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Preliminary plan/reality in the fall ferm

Lecture 1  Something about everything (see next slide) Oct 4
The textbook version of BEC in extended systems

Lecture 2  thermodynamics, grand canonical ensemble, extended Oct 11
gas; atomic clouds in the traps — independent bosons.

Lecture 3  atomic clouds in the traps — interactions, GP equation at Oct 17
zero temperature, variational prop., chem. potential

Lecture 4  Infinite systems: Bogolyubov theory Oct 31




Recapitfulation




BEC in atomic clouds




Nobelists |. Laser cooling and frapping of atoms

The Nobel Prize in Physics 1997

"for development of methods to cool and trap atoms with
laser light"

' .
b
Steven Chu Claude Cohen- William D. Phillips
Tannoudji
1/3 of the prize 1/3 of the prize 1/3 of the prize
USA France USA
Stanford University Collége de France; Ecole National Institute of
Stanford, CA, USA Normale Supérieure Standards and
Paris, France Technology

Gaithersburg, MD, USA

b. 1948 b. 1933 b. 1948
(in Constantine, Algeria)




Doppler cooling in the Chu lab




Doppler cooling in the Chu lab

atomic clotd




Nobelists Il.

BEC in atomic clouds

The Nobel Prize in Physics 2001

"for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms,
and for early fundamental studies of the properties of the condensates"

Eric A. Cornell

1/3 of the prize

USA

University of Colorado, JILA
Boulder, CO, USA

b. 1961

Wolfgang Ketterle

1/3 of the prize

Federal Republic of Germany

Massachusetts Institute of
Technology (MIT)
Cambridge, MA, USA

b. 1957

Carl E. Wieman

1/3 of the prize

USA

University of Colorado, JILA
Boulder, CO, USA

b. 1951




Trap potential

evaporation
— cooling

Typical profile

-10 -5 0 5 10

coordinate/ microns -

This is just one direction
Presently, the traps are mostly 3D

The trap is clearly from the real world, the
atomic cloud is visible almost by a naked eye




Ground state orbital and the trap potential
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BEC observed by TOF in the velocity distribution

Figure 7. Observation of Bose-Einstein condensation by absorption imaging. Shown is absorption
vs. two spatial dimensions. The Bose-Einstein condensate is characterized by its slow expansion
observed after 6 ms time-of-flight. The left picture shows an expanding cloud cooled to just
above the transition point; middle: just after the condensate appeared; right: after further
evaporative cooling has left an almost pure condensate. The total number of atoms at the phase

transition is about 7 X 10°, the temperature at the transition point is 2 uK.
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Ketterle explains BEC to the King of Sweden

High
Temperature T:
thermal velocity v

density d*
‘Billiard balls™

Low
Temperature T:
De Broglie wavelength
hap=himy = T%
“Wave packels”

T=Terit:
Bose-Einstein
Condensation

fdB ~
"Matter wave overlap”®

T=0:
Pure Bose
condensate

‘Glant matter wava"
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Simple estimate of T~ (following the Keftterle slide)

The quantum breakdown sets on when
the wave clouds of the atoms start overlapping

thermal

1
mean ( 4 T i
interatomic ~ : de Broglie
N mkpT, wavelength

distance

Critical temperature
2

W (N
ESTIMATE T :
mk, \\V

. h? N )3
TRUE EXPRESSION —
© 4mmk, | 2,612V
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Interference of atoms

'r'r

.4 ,ﬂuﬂm,,-; M

(1 Absorphon 50%

Two coherent condensates are interpenetrating and interfering.
Vertical stripe width .... 15 pm
Horizontal extension of the cloud .... 1,5mm
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Today, we will be mostly concerned with
the extended (" infinite" ) BE gas/liquid

Microscopic theory well developed
over nearly 60 past years




Inferacting atoms




Importance of the interaction — synopsis
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Without interaction, the
condensate would occupy the
ground state of the oscillator

In fact, there is a significant
broadening of the condensate of
80 000 sodium atoms in the
experiment by Hau et al. (1998),

perfectly reproduced by the
solution of the GP equation
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Many-body Hamiltfonian

A=Y p2+V )+ ¥ YU, 1)

2 a b

True interaction potential at low energies (micro-kelvin range)

replaced by an effective potential, Fermi pseudopotential

U(r)=gLo(r)

4710, h’ .
g= % : a, ... the scattering length

S

m
Experimental data\

AN

!
Ce (au.) Be (au.) a, (a.u.)

Li, 1388 7 65 —27.3°
**Na, 1472 € 89 77.3 ¢
K, 3897 ¢ 129 —331
®Rb, 4700 € 164 —369¢
*'Rb, 4700 ¢ 165 106 ¢

133, 6890 1 197 2400




Mean-field freatment of inferacting atoms




Many-body Hamiltfonian and the Hartree approximation
n 1 1
H=§Ep§ "'V(’”a)*‘z > U, —n)

a # b

We start from the mean field approximation.

This is an educated way, similar to (almost identical with) the
HARTREE APPROXIMATION we know for many electron systems.

Most of the interactions is indeed absorbed into the mean field and
what remains are explicit quantum correlation corrections

A 1
Hap =2 5 —py +V (1) +Vy (1)

2 system
n(r) = ng|fa (r)
a

(Lpz ong <r>j¢a (r)=E, 8, (r)

2m
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Gross-Pitaevskil equation at zero temperature

Consider a condensate. Then all occupied orbitals are the same and
we have a single self-consistent equation for a single orbital

(Lpz +V(r) + gN |8, (")\2)% (r) = Eo#y (r)

2m
Putting \
QU(r) — \/ﬁ Wo (r) The lowest level

coincides with the
we obtain a closed equation for the order parameter:
( 1 /

chemical potential
——p” +V () +g\‘#(r)\2j‘7” (r)=u(r)
Gross-Pitaevskii equation.

For a static condensate, the order parameter has ZERO PHASE.

N W) = IN By (1) = ()

N[n]=N=[d&rl@@)| =[drh@r) =N
21




Gross-Pitaevskii equation — homogeneous gas

The GP equation simplifies

( h2A+g\:,u \jw(r):yw(r)

2m

For periodic boundary conditions in a box with V" =L [L [L,

_ 1
¢0(r)_\/;
W(r)=WDﬁo(r)=\/§=ﬁ

g“’U ‘2 ‘:U( ) = ,uQU(r) ... GP equation

22
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Field theoretic reformulation
(second quantization)

Purpose:

# go beyond the GPE = mean field approximation
#8 treat also the excitations




Field operator for spin-less bosons

Definition by commutation relations

W) =3 =), (W () ]=0, (@) |=0
basis of single-particle states ( kK complete set of quantum numbers)

{‘K>} <K‘,3> =0 ‘(ﬂ> = Z‘K><K‘¢/>, Y ... single particle state
(rlxy=2.(r)  (rlgp)= 2 (rlx){Klw)

decomposition of the field operator
w(r) =20 (r) e a, ="(xly)"=1d" ¢, (r)(r)
v'(r) =34:() @

commutation relations

[ak,a;] =0,,, [ak,aA] =0, [ai,aﬂ =0
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Action of the field operators in the Fock space

basis of single-particle states
{‘K>} <K‘,8> =0 ‘€U> = Z‘K><K‘(ﬂ>, Y ... single particle state
rly=¢.(r)  {rle)=2.(r[x)(x|¢)

FOCK SPACE F space of many particle states

basis states ... symmetrized products of single-particle states for bosons
specified by the set of occupation numbers 0,1, 2, 3, ...

{KI,KZ,K3,K,KP,K}
QU{HK} 2‘ ny, ny, ny, K,n K > n-particle state n=2Xxn,
a; ny, ny,ny, K,n K >=‘/np +1‘ ny, ny,ny, K,n +1,K >
a,|n,ny,,n, K,n K >=\/Z‘ ny, ny,ny, Koon, -LK >

apap‘ n, ny,ny, Koon K >:np‘ ny, ny,ny, Koon K >

—+ T
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Action of the field operators in the Fock space

Average values of the field operators in the Fock states

Off-diagonal elements only!!! The diagonal elements vanish:

<n1, ny,ny, K,n K
<”1» n,,n,K,n K

9 p9

ap‘ n,n,,n, K ,np,K >=

\/Z‘ n, ny,ny, K,n —LK >:O

Creating a Fock state from the vacuum:

‘ nla n29n39K ,np,K >: |_|
p

1

!
np.

(a})" | vac)
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Action of the field operators in the Fock space

Average values of the field operators in the Fock states

Off-diagonal elements only!!! The diagonal elements vanish:
<n1’ nZ’ n37K 9np9K ap‘ nl’ nz, 723,K ,np,K > —

<”1» n,,ny, K,n K ,/np ‘ ny, ny,ny, K,n -LK >:O

Creating a Fock state from the vacuum:

|
‘ nla n29n39K ,np,K >: |_|
n !
p p

(a})" | vac)

In particular, the condensate

N,,0,0,K ,0,K >: ]1] '(ag)NO‘VaC>
0!

27




Field operator for spin-less bosons — cont'd

Important special case — an extended homogeneous system
Translational invariance suggests to use the

Plane wave representation (BK normalization)
w(") — V—1/2Zeikr a,, a, = 12 Jd3 po ik ‘/’(”)
wT (l") —1/226—1kr ak —1/2Zeikr ajfk

The other form is made possible by the inversion symmetry (parity)

important, because the combination
ulh, +vd
corresponds to the momentum transfer by k

Commutation rules do not involve a O - function, because the BK momentum
is discrete, albeit quasi-continuous:

[a aT] Or» [ak,ak,}:O, [a}:,az,]:O

28




Operators
Additive observable

— — 3 3
X—ZXJ. S xX=]]drd F ) (| X| e
General definition of the one particle density matrix — OPDM

(X ) =(Idrdr @' @) (r| X |r)pen) = [ drd’r (r| x| ) (@ o))

N J

EI:d3rd3r'<r‘X‘r'><r",0‘l’>:TTX,O <r";)f‘r>

Particle number

N=Ylo, - N=ldry euper)
N :Za};ak
Momentum

P=>p - P :Id3rtﬂT(r)(—ihD)¢’(")

P = th (&' a,
Particle density _
nOP(r)zzd(r_rj) - HOP(”):‘)UT(”XU(”)

1 |
Nop (1) =— 2. Zalt-q/zakw/z =—2.e"n
V 4 k q




Hamiltonian

H = Z— p, +V(r,) single-particle additive

+— Z ZU (r, —r,) two-particle binary

q jdww(r)(—%mwr))w(r)
+L[[drd’r @' ' (U (¢ = Y (e (1)
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Hamiltonian

H = Z— p, +V(r,) single-particle additive

= Z ZU (” —l’b) two-particle binary

a # b

*fd?””‘”“”)(‘%“”(”))‘”(”) acts in the whole Fock spacc_F

+L[[&Erd e @ oW U = r e (r)
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Hamiltonian

H = Z— p, +V(r,) single-particle additive

= Z ZU (” —l’b) two-particle binary

a # b

- | d?’rw*(r)(—%mV(r))w(r)

+L[[drdr ' W' (U = e (r)

Particle number conservation

[H.N]=0

but K

Equilibrium density operators and the ground state (ergodic property)

p=pH), [N.p]=0

32




On symmetries and conservation laws




Hamiltonian is conserving the particle number

~ Particle number conservation N
[H.N]=0
Equilibrium density operators and the ground state (ergodic property)
N p=pH), [N,p]=0 .
Typical selection rule
(@) =Trgp(r)p =0
is a consequence: (similarly (@) =0, <¢¢W> =0,K )
Proof:
0=Tr(¢[N,p]) = Tr(ply,N1) = Tr(p) Tr A[B,C]=TrC[ 4, B]
[ (x),Jdx'@" (Y (x)] = 1dx' (@' O (0,0 (D] + (0.0 () =@ (x)

QED

Deeper insight: gauge invariance of the 1stkind 2




Gauge invariance of the 1st kind

J

N

Particle number conservation
[H.N]=0
Equilibrium density operators and the ground state (ergodic property)

p=pH), [N.p]=0

e

Gauge invariance of the 1st kind
[H , N ] =0 = ¢e"N?He™?=H unitary transform

The equilibrium states have then the same invariance property:

[N.p]=0 = e™pe™f=p

Selection rule rederived:
Tryp =Trye N pe™ =Tre'" we™" p=e” Tryp
(1= Trgp =0 = Trgp(r)p =(Y(r)) =0
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Hamiltonian of a homogeneous gas

H = Z—pa+V+—ZZU(r -r), V = const.

a ®# b

= d3rw*‘<r>( LAV )+ L[ drdr' @ ey U = r e ()

To study the symmetry properties of the Hamiltonian
Proceed in three steps ...
INn the direction reverse to that for the gauge invariance




Hamiltonian of the homogeneous gas

H = Z—pa+V+—ZZU(r -r), V = const.

a ®# b

= [@r ' )L A+V () + S [[dr dr g e @)U = e ()

@® Translationally invariant system ... how to formalize (and to learn more about the

T'(a)HT (a) = H, a 1R, ... translation vector

gauge invariance)




Hamiltonian of the homogeneous gas

H = Z—pa+V+—ZZU(r -r), V' = const.

2a¢b

= [@r ' )L A+V () + S [[dr dr g e @)U = e ()

@® Translationally invariant system ... how to formalize (and to learn more about the

T'(a)HT (a) = H, a 1R, ... translation vector

® Constructing the unitary operatorT (a)
Translation in the one-particle orbital space

gauge invariance)

T@Y() = p(r-a) = LTy ¢ = X ( ”j p(r)=e "7 lp(r)




Hamiltonian of the homogeneous gas

H = Z—pa+V+—ZZU(r -r), V' = const.

2a¢b

= [@r ' )L A+V () + S [[dr dr g e @)U = e ()

@® Translationally invariant system ... how to formalize (and to learn more about the

T'(a)HT (a) = H, a 1R, ... translation vector

® Constructing the unitary operatorT (a)

gauge invariance)

|f1’(a)‘7U(r1,r2,r3,K r.,.Kr)=%mn-ar,-ar-aKr -aKr, —a)

WK 1) =K 1) =P




Hamiltonian of the homogeneous gas

H = Z—pa+V+§ZZU(r -r), V' = const.
a* b

= [@r ' )L A+V () + S [[dr dr g e @)U = e ()

@® Translationally invariant system ... how to formalize (and to learn more about the

: auge invariance
T'(@)HT(a) = #, a 1R, ... translation vector Jand )

® Constructing the unitary operatorT (a)
|f1’(a)‘7U(r1,r2,r3,K r.,.Kr)=%mn-ar,-ar-aKr -aKr, —a)

WK 1) =K 1) =P

T(a)=e PN ... compare O(¢)=¢




Hamiltonian of the homogeneous gas

H = Z—pa+V+§ZZU(r -r), V' = const.
a* b

= [@r ' )L A+V () + S [[dr dr g e @)U = e ()

@® Translationally invariant system ... how to formalize (and to learn more about the

: auge invariance
T'(@)HT(a) = #, a 1R, ... translation vector Jand )

® Constructing the unitary operatorT (a)
|f1’(a)‘7U(r1,r2,r3,K r.,.Kr)=%mn-ar,-ar-aKr -aKr, —a)
=Me "W Kr)=e 22w K r)=e MW K r,)
T(a)=e PN ... compare O(¢)=¢

|H , N =0

@® [nfinitesimal translation
H =T (a)HT (a) ="' C4 " 37PN = 97 +i/hPadf - i/ h#Pa + O(a?)

= [H,Pla=0 = | H,P 0 ... momentum conservation

xyz]




- Summary: two symmetries compared -

Gauge invariance of the 1st kind

Translational invariance

universal for atomic systems

specific for homogeneous systems

o' (¢)HO(p) =35 ¢1(0,2m)

T (a)HT(a)=H, alR,

global phasfsnscg:‘;t:f the wave global shift in the configuration space
[}[99\[]:0 [ﬂQ@x,y,Z] = O

particle number conservation

total momentum conservation

[N.p]=0 = e"Ppe?=p

for equilibrium states

[2.p]=0 = 2" per=p

for equilibrium states

selection rules
(WL ™) =0

unless there are as many(,[/T asyy .

selection rules
\ —
<akaer akn> - O

unless the total momentum transfer
-k —k'L + k" 3s(kero




Hamiltonian of the homogeneous gas

In the momentum representation

2 _
H=> I ilq +3 VIZU aj . ar._,a.a,

U, =d*re™ U(r)
k k'

Momentum conservation
(k+q)+(k'—q)—k—-k'=0

Particle number conservation

a*ggg a
E55555%
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Hamiltonian of the homogeneous gas

For the Fermi pseudopotential

Uq :UO EU(:g)

In the momentum representation

2 _
H=>Ikalq +3 VIZU aj . ar._,a.a,

U, =d*re™ U(r)
k k'

Momentum conservation
(k+q)+(k'—q)—k—-k'=0

Particle number conservation

a*ggg a
E55555%
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Bogolyubov method

Originally, intended and conceived for
extended (rather infinite) homogeneous
system.

Reflects the 'Paradoxien der Unendlichen'




Basic idea

Bogolyubov method
is devised for boson quantum fluids with weak interactions — at T=0 now
no interaction weak interaction
g=0 g% 0
N =N, =(aja,)? | N =Ny +Y (aja,) =Ny, ? |
k%0

The condensate dominates,
but some particles are kicked out
by the interaction (not thermally)

46




Basic idea

Bogolyubov method
is devised for boson quantum fluids with weak interactions — at T=0 now
no interaction weak interaction
g=0 g% 0

N =N, =(aja,)? | N:NBE+;<a}:ak>=NBE? 1

The condensate dominates,
but some particles are kicked out
by the interaction (not thermally)

Strange idea introduced by Bogolyubov

— (AT T T, — = :
N, = <a0a0> ?7 1= <a0a0> ? a,a, —a,a, =1= like c-numbers

N=N, + Zazak ... mixture of c-numbers and g-numbers
k#0

47




Approximate Hamiltonian

Keep at most two particles out of the condensate, use a, =,/N,, ag = /N,

A NG e b P
H —szk aa, t5V ZUqak+q,ak,_qak,ak

kk'q

48




Approximate Hamiltonian

Keep at most two particles out of the condensate, use a, =,/N,, ag = /N,

—N"h% g2 i 1 171 T
H —ka aa, t5V ZUqak+q,ak,_qak,ak

kk'q

49




Approximate Hamiltonian

Keep at most two particles out of the condensate, use g, = N0 ,

2 _
H=>XXkaa+IV'>Uad,.,a._a.a,

kk'q
UN?
2V

2 UN +ot +
. 2 b g ala, + 7 {aka +4a,a, ta,a_ ¢+
k#0

50




Approximate Hamiltonian

Keep at most two particles out of the condensate, use g, = JN 0> ag =~ 1/

2 _
H=>XXkaa+IV'>Uad,.,a._a.a,

kk'q
2 + UN, . t UN?
- 2 ok a,a, + A {aka +4a,q, +aka—k} + >
k#0
—_
3rd & 4t order 2nd order O order
neglected pair excitations condensate

1st order
IS zero
violates k-conservation
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Approximate Hamiltonian

Keep at most two particles out of the condensate, use a, =./N,, a;,=.N,

2 _
H=>XXkaa+IV'>Uad,.,a._a.a,

kk'q
UN?
2V

2 UN +ot +
. 2 b g ala, + 7 {aka +4a,a, ta,a_ ¢+
k#0

2nd order
pair excitations

T
ak'ak

i

a . a,
kyak'gq
0 0
P

a a,, d,.d
ki;q k—qlg’k

T i
a a a, a
kg k=g “k
l({)

i i
0 0

oot

g gy Ui

KTk

0
Tt
0 0

52




Approximate Hamiltonian

Keep at most two particles out of the condensate, use a, =,/N,, ag = /N,

2 _
H=>XXkaa+IV'>Uad,.,a._a.a,

kk'q
UN?
2V

2 UN +ot +
. 2 b g ala, + 7 {aka +4a,aq, +aka_k} +
k#0

i
akli"akLiq

akyak

T
ak{qak, Ay
O
l
Cporg g Oy
O

ak:i‘l

T T
a a a,,d
k+q " k'; k
<1 'f;

ot

0

P
gt Oy Qg Ay 53
0 0




Approximate Hamiltonian

Keep at most two particles out of the condensate, use g, = N0 ,

2 _
H=>XXkaa+IV'>Uad,.,a._a.a,

kk'q
UN?
2V

2 UN +ot +
. 2 b g ala, + 7 {aka +4a,a, ta,a_ ¢+
k#0

54




Approximate Hamiltonian

Keep at most two particles out of the condensate, use a, =,/N,, ag = /N,

2 _
H=>XXkaa+IV"'>Uad,.a_a.a, use Ny=N-> aja,

kk'q
UN?
2V

2 UN +ot +
. 2 b g ala, + 7 {aka +4a,aq, +aka_k} +
k#0

k%0

The idea: replace the unknown condensate occupation by the known particle number

neglecting again higher than pair excitations
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Approximate Hamiltonian

0

Keep at most two particles out of the condensate, use g, = JN,, ag = /N,

2 _
H=>XXkaa+IV'>Uad,.,a_a.a, use NO:N—Za,iak

kk'q
UN?
2V

2 UN +ot 0
. 2 b g ala, + 7 {aka +4a,aq, +aka_k} +
k#0

UN*

2 UN P i
= 2 b g2y ala, +2- Ve {aka +2a,a, +aka_k} + =5

k%0

k%0

The idea: replace the unknown condensate occupation by the known particle number

neglecting again higher than pair excitations
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Approximate Hamiltonian

Keep at most two particles out of the condensate, use a, =,/N,, ag = /N,

2 _
H=>XXkaa+IV'>Uad,.,a_a.a, use Ny=N-> aja,
kk'q k%0
UN’
. 2 kzakak g];/[" {ax,ﬁcfr +4azak+aka_k}+ Y
k#0
2 UN P i UN?
= 2 b g2y ala, +2- Ve {aka +2a,a, +aka_k} + =

k%0

53

condensate particle
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Bogolyubov tfransformation

Last rearrangement

_ 2 .o N>
"= 2Zgh’2f4kz zgf){a’ia"w"a prg Z{l 4‘244§} 7

mean field anomalous

Conservation properties: momentum ... YES, particle number ... NO




Bogolyubov tfransformation
Last rearrangement

_ 2 .o N>
"= 2Zgh’2f4kz zgé/l){a’ia"m"a RS Z{l 4‘2443*} 7

mean field anomalous

Conservation properties: momentum ... YES, particle number ... NO

NEW FIELD OPERATORS notice momentum conservation!!
T

b, =u,a, +v.a.,

T T
b, =va, tu.al,
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Bogolyubov tfransformation
Last rearrangement

_ h2 ;.2 i gn gN2
"= 2Zg i+ enlfala, +a'ia,} + 5 Z{l UEETAS

M 4B
mean field anomalous

Conservation properties: momentum ... YES, particle number ... NO

NEW FIELD OPERATORS notice momentum conservation!!
T

bk =u,a, tvea.,
T T
requirements

©® New operators should satisfy the boson commutation rules

| besby | =0 | biuby |20, | BB =0
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Bogolyubov tfransformation
Last rearrangement

_ h2 ;.2 i gn gN2
"= 2Zg i+ enlfala, +a'ia,} + 5 Z{l UEETAS

M 4B
mean field anomalous

Conservation properties: momentum ... YES, particle number ... NO

NEW FIELD OPERATORS notice momentum conservation!!
T

bk =u,a, tvea.,
T T
requirements

©® New operators should satisfy the boson commutation rules
| besby | =0 | biuby |20, | BB =0
iff u,f —v,f =1
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Bogolyubov tfransformation
Last rearrangement

_ h2 ;.2 i gn gN2
"= 2Zg i+ enlfala, +a'ia,} + 5 Z{l UEETAS

M 4B
mean field anomalous

Conservation properties: momentum ... YES, particle number ... NO
NEW FIELD OPERATORS notice momentum conservation!!

—_ T — _ T
b, =u.a, tval, | a, =ub, —v,b,
T = T

o i
b, =va, tu.al,

requirements

©® New operators should satisfy the boson commutation rules
| besby | =0 | biuby |20, | BB =0
iff u,f —v,f =1
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Bogolyubov tfransformation
Last rearrangement

2 5 N?
" _2Zgh’2f4kz Z%){azak rala,pr Z{l 5 G 43*} E

mean field anomalous

Conservation properties: momentum ... YES, particle number ... NO
NEW FIELD OPERATORS notice momentum conservation!!

— T — _ T
b, =u.a, tval, | a, =ub, —v,b,
T = T

oo i

requirements
©® New operators should satisfy the boson commutation rules
| besby | =0 | biuby |20, | BB =0
iff u,f —v,f =1

® Interms of the new operators, the anomalous terms in the Hamiltonian
have to vanish
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Bogolyubov tfransformation

® In terms of the new operators, the anomalous terms in the Hamiltonian
have to vanish

1 h2 .2 i i gn ot gN?
EZ(EI‘ +g”){"kak +ala,} +72k:{aka-k +taa, )+ 5

2
Z(;_mkz +gn){u,fb,:fbk +vibby +uv, (bbl, +bb_, )}

H

+50 % 2, {(blb, + b))+ @+ BB, +bib, )
k

gN?

57

h? 72 gn o 2 2\ _
= (ﬁk +gn)ukvk +5-(u, +v,)=0

2 2

g 3 g 3

uy = (B + gn + (k) 1 26(K) vy =Lk + gn = e(k)) /26 (k)

E(k) = \/(%kz + gn)2 —(gn)2

64




Bogolyubov transformation — result

Without quoting the transformation matrix
2
H :72 g(k)Y{blb, +b' b } +ﬂ+ higher order constant
144472 4443 2% 4 43442 4 4 4 4 B
independent quasiparticles ground state energy E

2
E(k) :\/(%k2 +gn) —(gn)2 = %kz %kz +2gn
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Bogolyubov transformation — result

Without quoting the transformation matrix

N2
H=21 Kb! + '+ higher order constant
12, Wb P74 4 454520 4 B8 B
ind. qua51—partlcles gr()und state energy E

2
E(k) :\/(%k2 +gn) —(gn)2 = %kz %kz +2gn

asymptoticall
merge

high energy region

I 02
k7 +
(k) 2 ¥ g’Z quasi-particles are
i Hep nearly just particles cross-over
_ [4mgn
k, = ™

-~  wk)=clk sound region defines scale for £

k, _ |gn quasi-particles are
C—.,[— collective excitations
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More about the sound part of the dispersion law

@ Entirely dependent on the interactions, both the magnitude of the velocity
and the linear frequency range determined by g awk)=clk

@ Can be shown to really be a sound: an

—_n VaVVE _gN €= ;
(3] c—\/7 \/ : E= T +L

=u,a +v,a, 005 u (a) +a,)

n, = Zq:aq-k/zaﬁk/z ~ (ak ta,)

@ Even a weakly interacting gas exhibits superfluidity; the ideal gas does not.

@ The phonons are actually Goldstone modes corresponding to a broken
symmetry

@® The dispersion law has no roton region, contrary to the reality in *He

@ The dispersion law bends upwards = quasi-particles are unstable, can
decay
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Particles and quasi-particles

At zero temperature, there are no quasi-particles, just the condensate.

Things are different with the true particles. Not all particles are in the

condensate, but they are not thermally agitated in an incoherent way, they
are a part of the fully coherent ground state

<a}:ak> = <(—vkbk +ukbfk)(ukb_k —vkb,j)> =v, 20

The total fraction of particles outside of the condensate is
N_No ~ 3 32,12
N 3yzl23

3
a.n

square root of the
gas parameter
IS
the expansion
variable
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What is the Bogolyubov approximation about

The results for various quantities are

( g 1)
NO:NX 1 3/2 1/2

e

([, 128 i 1/2\

k s

(1 . 32 as/znl/z\
Wn )

square root of the
gas parameter

3
an
Is the expansion
variable

general [BG] = [GP] (
pattern

L 3/2 1/2]
Lr

The Bogolyubov theory is the lowest order correction to the mean field (Gross-
Pitaevskii) approximation

It provides thus the criterion for the validity of the mean field results

It is the simplest genuine field theory for quantum liquids with a condensate
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Trying to understand the Bogolyubov
method




© 6 0 O

O

Notes to the contents of the Bogolyubov theory

The first consistent microsopic theory of the ground state and elementary
excitations (quasi-particles) for a quantum liquid (1947)

The quantum condensate turns into the classical order parameter in the
thermodynamic limit N — o, 9 — 0o, N /1 =n= const.

The Bogolyubov transformation became one of the standard technical means for
treatment of "anomalous terms" in many body Hamiltonians (...de Gennes)

Central point of the theory is the assumption

_ ¥
a, =Ny, a "\/No

lts introduction and justification intuitive, surprisingly lacks mathematical rigor.
Two related problems:

lowering operator — ? — gauge symmetry, s. rule
a,|G,NYOH,_,  {(G,Nla,)|G,N) =N, (a,)=0

Additional assumptions: something of a crutch/bar to study of finite systems
 homogeneous system * infinite system

Infinity as a problem: philosophical, mathematical, physical 24




What next ??7?

e Off-diagonal long range order and the
Bogolyubov ground state

e Coherent state as the GP vacuum
e Spontaneous symmetry breaking




The end




