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Stochastic Policy Design in a Learning
Environment with Rational Expectations'

H. M. AMMaN? aND D. A. KENDRICK®

Abstract. In this paper, we present a method for using rational expec-
tations in a stochastic linear-quadratic optimization framework in
which the unknown parameters are updated through a learning scheme.
We use the QZ decomposition as suggested by Sims (Ref. 1) to solve
the rational expectations part of the model. The parameter updating is
done with the Kalman filter and the optimal control is calculated using
the covariance matrix of the uncertain parameter.

Key Words. Macroeconomics, learning, rational expectations, stochas-
tic optimization.

1. Introduction

There has been a recent revival of interest in learning under the title of
bounded rationality [Marcet and Sargent (Ref. 2) and Sargent (Ref. 3)].
Earlier works on learning in macroeconomics include studies by Prescott
(Ref. 4), MacRea (Ref. 5), Chow (Ref. 6), and Kendrick (Ref. 7). In a
recent paper [Amman and Kendrick (Ref. 8)], we employed the Sims QZ
decomposition approach to solve a rational expectations model in a deter-
ministic optimal control context with parameter updating using the Ljung
and Soderstrom (Ref. 9) self-tuning regulator. Here, we extend that work
to the case where the parameters are unknown and treated as stochastic,
and where the optimal instruments are computed while taking into account
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the variance and covariances of the parameter estimates. The learning of
the parameters is done through the use of a Kalman filter.

2. Problem Statement

Following Kendrick (Ref. 7), the standard single-agent stochastic
linear-quadratic (LQ) optimization problem is written as:

Find the set of admissible instruments U = {u, 1, . . ., ur— } that mini-
mizes the welfare loss function,
r 7—-1
JT:E{B Ly(xr)+ Z BtLt(xts ut)}a (1a)
t=0
with
Ly=1/2)(xp—%p) Wxr—%r), (1b)
L= (1/2)(xl _ft)’ W(xt _ft)
+ (1/2)(ut - ﬂt)'R(“t - ﬂt) + (xt _ft)'F(”t - ﬂt), (IC)

subject to the model
X1 =A(O)x,+ B(O)u,+ c(0) + €. (2a)

The vector x,[00" is the state of the economy at time ¢ and the vector
u,00™ contains the policy instruments. The initial state of the economy x,
0" is known, x,00" and ,000" are target values; wOO" ™", ROO™ ™™ and
FOO"™ are penalty matrices; 00" is a white noise vector with
€, [IN(0,Z°). We assume that Z<00""" is known to the policy maker.
Learning is introduced into the LQ framework by the unknown parameter
vector 600007 which is determined through a learning strategy.

The above model is straightforward to solve; see Kendrick (Ref. 7).
However, a serious drawback for economics is that Eq. (2a) does not allow
for RE. One way of allowing RE to enter the model is to augment Eq. (2a)
in the following fashion:

P
X1 =AO)x,+B(O)u,+c(0),+ 5 D;(O)Ex, ; + e, (2b)
Jj=1

where D;(8) is a parameter matrix, E,x,,; is the expected state for time
t+j as seen from time ¢, and £ is the maximum lead in the expectations
formation.”*

“See also Amman (Ref. 10).
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In order to compute the admissible set of instruments, we have to elim-
inate the rational expectations from the model. In an earlier paper, Amman
and Kendrick (Ref. 8), we described how the control model with RE can be
solved using the Sims approach (Ref. 1). In this case, we employ this method
for the situations in which there is learning.

3. Solving Rational Expectations

For the sake of simplicity, let us assume that we have an estimate of
the parameter vector é,\,. In our notations, this is the estimated value of 6
at time ¢ using the observations through time z. The covariance matrix of
this parameter vector is defined as iﬂ?. For the time being, we will treat
Qm as being constant. In a later phase, we return to the issue of reestimating

t|t-

In the last decade, a number of generic methods to solve models with
rational expectations were developed. For instance, Fair and Taylor (Ref.
11) use an iterative method for solving RE models; in the tradition of Theil
(Ref. 12), Fisher, Holly, and Hughes Hallett (Ref. 13) use a method based
on stacking the model variables. McCallum (Ref. 14) and Uhlig (Ref. 15)
use the method of undetermined coefficients. A hybrid method based on the
saddle-point property is presented in Anderson and Moore (Ref. 16).

Recently, Sims (Ref. 1) proposed a method based on the QZ decompo-
sition. Following the work of Sims (Ref. 1), which is an extension of the
work of Blanchard and Kahn (Ref. 17), we can rewrite the system Eq. (2a)
in the following augmented form:

ro)zt+1 = rl)?,+ r2l/l,+ r3,,+ r4e,, (3)
where
_[_Dl(ét|t) _D2(ét\t) s _Dk—l(ét\t) _Dk(éz\t)
1 0 ... 0
Me=|0 I 0 0 . (4a)
: 0 0
L0 1 0
[4(8,) 0 0 ... 0 .
B(6,,)
0 I 0 ... 0
M=(0 0o 7 0], Mh=]. , (4b)
: : . 0
L0 0 0 1
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Ct(ét\t)_ I
0 0

M= : s M= - |- (4¢)
0 0

and the augmented state vector is

Xt
Ex,;
.f[ - Ex,+2 . (5)

EXy s j—1-

Taking the generalized eigenvalues of Eq. (3) allows us to decompose
the system matrices [, and I'; in the following manner [see Moler and
Stewart (Ref. 18) or Coleman and Van Loan (Ref. 19)]:

/\:QI_OZs Q:QI_IZ’
with
77=1, QO=I

Here, A\ and Q are upper triangular matrices and the generalized eigenvalues
are w;,;/A;;, Oi. If we use the transformation

w,=7Z'%,,
we can write Eq. (3) as
Aw, = QIW,+Q|_2M,+Q|_3J+Q|_4E,. (6)

Given the triangular structure of A and Q, we can partition (6) as
follows:
[/\11 /\12} |:W1,r+l:|
0 Ay ]| Wayii1

_ {Qll le:| [WIJ:| + {Ql] Mu+ [Q1:| |_3,;+ [Ql:| I s, (7)
0 Qoo || way 0> 0 Q-

where the unstable eigenvalues are the ones in the lower-right corner, i.c.,
in the matrices Ay, and Q,,. By forward propagation and taking expec-
tations, it is possible to derive w,, as a function of future instruments and
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exogenous variables,
Yi=wy,=~— z M’ IQE%Qz(rzqu +13.), (®)
j=0

with
M= QnMss.
Reinserting Eq. (8) into Eq. (6) gives us
Aw, o =Qw,+Fou+ 5+ Fie+ 7., )

with

Knowing that %, = Z'w,, we can write Eq. (9) as

X =A%+ Bu,+é+ &, (10)
with

A=2ZN"'Qz', B=zZN'[,, &=[ZN'T5,+ZN7'y.),
and

" ATl AN -
Al = [ 11 11 12], &, =7ZA'T,0,.
0 1
Note that the 4, B, &, & may depend on 6. In nonpathological cases
[Stewart (Ref. 20)], the matrix A;; will be nonsingular. With Eq. (10), we
have replaced the RE in the control model.

4. Computing the Stochastic Optimal Solution

Now that we have the model in the form of Eq. (10), we can derive the
optimal solution of the model in Egs. (1a)—(2b). The optimal solution can
be obtained through solving the so-called Riccati equation and tracking
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equation backward in time,’

K,= W+ BE{A'K, .\ A} —[F + BE{A'K,. B}]

% [R+ BE{B'K, B\ '[BE{B'K,.\ A} + F, (11)
p.=BE{A'K, &} + BE{A}p,, — [F + BE{A'K,. B}]
X [R+ BE{B'K, . B} [BE{B'K, &+ BE{B'}p,.1], (12)

with the boundary conditions
KT: W, Pr= _Wf]‘.

Here, W and F are the penalty matrices from the objective function adjusted
to conformable size. Once we have backward-integrated these equations and
since xo is known, we can compute the set of optimal instruments by
forward integrating

u= G +g, (13)

with systems Eq. (10) where
G,=-[R + BE{B'K,. \B}]"'[F" + BE{B'K,. ,A}], (14)
& ="IR'+BE{B'K, .\ B\ '[BE{B'K, &+ BE(B'}p:\]. (15)

The above equations allow us to solve the set of admissible instruments.
The components like E{A'K,, B} capture the effect of the parameter uncer-
tainty on the value instruments. The elements of these components [Magnus
and Neudecker (Ref. 21)] are

d, ;= 61K, 1by+ (K, 1 Z0%), (16)
where d; is the expected ith column of the matrix 4 and b is the expected
jth column of the matrix B; tr() is the trace operator. Hence through the

covariance matrix %%, the uncertainty of the parameters on the instruments
is captured.

5. Learning Algorithm

As mentioned earlier, the components 4, B, ¢ may depend on the
unknown parameter vector 8, and we have inserted an estimate 9,|, of this
parameter vector in order to be able to solve the RE. The vector & depends
also on 6, so we have to assume that

Ee =0.

’See Kendrick (Ref. 7, Chapter 6).
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However, the estimate of é,|, will change over time as new information
becomes available or as a consequence of policy reactions in the economy.
So, as soon as we have implemented the control u,, we will get a new realiz-
ation of the state vector x;, ;, which enables us to reestimate the parameter
vector obtaining 0.1 le41-

In the literature, a number of procedures for such learning processes
are described (for instance, ordinary least squares learning, filtering, or
stochastic approximations). Here, we will apply a Kalman filter to update
the estimate é,\, and the covariance matrix iﬁ?. First, it is necessary to
project the covariance matrices to period ¢+ 1 using observation through
period ¢, which produce the priors

+1\t fetzt\t(fet) +ZEE (17)
Zt+1\t t\t (fet) (18)
Zt+1\t zt\ta (19)
where
for= Z exidg + Z e;u, by + Z €iCo. (20)

i=1 i=1 i=1

Here, the matrix f3, is the derivative of the system equations® with respect
to the vector 6. In addition, we also need an estimate of the state vector,
which is

A A A k A
X4 1= A(9,|,)x,+B(9,|,)u, + C,(B,‘I) + Z Dj(9,|,))f,+_/|,. (21)
i=1

Next, we update the parameter estimate and the covariance matrix for
period 7+ 1 using observation through period 7+ 1, which produces the
posterior

ét+ e+1 = éz+ 1t Zsfl\z(f;vfl|t)_l(xz+ 1= Xy l\z)a (22)
izefl\t-¢—1:i?fl|t +1|t)(zf+l|t) zr-¢—1|z; (23)
so B, 1]:+1 15 the new estimate of the parameter vector and 509 1]c+1 1 the
estimated covariance matrix. Starting with an initial estimates 6y, and
ngo, we can update the parameter vector each time new information on the
state of the economy becomes available.

Step 0. Set =0 and compute the estimate é,\, and its corresponding
covariance matrix 275 .

°For more detailed information, please refer to Appendices L and M in Kendrick (Ref. 7).
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Step 1.
Step 2.
Step 3.

Step 4.

Step 5.

Step 6.
Step 7.
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Set the iteration counter v = 0.

Set the instruments u}, i= {t,t+1,...,T+s—1}.
Compute y}, i={t,t+1,...,T+s—1}, and compute 4, B,
and ¢;, Oi.

Apply a standard LQ optimization method to compute a new
set of optimal instruments »} "' using the equation below in

place of Eq. (2a),
= A0 )%+ BByl + (8,1

Set v=v+1 and go to Step 2 until convergence is reached on
the RE part.

Estimate Q,H\,H and i?futﬂ using Egs. (22)-(23).
Sett=t+1, and go to Step 1 if ¢t T.

Steps 1 to 5 outline the method for solving the stochastic policy framework
for the RE part. Step 6 contains the learning part.

6. Example

In this section, we will present an example of the algorithm described
in the previous section. Consider a simple macro model with output x,,
consumption ¢,, investment i,, government expenditures g,, and taxes T,.
The problem can then be stated as follows: For the model

X1 =CootFh1 T &ty (24)
¢re1=0.8(x,—1,)+ 200, (25)
iiv1=02Ex,,,—-0.1g,,,+ 100 + ¢, (26)
iv1 = Uy, (27)
Tro1=0.25x. 1, (28)
with x, = 1500, find a set of admissible controls U = {u, u,, . . ., ty } to mini-

mize the welfare loss function

Jr=(1/2)(x12 — 1600)> + (1/2) § {(x,— 1600)> + g2}. (29)

If we reduce the above model to one equation for the output, we get

X1 =0.6x,+0.9u,+0.2E,x,, >+ 300 + ¢, (30)
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which leads to the augmented system
[1 —0.2] [x, ‘1 }
1 0 Ex o
0.6 0]]x, 0.9 300 €
= + u,+ + . (31)
0 1{]x4 0 0 0

We will set

>==1.

Let us assume that the parameter 6= 0.9 is unknown to the policy maker.
However, he has the wrong initial estimate

Boj0 = [0.8]. (32)
Furthermore, let us take as an estimate of the variance
550 =10.5], (33)

which is also arbitrarily chosen. By applying the QZ factorization, we can
compute the QZ decomposition

1.0822 -0.9136 0.7546 0.3979
A= ., Q= , (34)
0 0.1848 0 0.7952
_[0.8203 —0.5719] _[ 0.6523 0.7580]. G5
105719 0.8203] ~[-0.7580 0.6523]

so, the eigenvalues are {0.7376/1.0822, 07952/0.1848} and the ordering of
the system is such that the unstable root 4.3030 is in the lower-right corner.
Due to the fact that 8 appears only in the B-matrix, we get the following:

-~ 10.2966 0.5745 < oA 0.3955
A= > B(eo\o) = 5 (36)
0.2068 0.4006 0.2758

and for the initial period,

N 195.66} -

“=l615.09/

w=|! 0} R=[], F= [0] (38)
- 70 0 D) - ) - 0 D)

N ‘1500} . [1600] )

= liso0] *Tlo |
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Note that we set Eyx; equal to 1500 for the first iteration. In order to
deal with the boundary conditions of the RE part of the model, we need
the steady state of the system. Unfortunately, the policy maker cannot com-
pute the steady state as the steady state depends on the unknown parameter
vector 6. However, based on his initial estimate éo\o, he can make an esti-
mate of the steady state. For éo\o, the steady state of the control vector is

o (Bo)0) = 20.40.

Hence, U° = {20.40, . .., 20.40} is a good starting point for the instruments.’
For computing the stochastic optimal instruments using Eqs. (11)—(15),
we need the expectations® of

E{BK,.\B} = B'K,. B+ (K, 555, (40)

B being a vector in this example. Given the fact that

2 le Z1A
B: /\118, (41)
12

the estimated covariance of B at the initial period will be

T VAT A | Zu |

| 2 st |2 . )
which is

T VAT [z ] [0.1222  0.0852

oo = AT ESRN)™ = : 43

20007 7, Moo =L o0ss2 00594 *3)

Now that we have this covariance matrix, we can compute the solution
shown in Table 1. The results for the estimate 6,, and 8 are presented in

Table 1. Solution of the LQ optimization model with RE.

t 0 1 2 3 4 5 6

X, 1500 1548 1571 1580 1584 1586 1585
u, 37.80 28.89 23.12 21.04 19.95 19.45 19.76
Uoo 20.40 18.86 19.03 19.18 19.20 19.19 19.32
t 7 8 9 10 11 12

X 1587 1587 1587 1583 1580 1573

U, 19.08 18.87 18.47 16.95 11.57

Uoo 19.23 19.20 19.22 19.30 19.30

’See Amman and Kendrick (Ref. 22) for the derivations of the steady state solution.
¥Due to the fact that 8 appears only in the matrix B, the other expectation components will
be equal to their deterministic value.
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theta: true value and estimate
0.94 T T T T T T

0.88- ]

0.86 7

0.84r y

082 7

1 1 ! 1 1 1
0'80 2 4 6 8 10 12 14

time period

Fig. 1. True value and estimate of theta.

Fig. 1. It is striking how quickly the algorithm is capable of adjusting to the
regime switch.

7. Summary

In this paper, we have presented a single-agent stochastic optimization
model that allows for rational expectations. Based on the Sim paper, we
have used a generalized eigenvalue method for solving the variables that
involve unstable roots. By using an iterative scheme, the reduced model can
be fitted into a standard linear-quadratic framework that allows us to derive
the stochastic optimal policy instruments for the model with rational expec-
tations and learning.
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