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BEC for independent particles

Two basic models: BEC in an ideal gas vs. in 
a trapped atomic cloud

Problems with thermodynamic limit



BEC for independent particles
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LAST TIME Ideální kvantové plyny

   

1 , 1 , ,1 , 0 ,                  , 0 ,0 , ,0 ,       vacF B N= =K K K K

1

e 1
n βε=

−( )

1

e 1
n β ε µ− −

=
( )

1

e 1
n β ε µ− +

=

( )
Boltzmannovo rozdělení

          vysoké teploty, zředěný pl            n  y

e   n β ε µ− −=

fermiony bosony

0T → 0T → 0T →

N N

vymrzání

FD
BE

Áufbau princip BEC

diskontinuita 
fázový přechod
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Ideal quantum gases at a finite temperature

   

1 , 1 , ,1 , 0 ,                  , 0 ,0 , ,0 ,       vacF B N= =K K K K

1

e 1
n βε=

−( )

1

e 1
n β ε µ− −

=
( )

1

e 1
n β ε µ− +

=

fermions bosons

0T → 0T → 0T →

N N

freezing out

FD
BE

( )
Boltzmann distribution

           high temperatures, dilute g          as  e s

e   n β ε µ− −=mean occupation 
number of a one-
particle state 

with energy  ε

BEC
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Ideal quantum gases at a finite temperature

   

1 , 1 , ,1 , 0 ,                  , 0 ,0 , ,0 ,       vacF B N= =K K K K

1

e 1
n βε=

−( )

1

e 1
n β ε µ− −

=
( )

1

e 1
n β ε µ− +

=

( )
Boltzmann distribution

           high temperatures, dilute g          as  e s

e   n β ε µ− −=

fermions bosons

0T → 0T → 0T →

N N

freezing out?

FD
BE

( )

1
( , ) ( )

e 1j
j

j j

nN T ε µβεµ −= = =
−∑ ∑N

Equation for the chemical potential closes the equilibrium problem:
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A gas with a fixed average number of atoms

Ideal boson gas (macroscopic system)

atoms: mass m, dispersion law 

system as a whole:

volume V, particle number N, density n=N/V, temperature T. 

2

( )
2

p
p

m
ε =
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A gas with a fixed average number of atoms

Ideal boson gas (macroscopic system)

atoms: mass m, dispersion law 

system as a whole:

volume V, particle number N, density n=N/V, temperature T. 

Equation for the chemical potential closes the equilibrium problem:

2

( )
2

p
p

m
ε =

( )

1
( , ) ( )

e 1j
j

j j

nN T ε µβεµ −= = =
−∑ ∑N
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A gas with a fixed average number of atoms

Ideal boson gas (macroscopic system)

atoms: mass m, dispersion law 

system as a whole:

volume V, particle number N, density n=N/V, temperature T. 

Equation for the chemical potential closes the equilibrium problem:

2

( )
2

p
p

m
ε =

Always µ < 0. At high temperatures, in the thermodynamic limit, 
the continuum approximation can be used:

( )

0

1
d ( ) ( , )

e 1
N V Tµβ εε ε µ

∞

−≈ ≡
−∫ D N%

( )

1
( , ) ( )

e 1j
j

j j

nN T ε µβεµ −= = =
−∑ ∑N
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A gas with a fixed average number of atoms

Ideal boson gas (macroscopic system)

atoms: mass m, dispersion law 

system as a whole:

volume V, particle number N, density n=N/V, temperature T. 

Equation for the chemical potential closes the equilibrium problem:

2

( )
2

p
p

m
ε =

Always µ < 0. At high temperatures, in the thermodynamic limit, 
the continuum approximation can be used:

( )

0

1
d ( ) ( , )

e 1
N V Tµβ εε ε µ

∞

−≈ ≡
−∫ D N%

It holds

For each temperature, we get a critical number of atoms the gas 
can accommodate. Where will go the rest?

( , 0) ( ,0)T Tµ < < < ∞N N% %

( )

1
( , ) ( )

e 1j
j

j j

nN T ε µβεµ −= = =
−∑ ∑N
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A gas with a fixed average number of atoms

Ideal boson gas (macroscopic system)

atoms: mass m, dispersion law 

system as a whole:

volume V, particle number N, density n=N/V, temperature T. 

Equation for the chemical potential closes the equilibrium problem:

2

( )
2

p
p

m
ε =

Always µ < 0. At high temperatures, in the thermodynamic limit, 
the continuum approximation can be used:

( )

0

1
d ( ) ( , )

e 1
N V Tµβ εε ε µ

∞

−≈ ≡
−∫ D N%

It holds

For each temperature, we get a critical number of atoms the gas 
can accommodate. Where will go the rest?

( , 0) ( ,0)T Tµ < < < ∞N N% %

This  will be
shown in a while

( )

1
( , ) ( )

e 1j
j

j j

nN T ε µβεµ −= = =
−∑ ∑N
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A gas with a fixed average number of atoms

Ideal boson gas (macroscopic system)

atoms: mass m, dispersion law 

system as a whole:

volume V, particle number N, density n=N/V, temperature T. 

Equation for the chemical potential closes the equilibrium problem:

2

( )
2

p
p

m
ε =

Always µ < 0. At high temperatures, in the thermodynamic limit, 
the continuum approximation can be used:

( )

0

1
d ( ) ( , )

e 1
N V Tµβ εε ε µ

∞

−≈ ≡
−∫ D N%

It holds

For each temperature, we get a critical number of atoms the gas 
can accommodate. Where will go the rest? To the condensate

( , 0) ( ,0)T Tµ < < < ∞N N% %

This  will be
shown in a while

( )

1
( , ) ( )

e 1j
j

j j

nN T ε µβεµ −= = =
−∑ ∑N
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Condensate concentration

0

3

2
3 3
2 22

3

2

2

1
( ,0) d ( )

e 1

2
           4 ( ) ( )

2
           2 2,612

B

B

T V

mk T
V

h

mk T
V

h

βεε ε

π Γ ζ

π

∞

=
−

 =  
 

 = ⋅ 
 

∫N D%

The integral is doable:

Riemann function

use the 
general formula
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Cell size (per k vector)

Cell size (per p vector)

In the  (r, p)-phase space

Plane wave in classical terms and its quantum transcription

Discretization ("quantization") of wave vectors in the cavity

volume                                  periodic boundary conditions

Plane waves in a cavity

( )i

0e , ( )

de Brog

, 2 /

lie wave, len, ( ), / t g h

t
X X k k

p h p

ω ω ω λ π
ε ω ε ε λ

− − ⋅= = =
= = = =h h

k r

p k

xL
yL

zL

x y zV L L L=

2
,

2
,

2

x

x

ym

x

zn

x

k
L

k m
L

k n
L

π

π

π

= ⋅

= ⋅

= ⋅

l l

xk

yk

(2 ) /d

k VΩ π=

d d

kV hΩ =h

/d

p h VΩ =
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IDOS Integrated Density Of States:

How many states have energy less than ε
Invert the dispersion law

Find the volume of the d-sphere in the p-space

Divide by the volume of the cell

DOS Density Of States:

How many states are  around ε per unit energy per unit volume

Density of states

xk

yk

( ) ( )p pε ε�

( ) d

d dp C pΩ = ⋅

( ) ( ( )) / ( ( )) / d

d p dp V p hΓ ε Ω ε Ω Ω ε= = ⋅

1 1

1 d
( ) ( )

d

d d ( )
( ( ) / ) ( ( ) / )

d d

d d

d d

V

p
p h dC h p h

ε Γ ε
ε

εΩ ε ε
ε ε

− −

=

= = ⋅

D

22

( 2 1)!

d /

dC
d /

π=
−
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Condensate concentration
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Condensate concentration

0
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The integral is doable:
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/ 2π

Riemann function

( ,0)cT N=N%

CRITICAL TEMPERATURE
the lowest temperature at which all atoms are still accomodated in the gas:
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Condensate concentration
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The integral is doable:

/ 2π

Riemann function

CRITICAL TEMPERATURE
the lowest temperature at which all atoms are still accomodated in the gas:
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From a gas to an inhomogeneous system

Physical interpretation of BEC

Where are the condensate Bosons?
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LAST TIME Digression: simple interpretation of TC

1

3

B c

V h

N mk T

 
 
 

:

Rearranging the formula for critical temperature

we get

2
2 3

4 2,612
c

B

h N
T

mk Vπ
 

= ⋅ 
 

mean interatomic
distance

thermal             
de Broglie

wavelength

The quantum breakdown sets on when 

the wave clouds of the atoms start overlapping
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LAST TIME Digression: simple interpretation of TC

1

3

B c

V h

N mk T

 
 
 

:

Rearranging the formula for critical temperature

we get

2
2 3

4 2,612
c

B

h N
T

mk Vπ
 

= ⋅ 
 

mean interatomic
distance

thermal             
de Broglie

wavelength

The quantum breakdown sets on when 

the wave clouds of the atoms start overlapping

NICE, BUT TOO SPECIFIC FOR A GAS



22

LAST TIME What is the nature of BEC?

With lowering the temperature, the atoms of the gas lose their energy and 
drain down to the lowest energy states. There is less and less of these:

A given amount N of the atoms becomes too large starting from a critical 
temperature.

Their excess precipitates to the lowest level, which becomes 
macroscopically occupied, i.e., it holds a finite fraction of all atoms.

This is the BE condensate.

At the zero temperature, all atoms are in the condensate.

Einstein was the first to realize that and to make an exact calculation of the 
integrals involved.

3/ 2( ) constBE k T T< = ×N

3
3

2
3 3 2

G 2 22

2
( ) 4 ( ) ( )Bmk T
T V BT

h
π Γ ζ = × ≡ 
 

N%
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LAST TIME What is the nature of BEC?

With lowering the temperature, the atoms of the gas lose their energy and 
drain down to the lowest energy states. There is less and less of these:

A given amount N of the atoms becomes too large starting from a critical 
temperature.

Their excess precipitates to the lowest level, which becomes 
macroscopically occupied, i.e., it holds a finite fraction of all atoms.

This is the BE condensate.

At the zero temperature, all atoms are in the condensate.

Einstein was the first to realize that and to make an exact calculation of the 
integrals involved.

3/ 2( ) constBE k T T< = ×N

3
3

2
3 3 2

G 2 22

2
( ) 4 ( ) ( )Bmk T
T V BT

h
π Γ ζ = × ≡ 
 

N%

APPLICABLE ALSO IN THE TRAPS
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Where are the condensate atoms?

ANSWER: On the lowest one-particle energy level

For understanding, return to the discrete levels.

( )

1
( , ) ( )

e 1j
j

j j

nN T ε µβεµ −= = =
−∑ ∑N

There is a sequence of energies

For very low temperatures, 

all atoms are on the lowest level, so that

0 1 2(0) 0µ ε ε ε ε< = = < <
r

L

1 0( ) 1β ε ε− ?

1 0

0

( )

0

( )

0

(e )    

1
                     connecting equati

all atoms are in the condensate

chemical potential is zero on the gross energy sca

o  n

e

e

 l

1

   B

n N O

N

k T

N

β ε ε

β ε µ

µ ε

− −

−

= −

≈
−

≈ −
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Where are the condensate atoms?

ANSWER: On the lowest one-particle energy level

For understanding, return to the discrete levels.
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Where are the condensate atoms? Continuation

ANSWER: On the lowest one-particle energy level

For temperatures below 

all condensate atoms are on the lowest level, so that

0

0

( )

0

                 

1
              connecting equatio

all condensate atoms remain on t

         
e 1

    

he lowest level 

chemical potential keeps zero o

n

n the gross energy scale

B

B

E

E

B

BE

n N

N

k T

N

β ε µ

µ ε

−

=

≈
−

≈ −

CT

question … what happens with the occupancy of the next level now? 
Estimate:

( )
2

2 3
1 0 /h m Vε ε

−
− ⋅:

2

3
0 1

0 1

( ), ( )  .... much slower growthB Bk T k T
n O V n O V

ε µ ε µ
= = = =

− −
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Where are the condensate atoms? Continuation

ANSWER: On the lowest one-particle energy level

For temperatures below 

all condensate atoms are on the lowest level, so that
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Where are the condensate atoms? Summary

ANSWER: On the lowest one-particle energy level

The final balance equation for              is

0( ) ( )

0

1 1
( , ) d ( )

e 1e 1
VTN β βε µ µε εµ ε

∞

− −= = +
−− ∫N D

CT T<

LESSON:

be slow with making the thermodynamic limit (or any other limits)



Thermodynamics of BEC

Capsule on thermodynamics

Grand canonical ensemble

Thermodynamic functions of an ideal gas

BEC in an ideal gas
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Homogeneous one component phase:
boundary conditions (environment) and state variables

  not in useS Pµ

isolated, conservativ     eS V N

isothermal  T V N

  isobaricS P N
open  S V µ

grand  T V µ
  isothermal-isobaricNT P

  not in use   T Pµ

additive variables, have dens / "extensive"ities  /    S V N s S V n N V= =

dual variables, intensities                                               "intensive  "T Pµ
b b b
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Homogeneous one component phase:
boundary conditions (environment) and state variables

isolated, conservativ     eS V N

isothermal  T V N

grand  T V µ
  isothermal-isobaricNT P

additive variables, have dens / "extensive"ities  /    S V N s S V n N V= =

dual variables, intensities                                               "intensive  "T Pµ
b b b

The important four
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Digression: which environment to choose?

THE ENVIRONMENT IN THE THEORY SHOULD CORRESPOND             
TO THE  EXPERIMENTAL CONDITIONS

… a truism difficult to satisfy

� For large systems, this is not so sensitive for two reasons
• System serves as a thermal bath or particle reservoir all by itself
• Relative fluctuations (distinguishing mark) are negligible

� Adiabatic system Real system Isothermal system

SB heat exchange  – the slowest             medium fast               the fastest
process

� Atoms in a trap: ideal model … isolated. In fact: unceasing energy exchange 
(laser cooling). A small number of atoms may be kept (one to, say, 40).  
With 107, they form a bath already. Besides, they are cooled by evaporation 
and they form an open (albeit non-equilibrium) system.

� Some people, notably Leggett, insist on using clouds with a fixed number of 
atoms. This changes the physics of BEC substantially! 

S       B S       B 
• temperature lag

• interface layer
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Digression: which environment to choose?

THE ENVIRONMENT IN THE THEORY SHOULD CORRESPOND             
TO THE  EXPERIMENTAL CONDITIONS

… a truism difficult to satisfy

� For large systems, this is not so sensitive for two reasons
• System serves as a thermal bath or particle reservoir all by itself
• Relative fluctuations (distinguishing mark) are negligible

� Adiabatic system Real system Isothermal system

SB heat exchange  – the slowest             medium fast               the fastest
process

� Atoms in a trap: ideal model … isolated. In fact: unceasing energy exchange 
(laser cooling). A small number of atoms may be kept (one to, say, 40).  
With 107, they form a bath already. Besides, they are cooled by evaporation 
and they form an open (albeit non-equilibrium) system.

� Some people, notably Leggett, insist on using clouds with a fixed number of 
atoms. This changes the physics of BEC substantially! … Our interest

S       B S       B 
• temperature lag

• interface layer



Grand canonical ensemble

Definition following Gibbs

General treatment for independent particles

Thermodynamic functions of an ideal gas
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Grand canonical ensemble - definition

Grand canonical ensemble admits both energy and particle number exchange
between the system and its environment.

The statistical operator (many body density matrix) acts in the Fock space

External variables are             . They are specified by the conditions 

Grand canonical statistical operator has the Gibbs' form

ρ̂
, ,T V µ

ˆ ˆ ˆˆTr  sharp Trˆ ˆH U V N N NΗ≡ = = ≡ =ρ ρ

B Tr ln maxˆˆS k= − ⋅ ρ =ρ

ˆ ˆ1 ( )

ˆ ˆ( ) ( , , )

B

statistical s

e

( , , ) Tr e e   

( , , ) ln ( , , )      

um

grand canonical poten      t ial 

ˆ H N

H N V

Z

Z V

V k T Z V

β µ

β µ βΩ β µβ µ
Ω β µ β µ

− − −

− − −

=

= ≡
= −

ρ
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Grand canonical ensemble – general definition

Grand canonical ensemble admits both energy and particle number exchange
between the system and its environment.

The statistical operator (many body density matrix) acts in the Fock space

External variables are             . They are specified by the conditions 

Grand canonical statistical operator has the Gibbs' form

ρ̂
, ,T V µ

ˆ ˆ ˆˆTr  sharp Trˆ ˆH U V N N NΗ≡ = = ≡ =ρ ρ

B Tr ln maxˆˆS k= − ⋅ ρ =ρ

ˆ ˆ1 ( )

ˆ ˆ( ) ( , , )

B

statistical s

e

( , , ) Tr e e   

( , , ) ln ( , , )      

um

grand canonical poten      t ial 

ˆ H N

H N V

Z

Z V

V k T Z V

β µ

β µ βΩ β µβ µ
Ω β µ β µ

− − −

− − −

=

= ≡
= −

ρ

volume … for an extended homogeneous system

… generic for generalized coordinates of external fields whose change 
is connected with the mechanical work done by the system 

V
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Fluctuations I. – global quantities

( )
ˆ ˆ( )

ˆ ˆ( )
B B ˆ ˆ( )

ˆTr e ˆln ln Tr e
Tr e

H N
H N

H N

N
k T Z k T N

β µ
β µ

β µ

Ω
µ µ µ

− −
− −

− −

∂ ∂ ∂= − = − = − = −
∂ ∂ ∂

Fluctuations of the total number of particles around the mean value

First derivative of the grand potential

Second derivative of the grand potential

Final estimate for the relative fluctuation

ˆ ˆ2 ( )

ˆ ˆ2 ( )

ˆ ˆ ˆ ˆ2 ( ) ( ) 2
2

2

ˆ ˆ ˆ ˆ( ) ( ) 2

ˆTr eˆ

Tr e

ˆ ˆTr e (Tr e ) ˆ ˆ

Tr e (Tr e )

H N

H N

H N H N

H N H N

N
N

N N
N N

β µ

β µ

β µ β µ

β µ β µ

Ω
µ µ µ

− −

− −

− − − −

− − − −

∂ ∂ ∂= − = − =
∂ ∂ ∂

= − + = − +

( )
2

2
1

2 2

ˆˆ ˆ
ˆ

ˆ ˆ

NN N
N

N N

µ −

∂
− ∂= =O
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{ }

{ }
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( , , ) Tr e e   

= e             
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1
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K

 

!!

H N V

E N

n n
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n

n

Z V

n n N

α α αα α

α α

αα

α

β µ βΩ β µ

β µ
α α

α
β ε µ

β ε µ

α

β ε µ
β

α

β µ − − −

− −

− −
− −

− −
−

= ≡

≡ =

∑
= =
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∑ ∑

∑ ∑∏
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( , , )
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α

α α

ε µ
α
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α

µ β
α
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−

− − −= ≡
− −

∏

∏ ∏

Recall

activity
e    

fugacity
 zβµ ≡

( )
( )

B

( )
B

B

grand canonical potenti( , , ) ln ( , , )             

= + ln 1 e

+ ln 1

al

e

V k T Z V

k

k T z

T α

α

µβ ε

α
βε

α

Ω β µ β µ
− −

−

= −

−

= −

∑

∑

Grand canonical statistical sum for independent bosons
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- extended "ïnfinite" gas
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Grand canonical statistical sum for independent bosons
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Non-interacting bosons in a trap
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Useful digression: energy units
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LAST TIME Trap potential

-10 -5  0  5  10

Typical profile

coordinate/ microns    →

?

evaporation 
cooling

This is just one direction

Presently, the traps are mostly 3D

The trap is clearly from the real world, the 
atomic cloud is visible almost by a naked eye
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LAST TIME Trap potential

-10 -5  0  5  10

Parabolic 

approximation

in general, an 
anisotropic 
harmonic oscillator 
usually with axial 

symmetry
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LAST TIME Ground state orbital and the trap potential
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LAST TIME Ground state orbital and the trap potential
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LAST TIME Ground state orbital and the trap potential
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Filling the trap with particles: IDOS, DOS

1D

2D

( ) 1

( ) int( / ) /
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"thermodynamic limit"

only approximate … finite systems

better for small 

meaning wide trap potentials

ωh

For the finite trap, unlike in the extended gas,             is not divided by volume !!( )ED

xωh

yωh
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Filling the trap with particles

3D
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Estimate for the transition temperature

particle number comparable with          
the number of states in the thermal shell
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Filling the trap with particles
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The general expressions are the same like for the homogeneous gas.

Working with discrete levels, we have

and this can be used for numerics without exceptions.

In the approximate thermodynamic limit, the old equation holds, only the 
volume V does not enter as a factor:

In 3D,

Exact expressions for critical temperature etc.
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How good is the thermodynamic limit

1D illustration (almost doable) 
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How good is the thermodynamic limit

1D illustration 
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How good is the thermodynamic limit

1D illustration 
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How good is the thermodynamic limit

1D illustration 
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The quantitative criterion for the thermodynamic limit
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How sharp is the transition

These are experimental data

fitted by the formula

The rounding is apparent,

but not really an essential feature

( )3
BE 1 ( / ) ,c cN N T T T T= ⋅ − <



The end


