

- predict mutations, SNPs, post-translational modifications
- predict ligand docking for virtual screening and **design**

Preparing receptor coordinates

- PDB coordinates: imperfect interpretation of incomplete electron density.
- Build a complete model (missing sidechains, loops etc.)
- Predict correct Asn, Gln, His orientations, protons, detect errors.

Preparing a pdb-structure for docking

A. Search for a pdb with the closest sequence to your protein of interest
B. Choose the most suitable entry (or several entries)
C. Find, build and edit the pocket composition and geometry.

-
-
- X-ray with up to 2.5-2.8A resolution is preferable over NMR
- MMR or homology models are only dockable by skillful operators
- Forget electron microscopy
• X-ray Resolution < 2.2 A is preferable.
 (Structures with resolution > 2.3 A may have up to 30% peptide flips, the maps
- are not self-refinable)
-
- Analyze symmetry if the pocket might be at the interface
- Analyze relative b-factors. B > 100. are not credible
- Pay attention to occupancies (in many cases pocket geometries of ligand
- Pay attentions/presence are pur
-
-
- Analyze alternative positions
• Check orientations of His, Asn, Gln
• Check protonation states of Glu, Asp, His
• Analyze stongly bound water molecules, ions and co-factors .

Preparations: occupancies, b-factors and alternatives Occupancies <= 0.5

Glossary:
B-factor (or temperature factor):
mean-square displacement of
atom from its position in the model.
Bi = 79*<u²> (B of 80 means 1A dev.) Normal range: 5. – 50. A² .

Occupancy:
A fraction of atomic density at a
given center. It there are two equally
occupancies of 0.5
occupancies of 0.5
Normal value: 1. Range: 0.-1.

Alternatives:
If two or more alternative
conformations for the same atom or
group are discernable in the density, several alternative sets of coordinates are deposited.

Problem: sometimes, when electron density is poor and/or ambiguous, crystallographers make things up (or it an arbitrary co **program**

Goal: Identify fantasy atoms/groups

Warning signs: occupancies less than 0.5, b-factors
larger than 60-80 A².
Tool: Color/label pocket atoms by occupancies/b-factors.

Recovery: Choose another entry, or refine with a ligand,
or perform restrained minimization. Choose one of
alternatives, or create alternative models

Preparations: which waters to keep?

Example: 1eye dihydropteroate
synthase, anti-mycobacterial/TB target.
It binds to the buried Asp177 and
improves electrostatic desolvation by improves
~10 units

Definition: crystallographic water: an oxygen $\sqrt{\frac{Q\mu}{Q\mu}}$
placed by a crystallographer or a refinement $\frac{Q\mu}{Q\mu}$
General recommendation: get rid of all water modecules.
Keep only water molecules with three or four

Reason: keeping inappropriate water(s) will prevect correct docking, while dropping good waters
is usually tolerated.

However some tightly bound water molecules help docking and scoring and prevet from
erroneous placement of H-bond-rich ligand groups in water sites.

Recovery: Find interface waters with 3 or more protein/ligand neighbors and include them into
your model.

Preparations: cofactors and metals?

Maiorov, Abagyan, 1998 Proteins, The 1000-times faster version: 2004

Detecting Small Molecule Pockets from Structure

The problem

- **We do not know the nature of the ligand**
- **Find the location and the extent / envelope of a pocket**
- **The Lennart Jones potential is short-range and does not predict the location of the small molecule site.**

A Physical Idea:

• **The CUMULATIVE potential integrated over a typical size of a ligand may predict the site location and extent**

Benchmarking the Pocket Prediction Algorithm

- **95% of 11535 pockets in apo structures overlap >50% with a predicted pocket. (96.8% out of 5656 complexed entries)**
- **In 82.3% of apo-cases the predicted pocket covers > 80% of the ligand contact atoms!**

Binding Site Prediction: Conclusions

Pockets can be used to : • **Identify allosteric sites and alternative druggable pockets**

• **De-orphanize (pre-docking): Identification of ligand binding potential and site location for orphan receptors**

• **Evaluate druggability of protein-protein interaction inhibition by applying the icmPocketFinder to separated protein subunits and evaluating the "pocket" strength**

• Low plasma α_1 -antitrypsin level (10-15, 85% retained in liver %), emphysema and higher risk of lung cancer

Z α**¹ -antitrypsin: finding a polymerization inhibitor Collaboration with David Lomas, Cambridge**

α**1 -antitrypsin is retained in ER and forms polymers in vivo**

Lomas et al, Nature 1992; 357: 605-607

Lomas *et al, J.Biol.Chem.* 1993*;*
268: 15333-15335

Predicting Protein interfaces

interface location oligomeric state orphan Interfaces sostreint enstdmenn

The problem of predicting transient interfaces

- **Proteins do not have open hydrophobic surfaces**
- **Previous efforts that looked are residue frequences were not sufficiently predictive**
- **We do not know the partner to look for complementarity**

A physical idea: Desolvation & entropy

- **The transient interaction patch may have lower desolvation energy and lower entropy loss upon association.** • **Both terms can evaluated via atomic surface areas**
- **(Eisenberg&McLachlan, 1986, Abagyan, Totrov, 1994)**

Surface triangles into atomic patches.
(Totrov, Abagyan, Biopolymers, 2002 - REBEL)
Totrov, Abagyan, J.Str.Bio. 1996 - Contour Build-up Algorithm for the analytical Connolly surface
construction

ICM Stochastic Global Optimization • Full atom, selected internal coordinates for the area of interest

- Gradient local minimization after random moves
- \cdot Optimally biased, designed, continuous group moves:
- \cdot Double energy scheme \cdot Reactive history mechanism, stack $P(\theta^{group}) \sim \sqrt{F^{obs}(\theta)}$
- Not simulated annealing (T=const), Not Monte Carlo (RHM, no local balance)

The only input for ICM-homology builder: a sequence and a template structure

Side-Chain prediction: JMB 1993 Proteins, 1995, 1997 Marsden, Abagyan, submitted, 2003

ICM Binding Score

A COMPROMISE between physics and errors

Coordinate errors due to induced fit, charge errors, docking errors, etc.

 $S_{binding} = \Delta E_{VW \text{ int}} + \Delta E_{ligStrain} + T\Delta S_{tor} + \alpha_1 \Delta E_{HBond} +$

 $\alpha_2 \Delta E_{\text{HBDesol}} + \alpha_3 \Delta E_{\text{SolEl}} + \alpha_4 \Delta E_{\text{HPhob}} + \alpha_5 Q_{\text{Size}}$

- α_{1-5} were optimized on a benchmark
- Van der Waals truncated at 4kcal/mole
- Hbonds calculation is based on lone pairs
- Penalty for desolvated hydrogen bonding donors/acceptors
- Electrostatics by Poisson equation (boundary element)

Preparing pdb compounds for docking

Problem1: compounds/ligands in PDB
are not suitable for automated
conversion. They lack bond types,
formal charges and chirality flags.

Problem 2: compound databases contain only 2D drawings. They need to be converted to 3D.

To fix a PDB ligand follow these steps: • Assign correct bond order manually • Assign correct formal charges manually

- Assign chirality if necessary (less validated) Save is as a mol file or Run the conversion tool is as a the conversion tool
-

The conversion tool performs these steps:
• Adds hydrogen according for elements, bond orders and
formal charges
• Runs ICM MMFF atom type assignment routine
• Assigns rotatable torsions
• Assigns rotatable torsions
• Crea

-
-

Preparing compound database for screening

Background

Preparation of the compound database depends on
software used. Some software requires rigid
conformations pre-generated. Some will generate 3D
structures of ligands and sample them on the fly.

Typically, some kind of index is required to speed up access to the compounds in a very large compound aw.
file.

ICM just needs a mol/sdf file with correct drawings

Each molecule from a database will be converted on the fly and
flexibly docked into a pocket. If the score is lower than a
predefined threshold, it will be retained in the "answers" file.

Things to decide:

-
- 1) To keep (or not) the carboxyls neutral
2) To charge or not the amino/imidazole groups
3) Filters (rotatable bonds, donors, acceptors, mass, etc.)

metabolome, can we identify the native substrate in-silico?

Receptor flexibility statistics • 1132 PDB complexes of **65** receptors with > 5 different ligands each analyzed **14 16 18 20**

Average Number of sidechains in contact

- **Sidechains** • A ligand contacts with \sim 10 side chains
- ~75% ligand contact atoms are s.c. (vs 50% in protein core) **with ligand**
- 3 s.c. in 85% of receptors will move by > 1.5A
- But only 14% severe clashes with 1s.c. and 3% with > 1 s.c.

Backbone

- ~ 30% receptors had substantial backbone movements: >1A backbone deviations leading to ligand clashes
- 8 elastic deformations, 8 loop, 1 secondary structure

Totrov, Barcelona 2006

• ICM Flexibility tool

Pocket Conformations Representing receptor by multiple static conformations

Mutants and Mutations

"Portrait of a Girl Covered in Hair" By Lavinia Fontana (1552-1614)

- **We are all different at 0.1% level (almost every protein has one amino acid different)**
- **8% of liveborns will suffer from a genetically based disorder by age 25**
- **Spontaneous mutations occur continuously (smoking, tanning, eating, age)**

Geometry, stability and functional effects of single point mutations

Growing volume of **SNP** and Pharmacogenetics data

Predicting the effect on

- geometry and dynamics
- stability changes • bio-function and binding
- drug binding

"The Sistine Madonna"

by Rafael (1513) Look at Pope Sixtus IV

Stability prediction without structure

-
- Fit simple energy function ∆∆G=E_x-E_x for the mutation X-X' to the entire data
set without outliers (1768 values).
• Buried residues: r=0.71 (std=1.21 kc/m); surface res.: r=0.55 (std=1.14 kc/m);
-
- Only includes residue energies: useful when no structure is available.
• Residues with small side chains (*glycine, serine, and alanine*) most
destabilizing
- Most stabilizing residues are *tyrosine, isoleucine and leucine*. Agrees with
their high occurrence frequency in β sheets.
• Also separately fit parameters for buried and surface residues
- Mutation from Lys to Arg stabilize protein by 0.5-1 kcal/mole

Loop Prediction

QuickTime™ and a YUV420 codec decompressor are needed to see this picture.

Predicting and redesigning the 15 residues of the triosephosphate isomerase backbone to 8-res. loop Collaboration with the Wierenga group *Structure, PNAS, Prot. Eng. 1993-2002*

12-residue loops predicted by the ICM optimization after convergence

In most cases the prediction is virtually identical to the crystal structure!

EM-guided Atomic Models

• Full atom global energy + global energy + densityFit optimization. Flexible backbones

 \cdot Sampling strategy combines systematic grid and overlapping stochastic searches

 \cdot Solvation models with specific geometry built through solvation maps.

 \cdot Benchmark reconstitutions for KcsA tetramer and MscL pentamer show about 1 to 2A RMSD for the contact residues.

Protein Docking

Both receptor and ligand are pres

-
- models
• Convergent Multistart ICM Stochastic Energy
optimization with pseudo-Brownian moves (JMB,
JCC, 1994) and side-chain minization
• Explicit simulaneous global optimization side-chain
and 6 positional variables of ca

GCN4 ab initio helix docking (*JCC, 1994*)
Lysozyme-Antibody (Nature SB, 1994)

Competitions. Docking challenge (Nature SB 1995,96) **CAPRI Rounds 1:5**

Local Minimization

Nature, SB, 1994
Detailed ab initio prediction of lysozyme-antibody complex with 1.6 Å accuracy

Maxim Totrov and Ruben Abagyan

The fundamental event in biological assembly is association of two biological information
leads there we present a successful, accurate ab intrio profit.
increase the interaction of biological information of the present o

Summary

- Accurate cross-docking to receptors represented by 'static' grid potentials works in most cases.
- Receptor flexibility can be predicted in advance
- A combination of ligand based methods with receptor structure methods can help to deorphanize receptors.
- Stochastic global optimization in internal coordinates is a powerful and general method for modeling membrane proteins.

Acknowledgements

- *Scripps Group Members* **Julio Kovacs (normal modes,membrane proteins)** • **Irina Kufareva (orphan protein interfaces)**
- **Adrian Saldanha (antitrypsin)**
- **William Bisson, Anton Cheltsov (AR inhibitors)**
- **Giovanni Bottegoni (receptor flexible docking)**

Molsoft (www.molsoft.com)

- **Maxim Totrov (ICM,Ligand Docking)**
- **Andrew Bordner (peptide docking, Mutations)**
- **Claudio Cavasotto (kinase docking, flexibility)**
- **Andrew Orry (GPCRs)**

Former Group Members

- **Juan Fernandez-Recio (Barcelona, protein docking)**
- **Matthieu Schapira (Lyon, TR, NR)**
- **Jianghong An (Vancouver, pockets, loops)**

Collaborators AAT: **David Lomas, Meera Mallya and the team, Cambridge** *EM:* **Mark Yeager, Scripps**

- *AR***: Patrick Sexton, Melbourne, Xiaokun Zhang, Burnham**
- *Membrane:* **Michael Overduin Group**

Funding

NIH grant on protein docking