r})
\end{aligned}
$$

This is precisely the energy functional of the Hartree type we met already and the Euler-Lagrange equation is the good old Gross-Pitaevski equation

$$
\left(\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})+g|\Psi(\boldsymbol{r})|^{2}\right) \Psi(\boldsymbol{r})=\mu \Psi(\boldsymbol{r})
$$

with the normalization condition

$$
N[n]=N=\int \mathrm{d}^{3} \boldsymbol{r}|\Psi(\boldsymbol{r})|^{2}
$$

General case: the Bogolyubov transformation
Define

$$
\begin{aligned}
& \eta(\boldsymbol{r})=\psi(\boldsymbol{r})-\Psi(\boldsymbol{r}), \quad \eta^{\dagger}(\boldsymbol{r})=\psi^{\dagger}(\boldsymbol{r})-\Psi^{*}(\boldsymbol{r}) \\
& {\left[\eta(\boldsymbol{r}), \eta^{\dagger}\left(\boldsymbol{r}^{\prime}\right)\right]=\delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right), \quad \eta(\boldsymbol{r})|\Psi\rangle=0}
\end{aligned}
$$

If we keep only the terms not more than quadratic in the new operators, the approximate Hamiltonian becomes

$$
\begin{aligned}
H= & \int \mathrm{d}^{3} \boldsymbol{r} \eta^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})-\mu\right) \eta(\boldsymbol{r}) \\
& +\frac{g}{2} \int \mathrm{~d}^{3} \boldsymbol{r} n_{\mathrm{BE}}(\boldsymbol{r})\left\{\eta^{\dagger}(\boldsymbol{r}) \eta^{\dagger}(\boldsymbol{r})+4 \eta^{\dagger}(\boldsymbol{r}) \eta(\boldsymbol{r})+\eta(\boldsymbol{r}) \eta(\boldsymbol{r})\right\}
\end{aligned}
$$

Now eliminate the anomalous terms by the Bogolyubov transformation

$$
\begin{array}{lc}
\hline \varphi(\boldsymbol{r})=u(\boldsymbol{r}) \eta(\boldsymbol{r})+v(\boldsymbol{r}) \eta^{\dagger}(\boldsymbol{r}) & \varphi^{\dagger}(\boldsymbol{r})=v^{*}(\boldsymbol{r}) \eta(\boldsymbol{r})+u^{*}(\boldsymbol{r}) \eta^{\dagger}(\boldsymbol{r}) \\
\left.\hline \varphi(\boldsymbol{r}), \varphi^{\dagger}\left(\boldsymbol{r}^{\prime}\right)\right]=\delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \quad \text { iff } & |u(\boldsymbol{r})|^{2}-|v(\boldsymbol{r})|^{2}=1 \\
\eta(\boldsymbol{r})=u^{*}(\boldsymbol{r}) \varphi(\boldsymbol{r})-v(\boldsymbol{r}) \varphi^{\dagger}(\boldsymbol{r}) & \eta^{\dagger}(\boldsymbol{r})=-v^{*}(\boldsymbol{r}) \varphi(\boldsymbol{r})+u(\boldsymbol{r}) \varphi^{\dagger}(\boldsymbol{r})
\end{array}
$$

Second try:
 Quasi-averages and broken symmetry

Zero temperature limit of the grand canonical ensemble

$$
\begin{aligned}
\mathscr{P} & =Z \mathrm{e}^{-\beta(\mathcal{H}-\mu \mathcal{N})} \\
& =Z \sum \mathrm{e}^{-\beta\left(E_{\alpha N}-\mu N\right)} \\
& \rightarrow Z \sum \mathrm{e}^{-\beta\left(E_{0 \tilde{N}}-\mu \tilde{N}\right)}
\end{aligned}
$$

Picks up the correct ground state energy, all ground states are taken with equal statistical weight

Degenerate ground state

Characterized by a classical order parameter ... macroscopic quantity
Typical cause: a symmetry degeneracy
Everything depends on the system characteristic parameters
Ginsburg - Landau phenomenological model

stable equilibrium non-degenerate

$$
a<0
$$

metastable equilibrium degenerate

Degenerate ground state

Characterized by a classical order parameter ... macroscopic quantity
Typical cause: a symmetry degeneracy
Everything depends on the system characteristic parameters
Ginsburg - Landau phenomenological model

stable equilibrium non-degenerate
metastable equilibrium degenerate

Rovnovážná struktura molekul AB_{3}

U adiabatická potenciální energie

The end

ADDITIONAL NOTES

On the way to the mean-field Hamiltonian

ADDITIONAL NOTES

On the way to the mean-field Hamiltonian
(1) First, the following exact transformations are performed

$$
\begin{aligned}
& \hat{H}=\sum_{a} \frac{1^{\hat{W}}}{2 m} p_{a}^{2}+\sum_{a} V\left(\boldsymbol{r}_{a}\right)+\frac{1}{2} \sum_{a \neq} \sum_{b} \hat{U} U\left(\boldsymbol{r}_{a}-\boldsymbol{r}_{b}\right) \\
& \hat{V}=\sum_{a} V\left(\boldsymbol{r}_{a}\right)=\int^{3} \mathrm{~d}^{3} \boldsymbol{r} V(\boldsymbol{r}) \sum_{a} \boldsymbol{\delta}\left(\boldsymbol{r}-\boldsymbol{r}_{a}\right) \equiv \int \mathrm{d}^{3} \boldsymbol{r} V(\boldsymbol{r}) \cdot \hat{n}(\boldsymbol{r}) \\
& \hat{U}=\frac{1}{2} \sum_{a \neq} \sum_{b} U\left(\boldsymbol{r}_{a}-\boldsymbol{r}_{b}\right)=\frac{1}{2} \int \mathrm{~d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime} U\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \sum_{a \neq b} \sum_{\text {density operator }} \boldsymbol{\delta}\left(\boldsymbol{r}-\boldsymbol{r}_{a}\right) \boldsymbol{\delta}\left(\boldsymbol{r}^{\prime}-\boldsymbol{r}_{b}\right) \\
&=\frac{1}{2} \int^{\text {particle }} \mathrm{d}^{3} \mathbf{r} \mathrm{~d}^{3} \mathbf{r}^{\prime} U\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \sum_{a} \boldsymbol{\delta}\left(\boldsymbol{r}-\boldsymbol{r}_{a}\right)\left\{\sum_{b} \boldsymbol{\delta}\left(\boldsymbol{r}^{\prime}-\boldsymbol{r}_{b}\right)-\boldsymbol{\delta}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)\right\} \\
& \hat{n}(\boldsymbol{r})
\end{aligned}
$$

$$
\hat{H}=\hat{W}+\int \mathrm{d}^{3} \boldsymbol{r} V(\boldsymbol{r}) \cdot \hat{n}(\boldsymbol{r})+\frac{1}{2} \int \mathrm{~d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime} U\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \hat{n}(\boldsymbol{r})\left\{\hat{n}\left(\boldsymbol{r}^{\prime}\right)-\delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)\right\}
$$

ADDITIONAL NOTES

On the way to the mean-field Hamiltonian
(2) Second, a specific many-body state is chosen, which defines the mean field:

$$
\Psi \rightarrow n(\boldsymbol{r})=\langle\hat{n}(\boldsymbol{r})\rangle \equiv\langle\Psi| \hat{n}(\boldsymbol{r})|\Psi\rangle
$$

Then, the operator of the (quantum) density fluctuation is defined:

$$
\begin{aligned}
\hat{n}(\boldsymbol{r}) & =n(\boldsymbol{r})+\Delta \hat{n}(\boldsymbol{r}) \\
\hat{n}(\boldsymbol{r}) \hat{n}\left(\boldsymbol{r}^{\prime}\right) & =\hat{n}(\boldsymbol{r}) n\left(\boldsymbol{r}^{\prime}\right)+n(\boldsymbol{r}) \hat{n}\left(\boldsymbol{r}^{\prime}\right)+\Delta \hat{n}(\boldsymbol{r}) \Delta \hat{n}\left(\boldsymbol{r}^{\prime}\right)-n(\boldsymbol{r}) n\left(\boldsymbol{r}^{\prime}\right)
\end{aligned}
$$

The Hamiltonian, still exactly, becomes

$$
\begin{aligned}
\hat{H} & =\hat{W}+\int \mathrm{d}^{3} \boldsymbol{r}\left\{V(\boldsymbol{r})+\int \mathrm{d}^{3} \boldsymbol{r}^{\prime} U\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) n\left(\boldsymbol{r}^{\prime}\right)\right\} \cdot \hat{n}(\boldsymbol{r}) \\
& -\frac{1}{2} \int \mathrm{~d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime} U\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) n(\boldsymbol{r}) n\left(\boldsymbol{r}^{\prime}\right) \\
& +\frac{1}{2} \int \mathrm{~d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime} U\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)\left\{\Delta \hat{n}(\boldsymbol{r}) \Delta \hat{n}\left(\boldsymbol{r}^{\prime}\right)-\hat{n}(\boldsymbol{r}) \boldsymbol{\delta}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)\right\}
\end{aligned}
$$

ADDITIONAL NOTES

On the way to the mean-field Hamiltonian

(3) In the last step, the third line containing exchange, correlation and the self-interaction correction is neglected. The mean-field Hamiltonian of the main lecture results:

REMARKS

- Second line ... an additive constant compensation for doublecounting of the Hartree interaction energy
- In the original (variational) Hartree approximation, the self-interaction is not left out, leading to non-orthogonal Hartree orbitals

ADDITIONAL NOTES

Variational approach to the condensate ground state

ADDITIONAL NOTES

Variational estimate of the condensate properties

(1) VARIATIONAL PRINCIPLE OF QUANTUM MECHANICS

The ground state and energy are uniquely defined by

$$
E=\langle\Psi| \hat{H}|\Psi\rangle \leq\left\langle\Psi^{\prime}\right| \hat{H}\left|\Psi^{\prime}\right\rangle \quad \text { for all }\left|\Psi^{\prime}\right\rangle \in \mathcal{H}_{N}^{\mathrm{S}},\left\langle\Psi^{\prime} \mid \Psi^{\prime}\right\rangle=1
$$

In words, $\left|\Psi^{\prime}\right\rangle$ is a normalized symmetrical wave function of N particles. The minimum condition in the variational form is

$$
\delta\langle\Psi| \hat{H}|\Psi\rangle=0 \quad \text { equivalent with the } \mathrm{SR} \quad \hat{H}|\Psi\rangle=E|\Psi\rangle
$$

(2) HARTREE VARIATIONAL ANSATZ FOR THE CONDENSATE WAVE F.

For our many-particle Hamiltonian,

$$
\hat{H}=\sum_{a} \frac{1}{2 m} p_{a}^{2}+V\left(\boldsymbol{r}_{a}\right)+\frac{1}{2} \sum_{a \neq} \sum_{b} U\left(\boldsymbol{r}_{a}-\boldsymbol{r}_{b}\right), \quad U(\boldsymbol{r})=g \cdot \boldsymbol{\delta}(\boldsymbol{r})
$$

the true ground state is approximated by the condensate for non-interacting particles (Hartree Ansatz, here identical with the symmetrized Hartree-Fock)

$$
\Psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{p}, \ldots, \boldsymbol{r}_{N}\right)=\varphi_{0}\left(\boldsymbol{r}_{1}\right) \varphi_{0}\left(\boldsymbol{r}_{2}\right) \cdots \varphi_{0}\left(\boldsymbol{r}_{p}\right) \cdots \varphi_{0}\left(\boldsymbol{r}_{N}\right)
$$

ADDITIONAL NOTES

Variational estimate of the condensate properties

Here, φ_{0} is a normalized real spinless orbital. It is a functional variable to be found from the variational condition

$$
\delta \mathcal{E}\left[\varphi_{0}\right]=\delta\left\langle\Psi\left[\varphi_{0}\right]\right| \hat{H}\left|\Psi\left[\varphi_{0}\right]\right\rangle=0 \quad \text { with }\left\langle\Psi\left[\varphi_{0}\right] \mid \Psi\left[\varphi_{0}\right]\right\rangle=1 \Leftrightarrow\left\langle\varphi_{0} \mid \varphi_{0}\right\rangle=1
$$

Explicit calculation yields
$\mathcal{E}\left[\varphi_{0}\right]=\frac{\hbar^{2}}{2 m} N \int \mathrm{~d}^{3} \boldsymbol{r}\left(\nabla \varphi_{0}(\boldsymbol{r})\right)^{2}+N \int \mathrm{~d}^{3} \boldsymbol{r} V(\boldsymbol{r})\left(\varphi_{0}(\boldsymbol{r})\right)^{2}+\frac{1}{2} N(N-1) g \int \mathrm{~d}^{3} \boldsymbol{r}\left(\varphi_{0}(\boldsymbol{r})\right)^{4}$
Variation of energy with the use of a Lagrange multiplier:

$$
\boldsymbol{\delta}\left\{N^{-1} \mathcal{E}\left[\varphi_{0}\right]-\mu\left\langle\varphi_{0} \mid \varphi_{0}\right\rangle\right\} \quad \varphi_{0}=\varphi_{0}(r), \delta \varphi_{0}=\delta \varphi_{0}(r)
$$

$=\frac{2 \hbar^{2}}{2 m} \int \mathrm{~d}^{3} \boldsymbol{r} \delta \varphi_{0} \cdot\left(-\Delta \varphi_{0}\right)+2 \int \mathrm{~d}^{3} \boldsymbol{r} \delta \varphi_{0} \cdot(V(\boldsymbol{r})-\mu) \varphi_{0}+\frac{4}{2}(N-1) g \int \mathrm{~d}^{3} \boldsymbol{r} \delta \varphi_{0} \cdot \varphi_{0}{ }^{3}$
This results into the GP equation derived here in the variational way:

$$
\left(\frac{1}{2 m} p^{2}+V(\boldsymbol{r})+(N-\underset{\sim}{-1}) g\left|\varphi_{0}(\boldsymbol{r})\right|^{2}\right) \varphi_{0}(\boldsymbol{r})=\mu \varphi_{0}(\boldsymbol{r})
$$

ADDITIONAL NOTES

Variational estimate of the condensate properties

(2) ANNEX Interpretation of the Lagrange multiplier μ

The idea is to identify it with the chemical potential. First, we modify the notation to express the particle number dependence

$$
\begin{aligned}
& \mathcal{E}_{N}[\varphi]=N\left\{\langle\varphi| \frac{1}{2 m} p^{2}|\varphi\rangle+\langle\varphi| V|\varphi\rangle+\frac{1}{2}(N-1) g \int \mathrm{~d}^{3} \boldsymbol{r} \varphi^{4}\right\} \\
& E_{N}=\mathcal{E}_{N}\left[\varphi_{0 N}\right], \quad\left(\frac{1}{2 m} p^{2}+V(\boldsymbol{r})+(N-1) g\left|\varphi_{0 N}(\boldsymbol{r})\right|^{2}\right) \varphi_{0}(\boldsymbol{r})=\mu_{N} \varphi_{0 N}(\boldsymbol{r})
\end{aligned}
$$

The first result is that μ is not the average energy per particle:
$E_{N} / N=\mathcal{E}_{N}\left[\varphi_{0 N}\right] / N=\left\langle\varphi_{0 N}\right| \frac{1}{2 m} p^{2}\left|\varphi_{0 N}\right\rangle+\left\langle\varphi_{0 N}\right| V\left|\varphi_{0 N}\right\rangle+\frac{1}{2}(N-1) g \int \mathrm{~d}^{3} \boldsymbol{r} \varphi_{0 N}{ }^{4}$
from the GPE $\quad \mu_{N}=\left\langle\varphi_{0 N}\right| \frac{1}{2 m} p^{2}\left|\varphi_{0 N}\right\rangle+\left\langle\varphi_{0 N}\right| V\left|\varphi_{0 N}\right\rangle+(N-1) g \int \mathrm{~d}^{3} r \varphi_{0 N}^{4}$

ADDITIONAL NOTES

Variational estimate of the condensate properties

Compare now systems with N and $N-1$ particles:

$$
E_{N}=\underbrace{\mathcal{E}_{N}\left[\varphi_{0 N}\right]=\mathcal{E}_{N-1}\left[\varphi_{0 N}\right]+\mu_{N}} \geq \underbrace{\mathcal{E}_{N-1}\left[\varphi_{0, N-1}\right]+\mu_{N}}=E_{N-1}+\mu_{N}
$$

use of the variational principle for GPE

In the "thermodynamic"asymptotics of large N, the inequality tends to equality.
This only makes sense, and can be proved, for $g>0$.

Reminescent of the Derivation:

$$
\begin{aligned}
\mathcal{E}_{N}[\varphi] & =\quad N\langle\varphi| \frac{1}{2 m} p^{2}|\varphi\rangle+\quad N\langle\varphi| V|\varphi\rangle+\frac{1}{2} N(N-1) g \int \mathrm{~d}^{3} \boldsymbol{r} \varphi^{4} \\
\mathcal{E}_{N-1}[\varphi] & = \\
\mathcal{E}_{N}-\mathcal{E}_{N-1} & =\underbrace{\langle\varphi-1)\langle\varphi| \frac{1}{2 m} p^{2}|\varphi\rangle+(N-1)\langle\varphi| V|\varphi\rangle+\frac{1}{2}(N-1)(N-2) g \int \mathrm{~d}^{3} \boldsymbol{r} \varphi^{4}|\varphi\rangle+\langle\varphi| V|\varphi\rangle+\frac{1}{2}(N(N-1)-(N-1)(N-2)) g \int \mathrm{~d}^{3} \boldsymbol{r} \varphi^{4}}_{\mu_{N} \text { for } \varphi \mapsto \varphi_{0 N}}
\end{aligned}
$$

ADDITIONAL NOTES

Variational estimate of the condensate properties

(3) SCALING ANSATZ FOR A SPHERICAL PARABOLIC TRAP

The potential energy has the form

$$
V(\boldsymbol{r})=\frac{1}{2} m \omega_{0}^{2} \cdot r^{2}=\frac{1}{2} m \omega_{0}^{2}\left(x^{2}+y^{2}+z^{2}\right)
$$

Without interactions, the GPE reduces to the SE for isotropic oscillator

$$
\left(\frac{1}{2 m} p^{2}+\frac{1}{2} m \omega_{0}^{2} \cdot r^{2}\right) \varphi_{0}(\boldsymbol{r})=\frac{3}{2} \hbar \omega_{0} \varphi_{0}(\boldsymbol{r})
$$

The solution (for the ground state orbital) is

$$
\varphi_{00}(\boldsymbol{r})=A_{0}^{3} \mathrm{e}^{-\frac{1}{2} \cdot \frac{r^{2}}{a_{0}^{2}}}, \quad a_{0}=\sqrt{\frac{\hbar}{m \omega_{0}}}, \quad \hbar \omega_{0}=\frac{\hbar^{2}}{m a_{0}^{2}} \quad A_{0}=\left(a_{0}^{2} \pi\right)^{-1 / 4}
$$

We (have used and) will need two integrals:

$$
I_{1}(\sigma)=\int_{-\infty}^{+\infty} \mathrm{d} u \mathrm{e}^{-\frac{u^{2}}{\sigma^{2}}}=\sigma \sqrt{\pi}, \quad I_{2}(\sigma)=\int_{-\infty}^{+\infty} \mathrm{d} u \mathrm{e}^{-\frac{u^{2}}{\sigma^{2}}} u^{2}=\frac{1}{2} \sigma^{3} \sqrt{\pi}
$$

ADDITIONAL NOTES

Variational estimate of the condensate properties

SCALING ANSATZ

The condensate orbital will be taken in the form

$$
\varphi_{0}(\boldsymbol{r})=A^{3} \mathrm{e}^{-\frac{1}{2} \cdot \frac{r^{2}}{b^{2}}}, \quad A=\left(b^{2} \pi\right)^{-1 / 4}
$$

It is just like the ground state orbital for the isotropic oscillator, but with a rescaled size. This is reminescent of the well-known scaling for the ground state of the helium atom.
Next, the total energy is calculated for this orbital

$$
\mathcal{E}\left[\varphi_{0}\right]=\frac{\hbar^{2}}{2 m} N \int \mathrm{~d}^{3} \boldsymbol{r}\left(\nabla \varphi_{0}(\boldsymbol{r})\right)^{2}+N \int \mathrm{~d}^{3} \boldsymbol{r} V(\boldsymbol{r})\left(\varphi_{0}(\boldsymbol{r})\right)^{2}+\frac{1}{2} N(N-1) g \int \mathrm{~d}^{3} \boldsymbol{r}\left(\varphi_{0}(\boldsymbol{r})\right)^{4}
$$

$$
=\frac{1}{2} \hbar \omega_{0} N A^{6}\left\{\frac{a_{0}^{2}}{b^{4}} \int \mathrm{~d}^{3} \boldsymbol{r} \mathrm{e}^{-\frac{r^{2}}{b^{2}}} r^{2}+\frac{1}{a_{0}^{2}} \int \mathrm{~d}^{3} \boldsymbol{r} \mathrm{e}^{-\frac{r^{2}}{b^{2}}} r^{2}+(N-1) A^{6} \frac{m a_{0}^{2}}{\hbar^{2}} g \int \mathrm{~d}^{3} \boldsymbol{r} \mathrm{e}^{-\frac{2 r^{2}}{b^{2}}}\right\}
$$

ADDITIONAL NOTES

Variational estimate of the condensate properties

For an explicit evaluation, we (have used and) will use the identities:

$$
\frac{\hbar^{2}}{m}=\hbar \omega_{0} a_{0}^{2}, m \omega_{0}^{2}=\frac{\hbar \omega_{0}}{a_{0}^{2}}, A^{2}=\frac{1}{I_{1}(b)}=\frac{1}{b \sqrt{\pi}}, g=\frac{4 \pi \hbar^{2} a_{s}}{m}
$$

$\mathcal{E}\left[\varphi_{0}\right]=$
The integrals, by the Fubini theorem, are a product of three:
$=\hbar \omega_{0} N\left\{\frac{3 I_{2}(b)}{2 b \sqrt{\pi}} \frac{\left(I_{1}(b)\right)^{2}}{\left(I_{1}(b)\right)^{2}}\left\{\frac{a_{0}^{2}}{b^{4}}+\frac{1}{a_{0}^{2}}\right\}+(N-1) \frac{1}{2 b^{3} \pi^{3 / 2}} \frac{m a_{0}^{2}}{\hbar^{2}} \frac{4 \pi \hbar^{2} a_{s}}{m} \frac{\left(I_{1}(b / \sqrt{2})\right)^{3}}{\left(I_{1}(b)\right)^{3}}\right\}$
Finally,

$$
\mathcal{E}\left[\varphi_{0}\right]=\hbar \omega_{0} N\left\{\frac{3}{4}\left\{\frac{a_{0}^{2}}{b^{2}}+\frac{b^{2}}{a_{0}^{2}}\right\}+\frac{(N-1)}{\sqrt{2 \pi}} \frac{a_{s}}{a_{0}} \cdot \frac{a_{0}^{3}}{b^{3}}\right\} \equiv \hbar \omega_{0} N \cdot \tilde{E}(\tilde{\sigma})
$$

dimension-less
energy per particle

$$
\tilde{E}(\tilde{\sigma})=\frac{3}{4}\left\{\frac{1}{\tilde{\sigma}^{2}}+\tilde{\sigma}^{2}\right\}+\eta \cdot \frac{1}{\tilde{\sigma}^{3}}
$$

$$
\tilde{\sigma}=\frac{b}{a_{0}} \quad \begin{gathered}
\text { dimension-less } \\
\text { orbital size }
\end{gathered}
$$

This expression is plotted in the figures in the main lecture.

ADDITIONAL NOTES

