Precursor Methods

Goals – decrease difussion paths, shorten reaction times and temperatures

Intimate mixing of components in solution, precipitation, filtration, washing, drying, calcination

●^{**} High degree of homogenization

●^{**} Large contact area

Reduction of diffusion distances

- **●**^{*} Faster reaction rates
- **●**^{*} Lower reaction temperatures
- **●**^{*} Metastable phases, smaller grain size, larger surface area

Coprecipitation applicable to nitrates, acetates, oxalates, hydroxides, alkoxides, beta-diketonates

Requires:	similar salt solubilities
	similar precipitation rates
	no supersaturation
Washing:	water, organic solvents
Drying:	evaporation
	azeotropic distillation
	freeze-drying

Disadvantage: difficult to prepare high purity, accurate stoichiometric phases if solubilities do not match

Spinels

oxalates: $Zn(CO_2)_2/Fe_2[(CO_2)_2]_3/H_2O 1 : 1 mixing, H_2O evaporation, salts coprecipitation Solid-solution mixing on atomic scale, filter, calcine in air$

 $Zn(CO_2)_2 + Fe_2[(CO_2)_2]_3 \rightarrow ZnFe_2O_4 + 4CO + 4CO_2$

Al₂O₃ Bayer Process

BaTiO₃

BaCl₂ + TiOCl₂ + 2 H₂C₂O₄ + 4 H₂O + Ln dopants BaTiO(C₂O₄)₂.4H₂O + 4 HCl filtration, washing, drying, calcination @ 730 °C

Spinel

 $Al(NO_3)_3 + Mg(NO_3)_2 + H_2O$ freeze-drying gives amorphous mixture, calcination @ 800 °C !!! low T

 $Mg(NO_3)_2 + 2 Al(NO_3)_3 \longrightarrow MgAl_2O_4 + 6 NO_x + (10-3x)O_2$ random

Ruby Ion exchange Al(NO₃)₃ + Cr(NO₃)₃ → Al(OH)₃ + Cr(OH)₃ sol

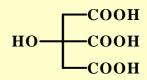
freeze drying gives solid (Al/Cr)(OH)₃ @ LN₂ temperature, 5 Pa anealing @ 950 °C for 2.5 h gives solid solution Al_{2-x}Cr_xO₃

Zirconia

 $ZrSiO_4(zircon) + NaOH \longrightarrow Na_2ZrO_3 + Na_2SiO_3 \longrightarrow$

 $\operatorname{ZrOCl}_2 \xrightarrow{OH^2, \operatorname{YCl}_3} \operatorname{Zr}(OH)_4 / \operatorname{Y}(OH)_3 \xrightarrow{\operatorname{azeot. dist.}} \operatorname{nano-Y/ZrO}_2$

High-T_c Superconductors


 $La^{3+} + Ba^{2+} + Cu^{2+} + H_2C_2O_4 \longrightarrow ppt \xrightarrow{1373 \text{ K}} La_{1.85}Ba_{0.15}CuO_4$

Magnetic garnets, tunable magnetic materials

 $Y(NO_3)_3 + Gd(NO_3)_3 + FeCl_3 + NaOH \rightarrow Y_xGd_{3-x}Fe_5O_{12}$

Firing @ 900 °C, 18-24 hrs, pellets, regrinding, repelletizing, repeated firings, removes REFeO₃ perovskite impurity Isomorphous replacement of Y^{3+} for Gd^{3+} on dodecahedral sites, solid solution, similar rare earth ionic radii complete family accessible, 0 < x < 3, $2Fe^{3+}$ O_h sites, $3Fe^{3+}$ T_d sites, $3RE^{3+}$ dodecahedral sites

Pechini and Citrate Gel Method

Chelate formation with citric acid

Polyesterification with polyfunctional alcohol on heating

Further heating leads to resin, transparent glassy gel calcination provides oxide powder

Control of stoichiometry by initial reagent ratio

Complex compositions, mixture of metal ions

Good homogeneity, mixing at the molecular level

Low firing temperatures

Pechini and Citrate Gel Method

BaTiO₃ by conventional powder method at 1200 °C

 $Ba^{2+} + Ti(O^{i}Pr)_{4} + citric acid at 650 °C$

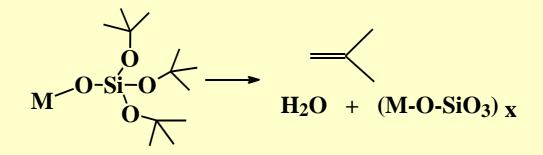
 $Sc_2O_3 + 6 HCOOH \longrightarrow 2Sc(HCOO)_3 + 3 H_2O$ $MnCO_3 + 2 HCOOH \longrightarrow Mn(HCOO)_2 + CO_2 + H_2O$

added to citric acid, water removal, calcination @ 690 °C gives ScMnO₃ without citric acid only mixture of Sc₂O₃ and Mn₂O₃ is formed

Double Salt Precursors

Double salts of known and controlled stoichiometry such as: $Ni_3Fe_6(CH_3COO)_{17}O_3(OH).12Py$

Burn off organics 200-300 °C, then 1000 °C in air for 2-3 days Product highly crystalline phase pure $NiFe_2O_4$ spinel Good way to make chromite spinels, important tunable magnetic materials


Juggling the electronic-magnetic properties of the $\mathbf{O}_{\rm h}$ and $\mathbf{T}_{\rm d}$ ions in the spinel lattice

Chromite spinel	Precursor	Ignition T, °C
MgCr ₂ O ₄	$(NH_4)_2Mg(CrO_4)_2.6H_2O$	1100-1200
NiCr ₂ O ₄	(NH ₄) ₂ Ni(CrO ₄) ₂ .6H ₂ O	1100
MnCr ₂ O ₄	MnCr ₂ O ₇ .4C ₅ H ₅ N	1100
CoCr ₂ O ₄	CoCr ₂ O ₇ .4C ₅ H ₅ N	1200
CuCr ₂ O ₄	$(NH_4)_2Cu(CrO_4)_2.2NH_3$	700-800
ZnCr ₂ O ₄	$(\mathrm{NH}_4)_2\mathrm{Zn}(\mathrm{CrO}_4)_2$. 2NH ₃	1400
FeCr ₂ O ₄	$(NH_4)_2Fe(CrO_4)_2$	1150

Single Source Precursor

Compounds containing desired elements in a proper stoichiometric ratio

Easy chemical pathway for ligand removal

Vegard law behavior:

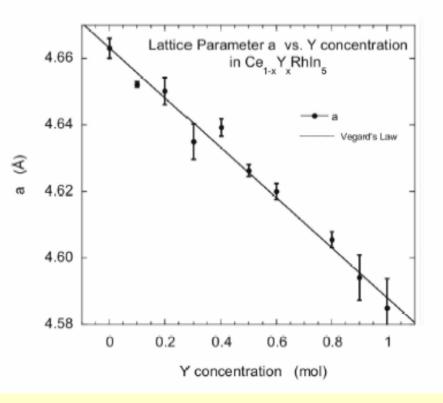
Any property P of a solid-solution member is the atom fraction weighted average of the end-members

The composition of the A_{1-x}B_x alloy can be calculated from Vegard's law

The lattice parameter of a solid solution alloy will be given by a linear dependence of lattice parameter on composition:

 $a(A_{1-x}B_x) = x a(B) + (1-x) a(A)$

 $c(CdSe_{1-x}S_x) = x c(CdS) + (1-x) c(CdSe)$



11

 $P(Y_{x}Ce_{!-x}RhIn_{5}) = x P(Y_{x}Ce_{!-x}RhIn_{5}) + (1-x) P(Y_{x}Ce_{!-x}RhIn_{5})$

Any property P of a solid-solution member is the atom fraction weighted average of the end-members

Tetragonal lattice constant a as a function of Y concentration x for the $Ce_{1-x}Y_{x}RhIn_{5}$ system

A linear relationship exists between the concentration of the substitute element and the size of the lattice parameters

The direction of the linear relationship, increasing or decreasing, depends upon the system being analyzed

As the concentration of Y is increased, lattice constant *a* decreases, implying the cell is contracting along the *a* axis

Vegard law behavior:

$$P(Y_{x}Gd_{3-x}Fe_{5}O_{12}) = x/3 P(Y_{3}Fe_{5}O_{12}) + (3-x)/3 P(Gd_{3}Fe_{5}O_{12})$$

Any property P of a solid-solution member is the atom fraction weighted average of the end-members

Tunable magnetic properties by tuning the x value in the binary garnet $Y_xGd_{3-x}Fe_5O_{12}$

$$3 T_d Fe^{3+}$$
 sites, 5 UPEs

2 O_h Fe³⁺ sites, 5UPEs

Ferrimagnetically coupled material, oppositely aligned electron spins on the T_d and O_h Fe³⁺ magnetic sublattices

Counting spins $Y_3Fe_5O_{12}$ ferrimagnetic at low T: $3 \times 5 - 2 \times 5 = 5UPEs$ Counting spins $Gd_3Fe_5O_{12}$ ferrimagnetic at low T: $3 \times 7 - 3 \times 5 + 2 \times 5 = 16$ UPEs

 $Y_xGd_{3-x}Fe_5O_{12}$ creates a tunable magnetic garnet that is strongly temperature and composition dependent,

applications in permanent magnets, magnetic recording media, magnetic bubble memories and so forth, similar concepts apply to magnetic spinels

```
Molten salts (inert or reactive), oxides, metals
MNO<sub>3</sub>, MOH, (M = alkali metal)
FLINAK: LiF-NaF-KF
M_2Q_x (M = alkali metal, Q = S, Se, Te)
```

molten salts ionic, low mp, eutectics, completely ionized act as solvents or reactants, T = 250-550 °C enhanced diffusion, reduced reaction temperatures in comparison with powder method products finely divided solids, high surface area (SA) slow cooling to grow crystals separation of water insoluble product from a water soluble flux incorporation of the molten salt ions in product prevented by using salts with ions of much different sizes than the ones in the product (PbZrO₃ in a B₂O₃ flux)

Lux-Flood formalism oxide = strong base acid = oxide acceptor $A + OB \longrightarrow AO + B$ **base** = **oxide donor**

700 K $Zr(SO_4)_2 + eut. (Li/K)NO_3 \longrightarrow ZrO_2$ 540 K $Zr(SO_4)_2 + eut. (Li/K)NO_2 \longrightarrow ZrO_2$ $ZrOCl_2 + eut. (Na/K)NO_3 \xrightarrow{520 \text{ K}} ZrO_2 \text{ amorph.} \longrightarrow t- ZrO_2$ 720 K $ZrOCl_2 + YCl_3 + eut. (Na/K)NO_3 \longrightarrow ZrO_2$

 $BaCO_3 + SrCO_3 + TiO_2 + eut.$ (Na/K)OH

 $NH_4H_2PO_4 + (Na/K)NO_3 + M(NO_3)_2 \longrightarrow (Na/K)MPO_4$

4 SrCO₃ + Al₂O₃ + Ta₂O₅ ____ Sr₂AlTaO₆ 900 °C in SrCl₂ flux 1400 °C required for a direct reaction

 $K_2Te_x + Cu \longrightarrow K_2Cu_5Te_5$ K_2Te_x reactive flux, 350 °C

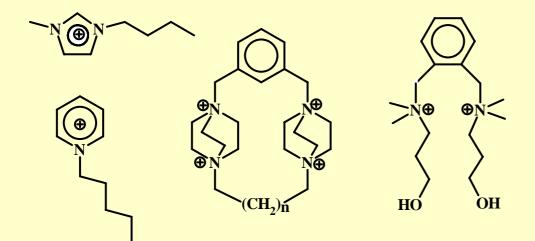
Electrolysis in molten salts

Reduction of TiO₂ pellets to Ti sponge in a CaCl₂ melt at 950 °C

O²⁻ dissolves in CaCl₂, diffuses to the graphite anode

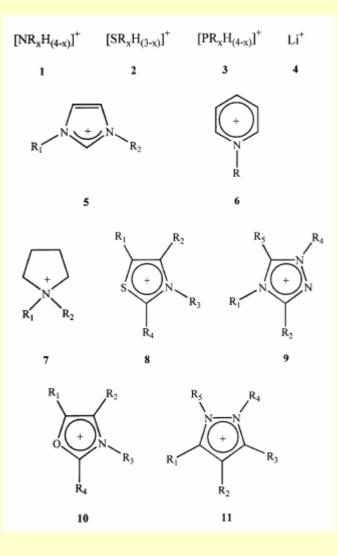
insulating $TiO_2 \rightarrow TiO_{2-x}$ conductive

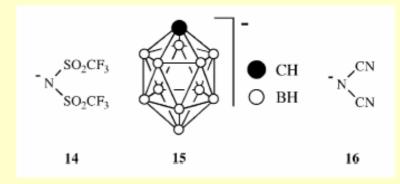
graphite anode anodic oxidation $2 O^{2-} \rightarrow O_2 + 4 e^{-}$


cathode TiO₂ pellet cathodic reduction

 $20^{-} \rightarrow 0_{2}^{+} + e$

 $Ti^{4+} + 4e^- \rightarrow Ti$


Organic cations (containing N, P)


Inorganic anions: Cl⁻, AlCl₄⁻, Al₂Cl₇⁻, Al₃Cl₁₀⁻, PF₆⁻, SnCl₃⁻, BCl₃⁻, BF₄⁻, NO₃⁻, OSO₂CF₃⁻ (triflate), CH₃C₆H₄SO₃⁻, N(SO₂CF₃)₂⁻, PO₄⁻³⁻

Oldest known (1914) : $EtNH_3^+NO_3^-$ mp 12 °C

- →Liquids at room temperature or low mp
- → Thermal operating range from -40 °C to 400 °C
- → Higly polar, noncoordinating, completely ionized
- →Nonvolatile no detectable vapor pressure
- →Nonflamable, nonexplosive, nonoxidizing, high thermal stability
- → Electrochemical window > 4V (not oxidized or reduced)
- →Immiscible with organic solvents
- → Hydrophobic IL immiscible with water

22

Synthesis of Ionic Liquids

 $NR_3 + RCl \rightarrow [NR_4]^+ Cl^-$

Aluminates $[NR_4]^+ Cl^- + AlCl_3 \rightarrow [NR_4]^+ [AlCl_4]^-$

Metal halide elimination $[NR_4]^+ Cl^- + MA \rightarrow MCl + [NR_4]^+ A^-$

Reaction with an acid $[NR_4]^+ Cl^- + HA \rightarrow HCl + [NR_4]^+ A^-$

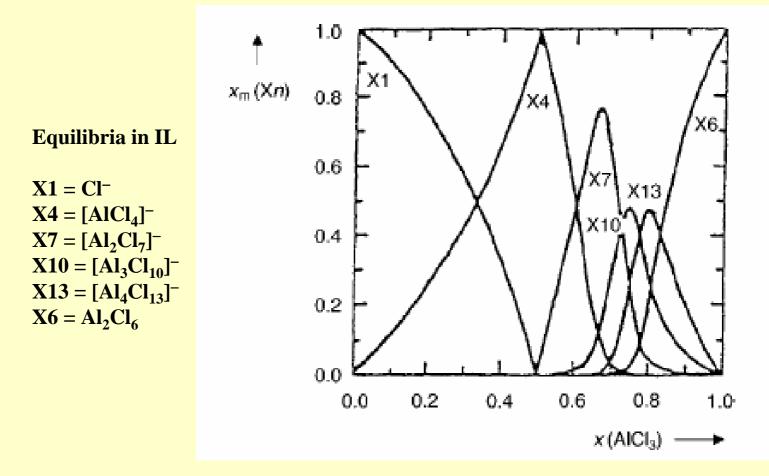
Ion exchange $[NR_4]^+ Cl^- + Ion$ exchanger $A \rightarrow [NR_4]^+ A^-$

Halogenoaluminate(III) Ionic Liquids

The most widely studied class of IL

High sensitivity to moisture – handling under vacuum or inert atmosphere in glass/teflon

 $RCl + AlCl_3 \leftrightarrows R^+ [AlCl_4]^ 2 [AlCl_4]^- \leftrightarrows [Al_2Cl_7]^- + Cl^-$ autosolvolysis $K_{eq} = 10^{-16}$ to 10^{-17} at 40 °C


 $2 [Al_2Cl_7]^- \leftrightarrows [Al_3Cl_{10}]^- + [AlCl_4]^-$

 Acidic: excess of $AlCl_3$ as $[Al_2Cl_7]^ x(AlCl_3) > 0.5$

 Basic: excess of $Cl^ x(AlCl_3) < 0.5$

 Neutral: $[AlCl_4]^ x(AlCl_3) = 0.5$

Equilibria in Halogenoaluminate(III) IL

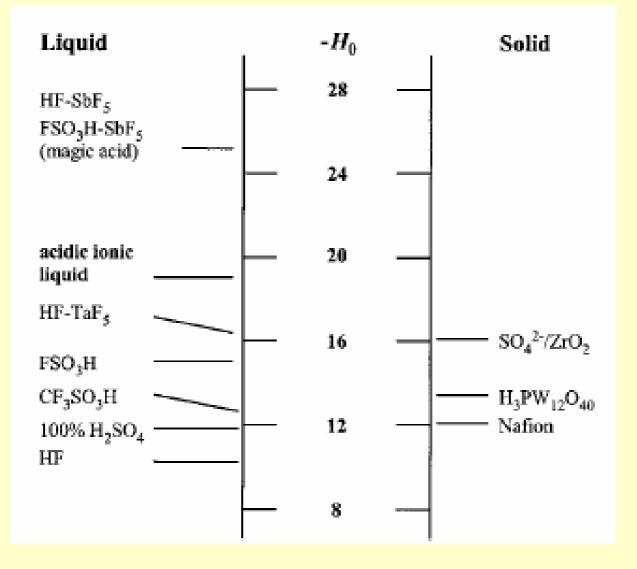
Halogenoaluminate(III) Ionic Liquids

2 $[AlCl_4]^- \Leftrightarrow [Al_2Cl_7]^- + Cl^-$ autosolvolysis $K_{eq} = 10^{-16}$ to 10^{-17} at 40 °C

Acidic IL with an excess of AlCl₃

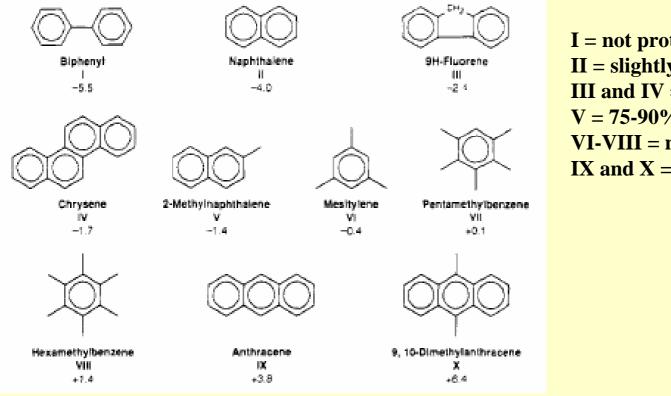
 $\mathbf{HCl} + [\mathbf{Al}_2\mathbf{Cl}_7]^- \leftrightarrows \mathbf{H}^+ + 2 [\mathbf{AlCl}_4]^-$

Proton extremely poorly solvated = high reactivity


Superacid [EMIM]Cl/AlCl₃/HCl $H_0 = -19$ (HSO₃F: $H_0 = -15$)

Latent acidity

 $MCl + [Al_2Cl_7]^- \leftrightarrows M^+ + 2 [AlCl_4]^-$ buffered IL


 $\mathbf{B} + \mathbf{M}^+ + [\mathbf{AlCl}_4]^- \leftrightarrows \mathbf{MCl} + \mathbf{B} \cdot \mathbf{AlCl}_3$

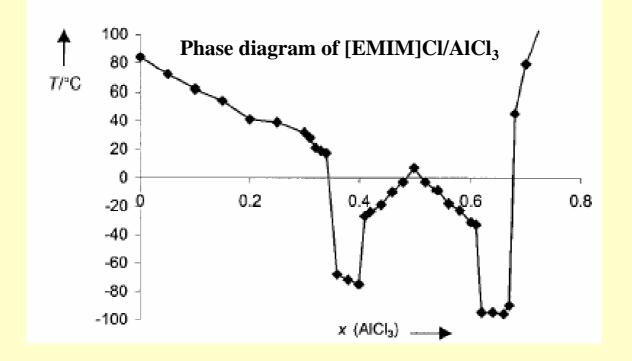
Superacidity

27

Superacidic [EMIM]Cl/AlCl₃/HCl

I = not protonated II = slightly protonated III and IV = 10-20 % V = 75-90% VI-VIII = nearly completely IX and X = completely

log K_b in HF

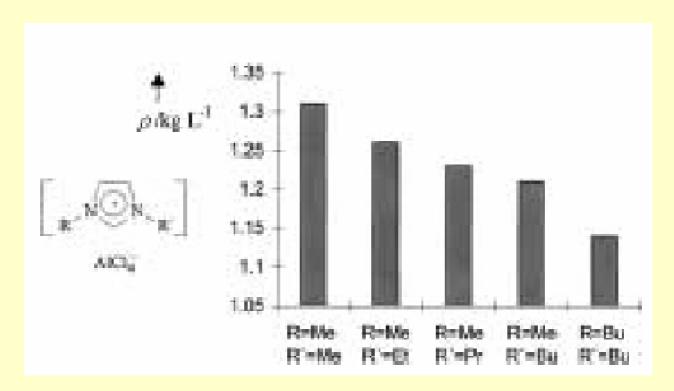

Completely inorganic ionic liquids

Compound	mp (K)	Compound	mp (K)
Na ₁₃ [La(TiW ₁₁ O ₃₉) ₂]	253.0	Na ₁₃ [Tm(TiW ₁₁ O ₃₉) ₂]	260.2
Na ₁₃ [Ce(TiW ₁₁ O ₃₉) ₂]	263.0	Na ₁₃ [Yb(TiW ₁₁ O ₃₉) ₂]	267.2
Na ₁₃ [Pr(TiW ₁₁ O ₃₉) ₂]	253.0	Na ₅ [CrTiW ₁₁ O ₃₉]	261.5
Na ₁₃ [Sm(TiW ₁₁ O ₃₉) ₂]	256.0	Na ₅ [MnTiW ₁₁ O ₃₉]	253.0
$Na_{13}[Gd(TiW_{11}O_{39})_2]$	265.1	Na ₅ [FeTiW ₁₁ O ₃₉]	257.6
Na ₁₃ [Dy(TiW ₁₁ O ₃₉) ₂]	265.2	Na ₆ [ZnTiW ₁₁ O ₃₉]	257.4
Na ₁₃ [Er(TiW ₁₁ O ₃₉) ₂]	261.0		

Melting Point of Ionic Liquids

Melting point is influenced by:

Cation – low symmetry, weak imtermolecular interactions, good distribution of charge Anion – increasing size leads to lower mp Composition – Phase diagram



Melting Point of Ionic Liquids

	Me ^{-N} N R	-
R	х	mp/°C
Me Et n-Bu Et Et Et Et Et Et Et n-Bu	$\begin{array}{c} Cl\\ Cl\\ NO_3\\ AlCl_4\\ BF_4\\ CF_3SO_3\\ (CF_3SO_3)_2N\\ CF_3CO_2\\ CF_3SO_3\end{array}$	125 87 65 38 7 6 -9 -3 -14 16

Density of Ionic Liquids

The density of IL decreases as the bulkiness of the organic cation increases:

Viscosity of Ionic Liquids

The viscosity of IL depends on:

van der Waals interactions

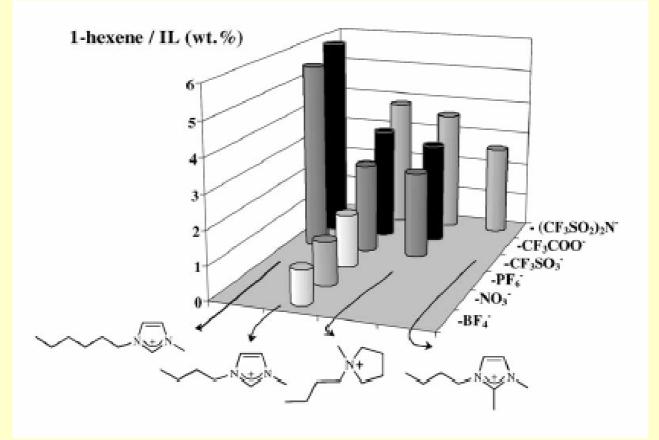
H-bonding

Anion [A]-	$\eta [m cP]$
$CF_{3}SO_{3}^{-}$ $n-C_{4}F_{9}SO_{3}^{-}$ $CF_{3}COO^{-}$ $n-C_{3}F_{7}COO^{-}$ $(CF_{3}SO_{2})_{2}N^{-}$	90 373 73 182 52

Solubility in/of Ionic Liquids

```
Variation of the alkyl group
Increasing nonpolar character of the cation increases solubility of
nonpolar solutes.
```

Water solubility depends on the anion water-soluble [BMIM] Br, CF₃COO, CF₃SO₃ Water-immiscilble [BMIM] PF₆ (CF₃SO₂)₂N


IL miscible with organic solvent IF their dielectric constant is above a certain limit given by the cation/anion combination

```
Polarity by E_{(T)}(30) scale
```

[EtNH₃][NO₃] 0.95 between CF₃CH₂OH and water

[BMIM] PF₆ as methanol

Solubility in/of Ionic Liquids

Applications of Ionic Liquids

Electrodeposition of metals and alloys (also nanoscopic) Al, CoAl_x, CuAl_x, FeAl_x, AlTi_x

Semiconductors Si, Ge, GaAs, InSb, CdTe

Electrodeposition of a Bi-Sr-Ca-Cu alloy (precursor to SC oxides)

Melt of MeEtImCl at 120 °C

BiCl₃, SrCl₂, CaCl₂, CuCl₂ dissolve well

 $\begin{array}{cccc} Constituent & BiCl_3 & SrCl_2 & CaCl_2 & CuCl_2 \\ Concentration & 0.068 & 0.50 & 0.18 & 0.050 \\ (mol \ kg^{-1} \ MeEtImCl) & & & & & \\ \end{array}$

Substrate Al -1.72 V vs the Ag/Ag⁺ reference electrode

Applications of Ionic Liquids

Biphasic solvent systems

Preparation of aerogels

 $2 \text{ HCOOH} + \text{Si}(\text{OMe})_4 \longrightarrow \text{ag-SiO}_2 + 2 \text{ MeOH} + 2 \text{ HCOOMe}$

Natural gas sweetening (H₂S, CO₂ removal)

Electrolytes in batteries or solar cells

Dissolving spent nuclear fuel $(U^{4+} \text{ oxidized to } U^{6+})$

Extraction

Enyzme activity

Applications of Ionic Liquids

Olefin polymerization Ethene + TiCl₄ + AlEtCl₂ in acidic IL Ethene + Cp₂TiCl₂ + Al₂Me₃Cl₃ in acidic IL

 $Cp_{2}TiCl_{2} + [cation]^{+}[Al_{2}Cl_{7}]^{-} \leftrightarrows [Cp_{2}TiCl]^{+} + [cation]^{+} + 2 [AlCl_{4}]^{-}$

Olefin hydrogenation Cyclohexene + H₂ + [RhCl(PPh₃)₃] (Wilkinson's catalyst)

Sound

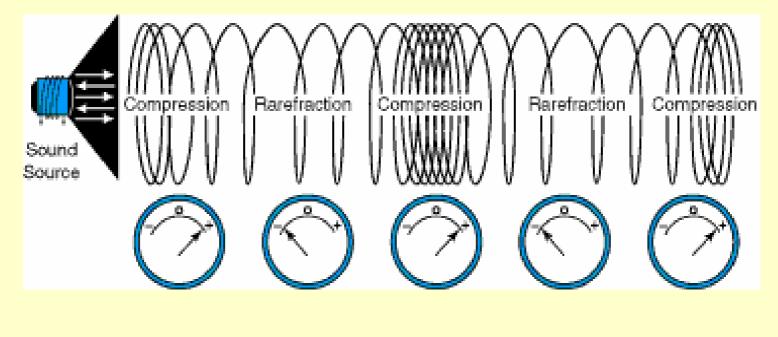
Sound = pressure wave, periodic compression/expansion cycles traveling through a medium possessing elastic properties (gas, liqud, solid)

Liquids and gases – longitudinal pressure waves – compression/rarefaction Solids – longitudinal and transverse waves

The energy is propagated as deformations in the media

The molecules oscillate about their original positions and are not propagated

The propagation of a sound wave = the transfer of vibrations from one molecule to another



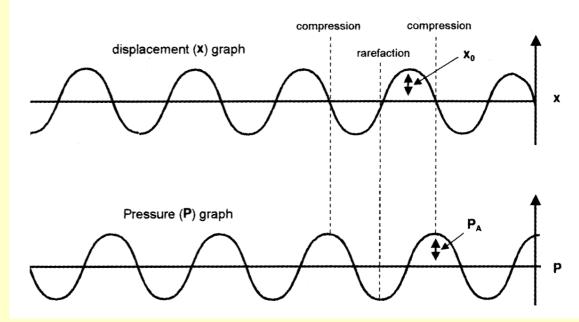
Sound

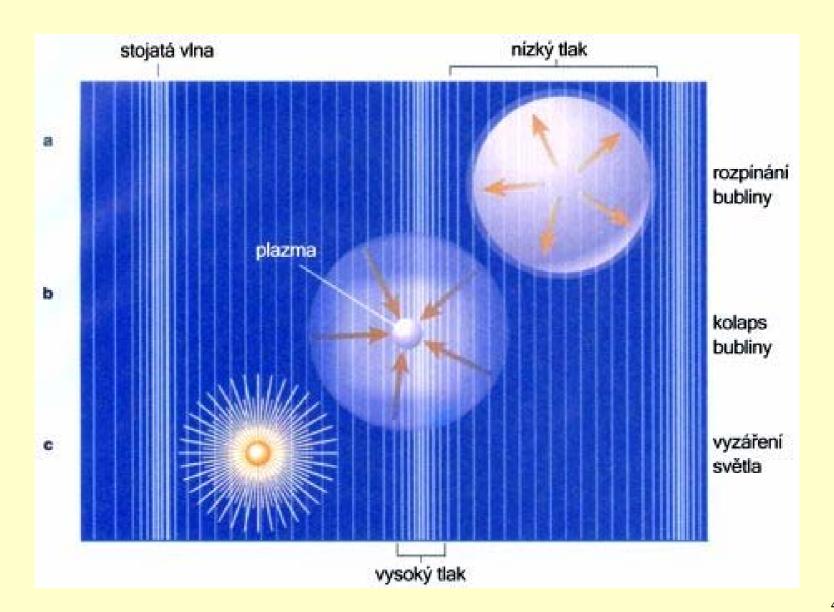
In a typical liquid, the speed of sound decreases as the temperature increases, at all temperatures.

The speed of sound in water is almost five times greater than that in air (340 m s^{-1})

Longitudinal Pressure Waves

Acoustic Pressure


 $\mathbf{P}_{\mathbf{a}} = \mathbf{P}_{\mathbf{A}} \sin 2\pi \mathbf{f} \mathbf{t}$


 P_a acoustic pressure P_A pressure amplitude f sound frequency $c = \lambda f$

(for 20 kHz, $\lambda = 7.5$ cm)

 $P_{total} = P_a + P_h$

P_h hydrostatic pressure

Acoustic Pressure

$$P_A = \sqrt{2I\rho c}$$

 $P_A = driving pressure amplitude [Pa]$

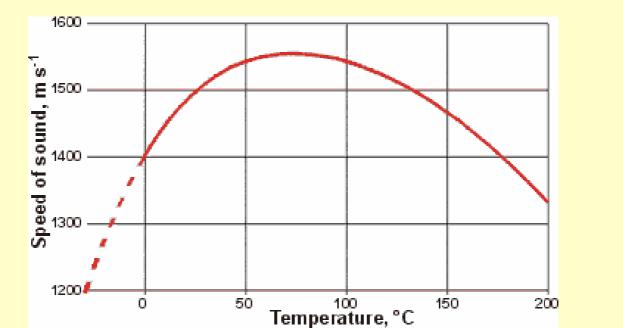
I = irradiation intensity [W m⁻²]

 $\rho =$ liquid density [kg m⁻³]

c = sound velocity in liquid [m s⁻¹]

(Water 1482 m s^{-1})

Speed of Sound


Substance	Speed of sound [m s ⁻¹]
Air	343
Helium	965
Water	1482
Lead	1960
Steel	5960
Granite	6000

The speed of sound

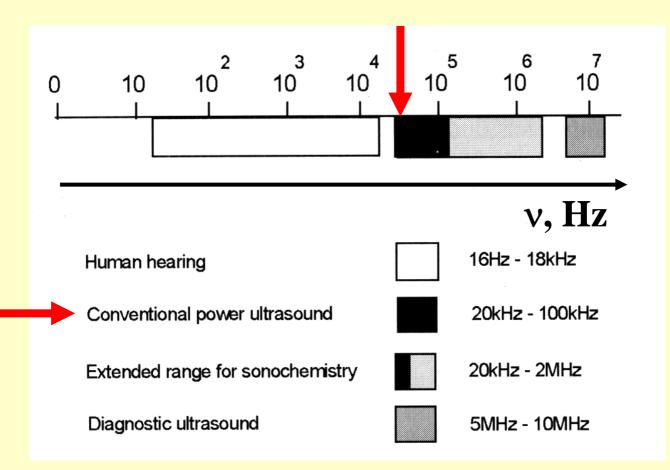
The speed of sound (*u*)

 $u^2 = 1/\kappa_{\rm S}\rho = \left[\partial P/\partial\rho\right]_{\rm S} \sim 1/(\langle \P V)2 \rangle)$

where κ_s is the adiabatic compressibility ρ is the density and P the pressure.

46

Sound Intensity


Sound Intensity = Power / area = $Watts/m^2$

Source of Sound	Intensity (W/m2)	Sound level (dB)
Jet Airplane 30 m away	10 ²	140
Air-raid Siren, nearby	1	120
Threshold of Pain	10-1	120
Concert	~10 ⁻¹	115
Riveter	10-3	100
Busy Traffic	10 ⁻⁵	70
Normal Conversations	10 -6	60
Whisper	10 ⁻¹⁰	20
Threshold of Hearing	10 ⁻¹²	0

0 dB (10⁻¹² W/m²) 10 dB = 10 as intense 20 dB = 10² as intense 30 dB = 10³ as intense 120 dB = 10¹² as intense

Ultrasound

Frequencies from 20 kHz to 50 MHz

Sonochemistry

Suslick, K. S.; Price, J. P. Ann. Rev. Mater. Sci. 1999, 29, 295–326.

Mason, T. J.; Lorimer, J. P. *Applied Sonochemistry*, Wiley-VCH, Weinheim, 2002.

Gedanken, A. Ultrason. Sonochem. 2004, 11, 47–55.

Mastai, Y.; Gedanken, A. In: Rao, C.N.R.; Mueller, A.; Cheetham, A. K. (Eds.), *The Chemistry of Nanomaterials*, Wiley-VCH, NY, 2004, 113–169.

Sonochemical Reactions

No direct interaction of US field with molecules

Liquid phase reactions – chemical reactions driven by cavitation effects

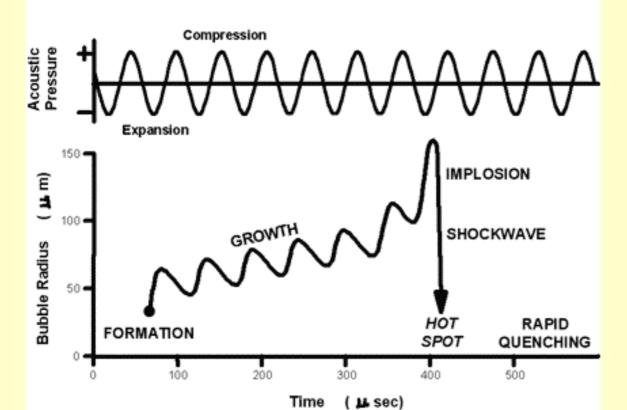
Solid state reactions – introduction of defects = speeding up diffusion

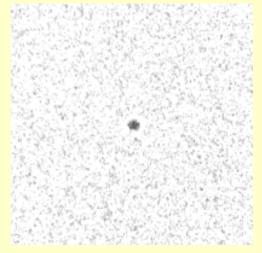
Hydrodynamic Cavitation

the passage of liquid through (an orifice plate)

the kinetic energy/velocity of the liquid increases at the expense of the pressure

throttling causes the pressure to fall below the threshold pressure for cavitation (vapor pressure)


cavities are generated

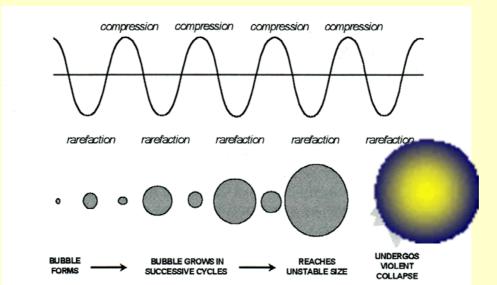

the liquid jet expands, the pressure recovers

the collapse of the cavities

Acoustic Cavitation Cavitation effects = creation, growth, and implosive collapse of bubbles in a liquid

TRANSIENT CAVITATION: THE ORIGIN OF SONOCHEMISTRY

stable cavitation - bubbles oscillate for many cycles


transient cavitation - transient cavities expand rapidly collapse violently 52

Acoustic Cavitation

Bubble formation = overcoming tensile strength of the liquid (pure water 1500 bar, only 50 bar available)

Weak spots = dissolved gas molecules, solid particles, trapped gases

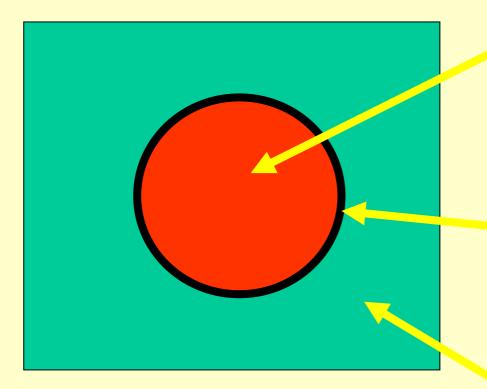
slow bubble growth (300 μ s), energy absorption, size oscillations critical size (170-300 μ m) = most efficient energy absorption, rapid growth, inefficient energy absorption, collapse

Cavitation

Bubble collapse = implosion (1 ns)

• HOMOGENEOUS liquid: spherically symmetrical implosion, shear forces

Hot spots = adiabatic compression, life time 2 μ s temperature of the gas inside bubble 5 000 – 20 000 °C, surrounding liquid layer 2000 °C pressure 500 – 1000 bar cooling rate 10¹⁰ K s⁻¹


red hot steel poured into water 2500 K s⁻¹

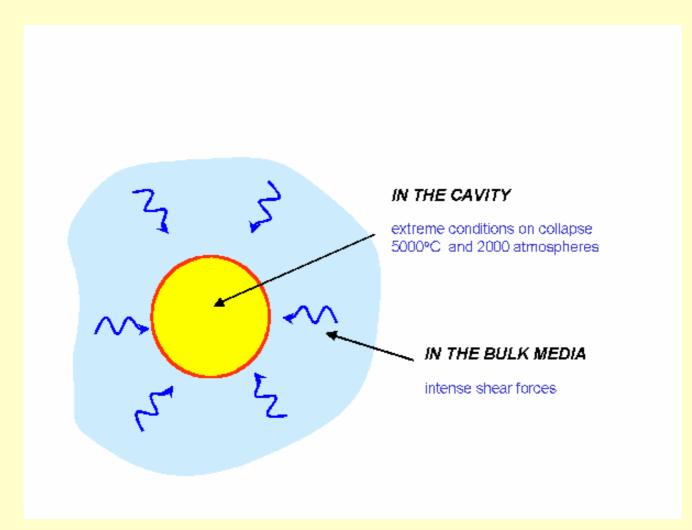
• HETEROGENEOUS liquid-solid interface: asymmetrical implosion, high speed microjets of liquid (400 km h⁻¹)

Microjet - bubble implosion

Homogeneous Sonochemistry Two-Site Mechanism

Inside the cavity

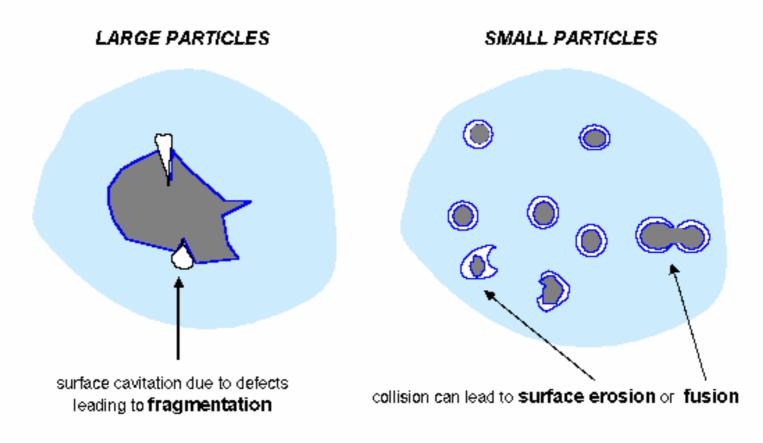
gases and vapors temperatures 5 000 – 20 000 °C pressure 500 – 1000 bar


Surrounding liquid layer

temperatures 2000 °C

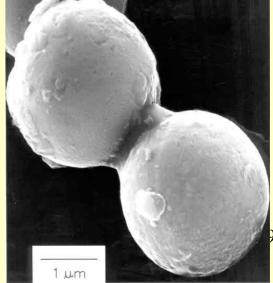
Bulk liquid

shear forces


Two-site Mechanism

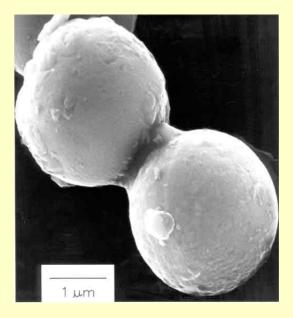
Solid surfaces = implosion, microjets, shock waves 200 µm minimum particle size at 20 kHz for microjets

surface erosion removal of unreactive coatings (oxides, nitrides, carbonaceous) fragmentation of brittle materials, increased surface area



Solid particles in liquid = shock waves

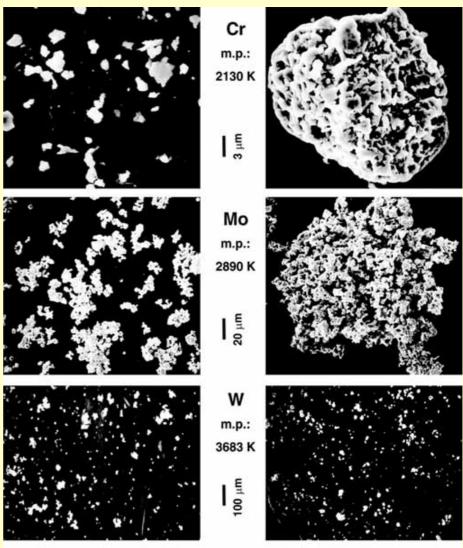
high speed interparticle collisions (500 km/s)


surface smoothing, surface coating removal

localized melting of metal particles at the impact point fragmentation, increased surface area intercalation rates enhanced

• Solid particles in liquid = shock waves, high speed interparticle collisions (500 km/s)

surface smoothing, surface coating removal Ni catalytic activity in hydrogenation increased 10⁵ fold by NiO removal localized melting of metal particles at the impact point fragmentation, increased surface area intercalation rates enhanced 200 fold in layered oxides and sulfides (V₂O₅, MoO₃, MoS₂, ZrS₂, TaS₂)



Metal powders

Cr (mp 2130 K) and Mo (mp 2890 K) agglomerate

W (mp 3683 K) does not

temperature at the point of impact ~ 3000 °C

Before ultrasound

30 min. ultrasound

Cavitational Corrosion of the Tip

Control of sonochemical reactions

■frequency 20-40 kHz, the higher the frequency, the higher power needed to actuate cavitation, rarefaction phase shortens at high freq.

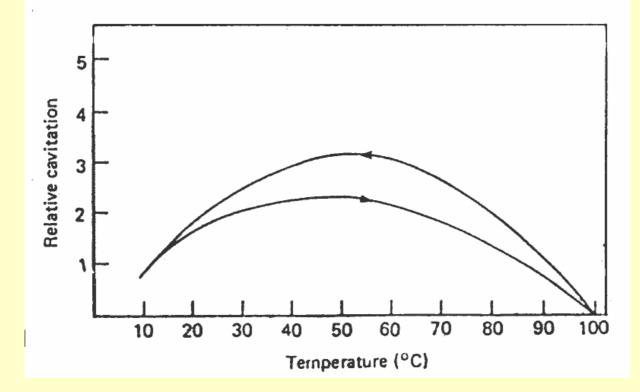
■volatile reactants, primary reaction site inside the bubbles, diameter 200 µm, 5000 °C, easier bubble formation, more vapors inside bubbles, but the cavitation is cushioned

■nonvolatile reactants, reaction in the thin layer (200 nm) surrounding the bubble, 2000 °C, less cushioning, more energetic cavitation (collapse)


■use high boiling solvents, high vapor pressure inside the bubble cushions the implosion

■less cavitation in viscous liquids, viscosity resists shear forces

■reaction rates decrease with increasing temperature, more vapors in bubbles


■ low surface tension facilitates cavitation, in water add surfactants

Cavitation in Water

The frequency dependence of the intensity required to produce cavitation for degassed water at room temperature. The intensity required to produce vaporous cavitation above the frequency of 100 kHz rises rapidly.

The effect of temperature on cavitation

The effect of temperature on cavitation and its associated hysteresis effect for tap water. The increase in intensity as the temperature is increased can be observed before it falls away at the boiling point. When the temperature is allowed to fall an increase in intensity is found in the region of 50-60 °C. This is quite a significant effect and appears to occur in all liquids.

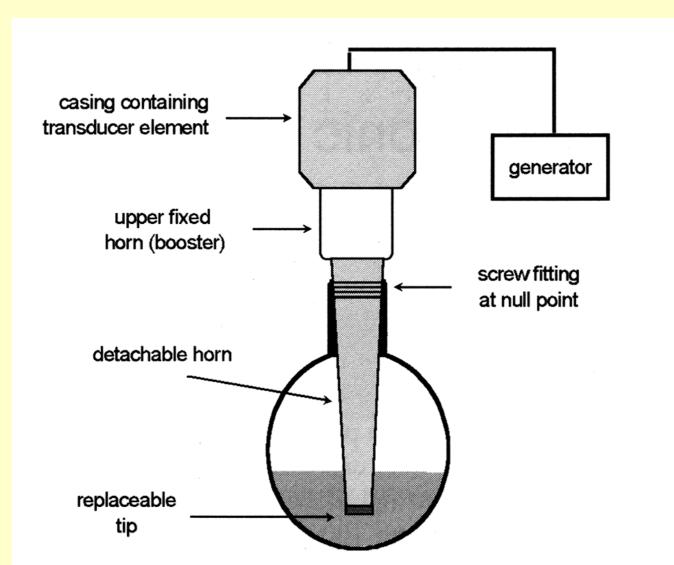
Control of sonochemical reactions

 ambient gas important energy developed on bubble collapse: monoatomic (Ar) > diatomic (N₂) > triatomic (CO₂)
 Xe: low thermal conductivity, heat of the collapsing cavity retained
 He: high thermal conductivity, heat of the collapsing cavity dissipitated, no reaction

■external pressure, higher pressure suppresses bubble formation but makes cavitation more energetic, optimum pressure for given frequency

■temperature, higher temperature increases vapor pressure of a medium, lowers viscosity and surface tension, many bubbles formed at temps. close to solvent boiling point, a barrier to sound transmission

■intensity, minimum intensity for cavitation threshold, depends on freq., optimum intensity for given reaction conditions, at high powers great number of bubbles hinder sound transmission, decoupling of a liquid from the source, breakdown of transducer material

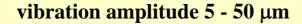

■ sound attenuation is proportional to the frequency, more power needed at high freq.

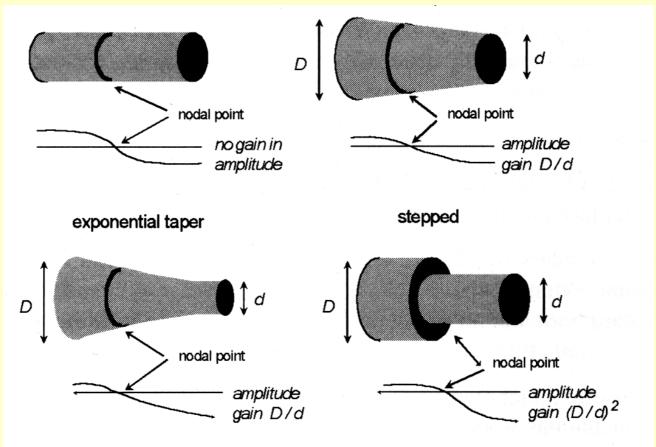
Generation of Ultrasound

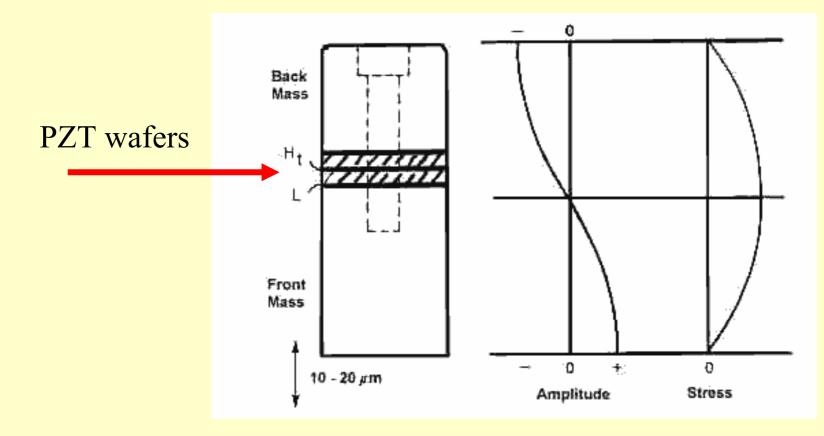
a transducer - device converting one type of energy into other

gas driven	whistle (F. Galton), liquid atomizer
	siren
liquid driven	liquid whistle homogeniser, a jet of liquid passed through an orifice on a thin metal blade, vibrations, cavitation, mixing of immiscible liquids, ketchup, mayonnaise
electromechanical	magnetostrictive, Ni, Co/Fe, Al/Fe, Tb/Dy/Fe alloys shrink when placed in mg. field, solenoid, pulses, upper limit 100 kHz, cooling
	piezoelectric, oposite charges applied on crystal sides, contraction/expansion, quartz, Pb(Zr/Ti)O ₃ ceramics (PZT), up to MHz

Generation of Ultrasound


68


Sonochemical Reactor



Ti alloy horn, minimum lenght is a half-wavelength of sound in a material, 26 cm for 20 kHz in Ti, multiples of 13 cm

Sandwich transducer operating at 1-200 kHz

Sonochemical Reactor

Ultrasound Processor VCX 500 W

Frequency 20 kHz

0 to 40 °C

Argon (flow rate 62 cm³ min⁻¹)

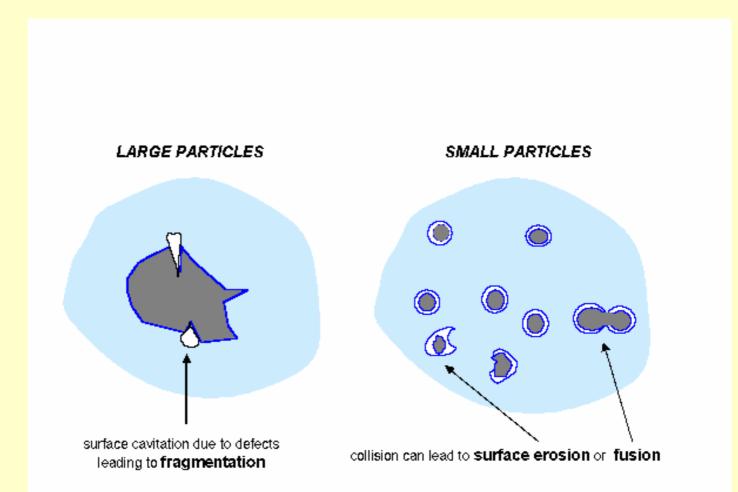
TIME of ultrasound treatment PULSE irradiation and a dwell time 2:2 TEMP maximum temperature 50 °C AMPL amplitude 50 %

Liquids = heating/cooling by cavity implosions

 $H_2O \longrightarrow H^{\cdot} + OH^{\cdot} \longrightarrow H_2 + H_2O_2$

precursor decomposition: metals $Fe(CO)_5 \longrightarrow Fe + 5 CO$ oxides $Ga^{3+} + H_2O \longrightarrow Ga(O)(OH)$, diaspore nitrides, carbides, sulfides

alkane cracking polymer degradation, lower MW, surface modification emulsification of immiscible liquids (oil-water, Hg-organics, polymer-inorganics)


• Solid surfaces = implosion, microjets, shock waves

200 μm minimum particle size at 20 kHz for microjets surface erosion removal of unreactive coatings (oxides, nitrides, carbonaceous) fragmentation of brittle materials, increased surface area

Li, Mg, Zn, Al, Cu react at room temperature

 $\begin{array}{rcl} MCl_5 + Na + CO &\longrightarrow M(CO)_5 & (M = V, Nb, Ta) \\ Mo + 6 CO &\longrightarrow Mo(CO)_6 & r. t., 1 bar, \\ & & normally needs 300 bar, 300 \ ^C \\ R_2SiCl_2 + Li &\longrightarrow [-SiR_2-SiR_2-]_n + LiCl \\ & & monomodal MW distribution \end{array}$

Protein microspheres diameter 2 μm, hollow emulsification, crosslinking cysteine -S-S- by superoxide

