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BEC for interacting particles

Description of the interaction

Mean field approximation: GP equation

Variational properties of the GP equation
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Are the interactions important?

In the dilute gaseous atomic clouds in the traps, the interactions are 

incomparably weaker than in liquid helium.

That permits to develop a perturbative treatment and to study in a 

controlled manner many particle phenomena difficult to attack in HeII.

Several roles of the interactions

• the atomic collisions take care of thermalization

• the mean field component of the interactions determines most of the 

deviations from the non-interacting case

• beyond the mean field, the interactions change the quasi-particles and 

result into superfluidity even in these dilute systems
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Fortunate properties of the interactions

1. Strange thing: the cloud lives for seconds, or even minutes at 

temperatures, at which the atoms should form a crystalline 

cluster. Why?

For binding of two atoms, a third one is necessary to carry 

away the released binding energy and momentum. Such 

ternary collisions are very unlikely in the rare cloud, however.

2. The interactions are elastic and spin independent: they do not 

spoil the separation of the hyperfine atomic species and 

preserve thus the identity of the atoms.

3. At the very low energies in question, the effective interaction 

is typically weak and repulsive … which enhances the 

formation and stabilization of the condensate.
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Interatomic interactions
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For neutral atoms, the pairwise interaction 

has two parts

• van der Waals force

• strong repulsion at shorter distances due 

to the Pauli principle for electrons

Popular model is the 6-12 potential:

Example: 

ε corresponds to ~12 K!!

Many bound states, too.
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Interatomic interactions

The repulsive part of the potential – not well known

The attractive part of the potential can be measured with precision

Even this permits to define a characteristic length
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Interatomic interactions

The repulsive part of the potential – not well known

The attractive part of the potential can be measured with precision
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Scattering length, pseudopotential

Beyond the potential radius, say       ,  the scattered wave 

propagates in free space

For small energies, the scattering is purely isotropic , the s-wave 

scattering. The outside wave is

For very small energies the radial part becomes just

This may be extrapolated also into the interaction sphere

(we are not interested in the short range details)

Equivalent potential ("pseudopotential")
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0sin( )kr
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Experimental data

as
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Experimental data
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Experimental data
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NOTES

weak attraction  ok

weak repulsion ok

weak attraction

intermediate attraction

weak repulsion ok

strong resonant repulsion
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seemingly erratic, very interesting physics of scattering 

resonances behind

as



Mean-field treatment of interacting atoms
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This is an educated way, similar to (almost identical with) the 

HARTREE APPROXIMATION we know for many electron systems.

Most of the interactions is absorbed into the mean field and    

what remains are explicit quantum correlation corrections

Many-body Hamiltonian and the Hartree approximation
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Hartree approximation at zero temperature

Consider a condensate. Then all occupied orbitals are the same and

Putting 

we obtain a closed equation for the order parameter: 

This is the celebrated Gross-Pitaevskii equation.
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r r r r
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r r r r

This is a single self-consistent equation for a single orbital,

the simplest HF like theory ever.
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Gross-Pitaevskii equation at zero temperature

Consider a condensate. Then all occupied orbitals are the same and

Putting 

we obtain a closed equation for the order parameter: 

This is the celebrated Gross-Pitaevskii equation.

• has the form of  a simple non-linear Schrödinger equation

• concerns a macroscopic quantity Ψ
• suitable for numerical solution.
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Gross-Pitaevskii equation – "Bohmian" form

For a static condensate, the order parameter has ZERO PHASE.    

Then

The Gross-Pitaevskii equation

becomes
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Gross-Pitaevskii equation – "Bohmian" form
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Gross-Pitaevskii equation – variational interpretation

This equation results from a variational treatment of the                 

Energy Functional

It is required that

with the auxiliary condition

that is

which is the GP equation written for the particle density (previous slide). 
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2

1

2
[ ] d (( ) ( ))

2
( )( )n nn V g

m
n=

 
∇ +

 
+∫E

h
r r rr r
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( )[ ] [ ] 0n nδ µ− =E N

→→→→ ADDITIONAL NOTES
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Gross-Pitaevskii equation – chemical potential

This equation results from a variational treatment of the                 

Energy Functional

It is required that

with the auxiliary condition

that is

which is the GP equation written for the particle density (previous slide).  

From there
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Gross-Pitaevskii equation – chemical potential
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Gross-Pitaevskii equation – chemical potential

This equation results from a variational treatment of the                 

Energy Functional

It is required that

with the auxiliary condition

that is
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Interacting atoms in a constant potential
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The simplest case of all: a homogeneous gas
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In an extended homogeneous system (… Born-Kármán boundary condition),
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The simplest case of all: a homogeneous gas
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Interacting atoms in a parabolic trap
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Reminescence:  The trap potential and the ground state 
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Parabolic trap with interactions

GP equation for a spherical trap ( … the simplest possible case)

Where is the particle number N? ( … a little reminder)
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2 2
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∆ ω Ψ Ψ µΨ

 
− + + = 
 

r r r
h

23 3d ( ) d ( )n NΨ = ⋅ =∫ ∫r r r r
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Parabolic trap with interactions

GP equation for a spherical trap ( … the simplest possible case)

Where is the particle number N? ( … a little reminder)
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Parabolic trap with interactions

GP equation for a spherical trap ( … the simplest possible case)

Where is the particle number N? ( … a little reminder)
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Importance of the interaction – synopsis 

Without interaction, the 

condensate would occupy the 

ground state of the oscillator

(dashed - - - - -)

In fact, there is a significant 

broadening of the condensate of 

80 000 sodium atoms in the 

experiment by Hau et al. (1998), 

perfectly reproduced by the 

solution of the GP equation
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Importance of the interaction

Qualitative

for g>0, repulsion,  both inner "quantum pressure" and 

the interaction broaden  the condensate.

for g<0, attraction, "quantum pressure" and the 

interaction compete, the condensate shrinks and 

becomes metastable.  Onset of instability with respect 

to three particle recombination processes

Quantitative

The decisive parameter for the "importance" of  

interactions is
2 3

INT 0

2
KIN 0 0

s sE N a a NagNn

E N Na aω

−

− =: :
h
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Importance of the interaction

Qualitative

for g>0, repulsion,  both inner "quantum pressure" and 

the interaction broaden  the condensate.

for g<0, attraction, "quantum pressure" and the 

interaction compete, the condensate shrinks and 

becomes metastable.  Onset of instability with respect 

to three particle recombination processes

Quantitative

The decisive parameter for the "importance" of  

interactions is
2 3
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2
KIN 0 0
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Importance of the interaction

Qualitative

for g>0, repulsion,  both inner "quantum pressure" and 

the interaction broaden  the condensate.

for g<0, attraction, "quantum pressure" and the 

interaction compete, the condensate shrinks and 

becomes metastable.  Onset of instability with respect 

to three particle recombination processes

Quantitative

The decisive parameter for the "importance" of  

interactions is

weak individual 

collisions

1=collective effect 

weak or strong 

depending on N

can vary               

in a wide range

2 3
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2
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4
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γ
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Importance of the interaction

Qualitative

for g>0, repulsion,  both inner "quantum pressure" and 

the interaction broaden  the condensate.

for g<0, attraction, "quantum pressure" and the 

interaction compete, the condensate shrinks and 

becomes metastable.  Onset of instability with respect 

to three particle recombination processes

Quantitative

The decisive parameter for the "importance" of  

interactions is

weak individual 

collisions

collective effect 

weak or strong 

depending on N

can vary               

in a wide range

realistic 

value

02 3
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2
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4

s sN a a NagNn
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γ
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−
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E

E
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The end
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On the way to the mean-field Hamiltonian

ADDITIONAL NOTES
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On the way to the mean-field Hamiltonian

ADDITIONAL NOTES

� First, the following exact transformations are performed

( ) ( ) ( )

( ) ( ) ( ) ( )
TRICK!!

2

3 3

3 3

3 3

1 1ˆ ( ) ( )
2 2

( ) d ( ) ( ) d ( )

1 1
( ) d d ' ' '

2 2

1
d

ˆ

d ' '

ˆ ˆ

'

ˆ

ˆ

ˆ

)

2

(

'

a a a b

a a a b

a a

a a

a b a b

a b a b

a b

a b

H p V U
m

V V V

U U

U

U

U

V

W V

nδ

δ δ

δ δ δ

≠

≠ ≠

= + + −

= = − ≡ ⋅

= − = − − −

  = − − − − − 
  

∑ ∑ ∑ ∑

∑ ∑∫ ∫

∑ ∑ ∑ ∑∫

∑ ∑∫ r r

r r r

r r r r r r r

r r r r r r r r r r

r r r r r r r r

r

ˆ( )n r'
eliminates SI 

(self-

interaction)

particle

density operator

( ) ( ){ }3 3 3ˆ ˆ ˆ(
1ˆ d ( ) d d ' ' '
2

) ) )ˆ ( (n nU nH VW δ= + ⋅ + − − −∫ ∫r r rr 'r r rr r r r

ˆ( )n r
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On the way to the mean-field Hamiltonian

ADDITIONAL NOTES

� Second, a specific many-body state is chosen, which defines 

the mean field:

Then, the operator of the (quantum) density fluctuation is defined:

The Hamiltonian, still exactly, becomes

( ){ }
( )

( ) ( ){ }

3 3

3 3

3 3

ˆ d ( ) d ' ( )

1
d d ' ' ( ) ( )

2

1
d d ' ' '

ˆ( )

ˆ
2

ˆ ˆ( ) ( ) ( )

ˆH V U n

U n

W n

n nU n

n

∆ δ∆

= + + − ⋅

− −

+ − − −

∫ ∫

∫

∫

r r r' r r r'

r r r r

r

r r' r

r r'

r r r r r r

ˆ ˆ( ) ( ) ( )n n nΨ Ψ Ψ→ = ≡r r r

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

n n n

n n n n n n n n n n

∆
∆ ∆

= +

= + + −

r r r

r r' r r' r r' r r' r r'
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On the way to the mean-field Hamiltonian

ADDITIONAL NOTES

� In the last step, the third line containing exchange, correlation 

and the self-interaction correction is neglected. The mean-field 

Hamiltonian of the main lecture results:

( ){ }
( )

( ) ( ){ }

3 3

3 3

3 3

ˆ d ( ) d ' ( )

1
d d ' ' ( ) ( )

2

1
d d ' ' '

ˆ( )

ˆ
2

ˆ ˆ( ) ( ) ( )

ˆH V U n

U n

W n

n nU n

n

∆ δ∆

= + + − ⋅

− −

+ − − −

∫ ∫

∫

∫

r r r' r r r'

r r r r

r

r r' r

r r'

r r r r r r

REMARKS

• Second line … an additive constant compensation for double-

counting of the Hartree interaction energy

• In the original (variational) Hartree approximation, the self-interaction 

is not left out, leading to non-orthogonal Hartree orbitals

substitute back

and integrate

(ˆ( )) a

a

n δ= −∑ r rr( )HV r

BACK
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ADDITIONAL NOTES

Variational approach                                            
to the condensate ground state
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Variational estimate of the condensate properties

ADDITIONAL NOTES

���� VARIATIONAL PRINCIPLE OF QUANTUM MECHANICS

The ground state and energy are uniquely defined by

In words,         is a normalized symmetrical wave function of N particles. The 

minimum condition in the variational form is

���� HARTREE VARIATIONAL ANSATZ FOR THE CONDENSATE WAVE F.

For  our many-particle Hamiltonian,

the true ground state is approximated by the condensate for non-interacting 

particles (Hartree Ansatz, here identical with the symmetrized Hartree-Fock)

Sfor allˆ ˆ' '     ' , ' ' 1NE H H= Ψ Ψ ≤ Ψ Ψ Ψ ∈ Ψ Ψ =HHHH

'Ψ

equivalent with the SR ˆ ˆ0      H H Eδ Ψ Ψ = Ψ = Ψ

21 1ˆ ( ) ( ), ( ) ( )
2 2

a a a b

a a b

H p V U U g
m

δ
≠

= + + − = ⋅∑ ∑ ∑r r r r r

( ) ( ) ( ) ( ) ( )1 2 0 1 0 2 0 0, , , , ,p N p NΨ ϕ ϕ ϕ ϕ=r r r r r r r rK K L L
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{ } ( ) ( )

( ) ( )( ) ( )

1
0 0 0

2
3 3 3 3

0 0 0 0

0 0 0 0 0 0

]                      

2 4
d 2 d 1 d

2

,

2

 N

V N g
m

ϕδ ϕ µ ϕ ϕ

δϕ ∆ϕ δϕ µ ϕ δϕ ϕ

ϕ δϕ δϕ− [ −

= ⋅ − + ⋅ −

= =

+ − ⋅∫ ∫ ∫
BY PARTS

r r

r r r r
h

EEEE

Variational estimate of the condensate properties

ADDITIONAL NOTES

Here,      is a normalized real spinless orbital. It is a functional variable to be 

found from the variational condition 

Explicit calculation yields

Variation of energy with the use of a Lagrange multiplier:

This results into the GP equation derived here in the variational way:

0 0 0 0 0 0 0with ˆ] ] ] 0   ] ] 1 1 Hδ ϕ δ ϕ ϕ ϕ ϕ ϕ ϕ[ = Ψ[ Ψ[ = Ψ[ Ψ[ = ⇔ =EEEE

0ϕ

( )( ) ( ) ( )( ) ( ) ( )( )
2

2 2 43 3 3
0 0 0 0

1
] d d 1 d

2 2
N N V N N g

m
ϕ ∇ϕ ϕ ϕ[ = + + −∫ ∫ ∫r r r r r r r

h
EEEE

( ) ( ) ( ) ( )22
0 0 0

1
( )

2
p V N g

m
ϕ ϕ µϕ + + = 

 
r r r r-1

eliminates self-interaction

BACK
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Variational estimate of the condensate properties

ADDITIONAL NOTES

���� ANNEX  Interpretation of the Lagrange multiplier µ
The idea is to identify it with the chemical potential. First, we modify the notation 

to express the particle number dependence

The first result is that µ is not the average energy per particle:

( )

( )

2 3 4
0 0 0 0 0 0

2 3 4
0 0 0 0 0from

1 1
/ ]/ 1 d

2 2

1
          the GPE 1 d

2

N N N N N N N N

N N N N N N

E N N p V N g
m

p V N g
m

ϕ ϕ ϕ ϕ ϕ ϕ

µ ϕ ϕ ϕ ϕ ϕ

= [ = + + −

= + + −

∫

∫

r

r

EEEE

( )

( ) ( ) ( ) ( )

2 3 4

22
0 0 0 0

1 1
] 1 d

2 2

1
], ( )

2

N

N N N N N N

N p V N g
m

E p V N g
m

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ µ ϕ

 [ = + + − 
 

 = [ + + = 
 

∫

-1

r

r r r r

EEEE

EEEE
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Variational estimate of the condensate properties

ADDITIONAL NOTES

Compare now systems with N and N -1 particles:

0 1 0 1 0 1, 1] ] ]N N N N N N N NNN NE Eϕ µ µϕ ϕ µ − −− −≥[ = [ + = += [ +E EE EE EE E EEEE

µN … energy to remove a 
particle without relaxation of 
the condensate

use of the 
variational principle 
for GPE

In the "thermodynamic"asymptotics of large N, the inequality 

tends to equality. This only makes  sense, and can be proved, for 

g > 0.

Reminescent of the Koopmans’ theorem in the HF theory of atoms. 

Derivation:

( )
( ) ( ) ( )( )

( ) ( )( )( )

1 12 3 4

2 2

1 12 3 4
1 2 2

1 12 3 4
1 2 2

0

]                  1 d

] 1 1 1 2 d

1 1 2 d

  o  f r

N m

N m

N N m

N N

N p N V N N g

N p N V N N g

p V N N N N g

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

µ ϕ ϕ

−

−

[ = + + −

[ = − + − + − −

− = + + − − − −

∫

∫

∫

r

r

r
1 4 4 4 4 4 4 4 4 4 4 44 2 4 4 4 4 4 4 4 4 4 4 4 43

a

EEEE

EEEE

E EE EE EE E
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( ) ( )2 2 2 2 2 2
0 0

1 1
2 2

V m r m x y zω ω= ⋅ = + +r

Variational estimate of the condensate properties

ADDITIONAL NOTES

���� SCALING ANSATZ FOR A SPHERICAL PARABOLIC TRAP

The potential energy has the form

Without interactions, the GPE reduces to the SE for isotropic oscillator

The solution (for the ground state orbital) is

We (have used and) will need two integrals: 

( ) ( )2 2 2
0 0 0 0

31
2 2

1

2
p m r

m
ω ϕ ω ϕ + ⋅ = 

 
r rh

( ) ( )
2

2
0

2 1/ 4
3 2

00 0 0 0 0 02
0 0

1

2
e , ,

r

a
A a A a

m ma
ϕ ω π

ω
−− ⋅

= = = =r
h h

h

( ) ( )
2 2

2 2 2 3
1 2

1
2

d e , d e

u u

I u I u uσ σσ σ π σ σ π
+∞ +∞− −

−∞ −∞

= = = =∫ ∫
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The condensate orbital will be taken in the form

It is just like the ground state orbital  for the isotropic oscillator, but with a 

rescaled size. This is reminescent of the well-known scaling for the ground 

state of the helium atom.

Next, the total energy is calculated for this orbital

The solution (for) is

( ) ( )
2

2 1/ 4
3 2

0

1

2
e ,

r

b
A A bϕ π

−− ⋅
= =r

Variational estimate of the condensate properties

ADDITIONAL NOTES

SCALING ANSATZ

( )( ) ( ) ( )( ) ( ) ( )( )

( )
2 2 2

2 2 2

2
2 2 43 3 3

0 0 0 0

2 2
6 3 2 3 2 6 30 0

0 4 2 2
0

2

1
] d d 1 d

2 2

1 1
d e d e 1 d e

2

r r r

b b b

N N V N N g
m

a ma
NA r r N A g

b a

ϕ ∇ϕ ϕ ϕ

ω
− − −

[ = + + −

 
 = + + − 
 
 

∫ ∫ ∫
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r r r r r r r

r r r

h

h
h
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Variational estimate of the condensate properties

ADDITIONAL NOTES

( )
22

2 2 20
0 0 0 2

10

41 1
, , , saa m A g

m I b ma b

ω πω ω
π

= = = = =
h hh

h

( ) ( )( )
( )( )

( )
( )( )

( )( )

0

3
2

2 2 2
112 0 0

0 2 4 2 3 3 / 2 2 3
01 1

]

/ 23 41 1
1

22

s
I bI bI b a ma a

N N
mb a bb I b I b

ϕ

πω
ππ
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  = + + −   
  

 

h
h

h

EEEE

( ) ( )

( )

2 32
0 0

0 0 02 2 3
0 0

2

2 3
0

13
]

4 2

3 1 1
                            

4

s
Na a ab

N N E
b a a b

b
E

a

ϕ ω ω σ
π

σ σ η σ
σ σ

   − [ = + + ⋅ ≡ ⋅   
   

 = + + ⋅ = 
 

% %h h

% % % %
% %

EEEE

dimension-less 

energy per 

particle

dimension-

less orbital 

size

For an explicit evaluation, we (have used and) will use the identities: 

The integrals, by the Fubini theorem, are a product of three:

Finally,

This expression is plotted in the figures in the main lecture.
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The end


