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Preliminary plan/reality in the fall ferm

Lecture 1  Something about everything (see next slide) Oct 4
The textbook version of BEC in extended systems

Lecture 2  thermodynamics, grand canonical ensemble, extended Oct 11
gas; atomic clouds in the traps — independent bosons.

Lecture 3  atomic clouds in the traps — interactions, GP equation at Oct 17
zero temperature, variational prop., chem. potential

Lecture 4  Infinite systems: Bogolyubov theory Oct 31

Lecture 5 ODLRO; BEC and symmetry breaking, coherent states Nov 14
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Operators
Additive observable

— — 3 3
X—ZXJ. S xX=]]drd F ) (| X| e
General definition of the one particle density matrix — OPDM

(X ) =(Idrdr @' @) (r| X |r)pen) = [ drd’r (r| x| ) (@ o))

N J

EI:d3rd3r'<r‘X‘r'><r",0‘l’>:TTX,O <r";)f‘r>

Particle number

N=Ylo, - N=ldry expr)
N :Za};aK
Momentum

P=>p - P :Jd3rtﬂT(r)(—ihD)¢’(")

P = th (&' a,
Particle density _
nOP(r)zzd(r_rj) - HOP(”):‘)UT(”XU(”)

1 |
Nop (1) =— 2. Zalt-q/zakw/z =—2.e"n
V 4 k q




Operators
Additive observable

— — 3 3
X—ZXJ. S xX=]]drd F ) (r| X (r")
General definition of the one particle density matrix — OPDM

() =([[dr dr g @) (r] X)) = [T dr dr (| X ) (0" )

N J

EJ‘:d3rd3r'<r‘X‘r'><r"p‘l’>:TYX,O <”"/g‘r>

Particle number

N=Ylo, - N=ldrg exp)
N = Za};ak
Momentum

P=>p - P :Jd3rtﬂT(r)(—ihD)¢’(")

P = th (&' a,
Particle density _
nOP(’”):zd(”_”j) - ”0P(”):¢T(”)w(”)

1 |
Nop () = —2. e Zaz-q/zak+q/2 =—2.¢"n
V 4 k q




Hamiltonian

H = Z— p, +V(r,) single-particle additive

+— Z ZU (r, —r,) two-particle binary

q jdww(r)(—%mwr))w(r)
+L[[drd’r @' ' (U (¢ = Y (e (1)




Hamiltonian

H = Z— p, +V(r,) single-particle additive

= Z ZU (” —l’b) two-particle binary

a # b

-] d3r¢*<r>(-%4‘+V<">)‘”<”) acts in the whole Fock space
+L[[&Erd e @ oW U = r e (r)




Hamiltonian

H = Z— p, +V(r,) single-particle additive

= Z ZU (” —l’b) two-particle binary

a # b

- “3”‘”“”)(‘%“”(”))‘”(”) acts in the whole Fock space F
+L{[&rdr gt o) U =)
2 but K

Particle number conservation
[H.N]=0
Equilibrium density operators and the ground state (ergodic property)

p=pH), [N.p]=0




On symmetries and conservation laws




Hamiltonian of a homogeneous gas

— L 2 l — =
H —;2Mm+lf+2 ;,:;U(ra r,), V = const.

=[Erg O A4V o 3 [[ard g e e @ e
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Hamiltonian of a homogeneous gas

H = Z—pa+V+—ZZU(r -r), V' = const.

2a¢b

= [@r ' )L A+V () + S [[dr dr g e @)U = e ()

|H, N ]=0

[, P

el =

 conserves the particle number

econserves the total momentum

0
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Summary: two symmetries compared

Gauge invariance of the 1st kind

Translational invariance

universal for atomic systems

specific for homogeneous systems

o' (¢)HO(p) =35 ¢1(0,2m)

T (a)HT(a)=H, alR,

global pha?‘ﬁnscg:gnd the wave global shift in the configuration space
[j[)jv]:() [Hﬁ@x,y,z] = O

particle number conservation

total momentum conservation

[N.p]=0 = ™" fpe?=p

for equilibrium states

[2.p]=0 = ¢ pei™=p

for equilibrium states

selection rules
(WL ') =0

unless there are as manwa asyy .

selection rules
\ —
<akaer ak"> - O

unless the total momentum transfer

-k —k'L + k" 3s(kero




Hamiltonian of the homogeneous gas

In the momentum representation

2 _
H=> I ilq +3 VIZU aj . ar._,a.a,

U, =d*re™ U(r)
k k'

Momentum conservation
(k+q)+(k'—q)—k—-k'=0

Particle number conservation

a*ggg a
E55555%
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Hamiltonian of the homogeneous gas

For the Fermi pseudopotential

Uq :UO EU(:g)

In the momentum representation

2 _
H=>Iilq +3 VIZU aj . ar._,a.a,

U, =d*re™ U(r)
k k'

Momentum conservation
(k+q)+(k'—q)—k—-k'=0

Particle number conservation

a*ggg a
E55555%
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Bogolyubov method

Originally, intended and conceived for
extended (rather infinite) homogeneous
system.

Reflects the 'Paradoxien der Unendlichen'




Basic idea

Bogolyubov method
is devised for boson quantum fluids with weak interactions — at T=0 now
no interaction weak interaction
g=0 g% 0
N =N, =(aja,)? 1 N =Ny +Y (aja,) =Ny ? |
k%0

The condensate dominates,
but some particles are kicked out
by the interaction (not thermally)
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Basic idea

Bogolyubov method
is devised for boson quantum fluids with weak interactions — at T=0 now
no interaction weak interaction
g=0 g% 0

N =N, =(aja,)? | N:NBE+;<a}:ak>=NBE? 1

The condensate dominates,
but some particles are kicked out
by the interaction (not thermally)

Strange idea introduced by Bogolyubov

— (AT T T, — = :
N, = <a0a0> ?7 1= <a0a0> ? a,a, —a,a, =1= like c-numbers

N=N, + Za;ﬁak ... mixture of c-numbers and g-numbers
k#0
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Approximate Hamiltonian

Keep at most two particles out of the condensate ....

2 _
H=>XXkaga +IV'>Uad,.,a. _a.aq,

kk'q

. UN, {

2V
k#0

UN t o
@y T3y {aka
k%0

M

2
2 Ly ala, + a,a’,

= Y £ K]

+ 4akak ta,a_

+2aa, +a.a.

>a

y
J*

+

4+

use

=No> a; =N,

UN;

2V

UN2

Za;ﬁak

k#0

>NN

53

condensate particle
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Bogolyubov tfransformation

Last rearrangement

_ 2 .o N>
"= 2Zgh’2f4kz zgf){a’ia"w"a prg Z{l 4‘244§} 7

mean field anomalous

Conservation properties: momentum ... YES, particle number ... NO




Bogolyubov tfransformation
Last rearrangement

_ 2 .o N>
"= 2Zgh’2f4kz zgé/l){a’ia"m"a g Z{l 4‘2443*} 7

mean field anomalous

Conservation properties: momentum ... YES, particle number ... NO

NEW FIELD OPERATORS notice momentum conservation!!
T

b, =u,a, +v.a.,

T T
b, =va, tu.al,
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Bogolyubov tfransformation
Last rearrangement

_ h2 ;.2 i gn gN2
"= 2Zg i+ enlfala, +a'ia} + 5 Z{l UEETTAS

M 4B
mean field anomalous

Conservation properties: momentum ... YES, particle number ... NO

NEW FIELD OPERATORS notice momentum conservation!!
T

bk =u,a, tvea.,
T T
requirements

©® New operators should satisfy the boson commutation rules

| besby | =0 | biuby |20, | BB =0
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Bogolyubov tfransformation
Last rearrangement

_ h2 ;.2 i gn gN2
"= 2Zg i+ enlfala, +a'ia} + 5 Z{l UEETTAS

M 4B
mean field anomalous

Conservation properties: momentum ... YES, particle number ... NO
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T T
requirements

©® New operators should satisfy the boson commutation rules
| besby | =0 | biuby |20, | BB =0
iff u,f —v,f =1
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Bogolyubov tfransformation
Last rearrangement

_ h2 ;.2 i gn gN2
"= 2Zg i+ enlfala, +a'ia} + 5 Z{l UEETTAS

M 4B
mean field anomalous

Conservation properties: momentum ... YES, particle number ... NO
NEW FIELD OPERATORS notice momentum conservation!!

—_ T — _ T
b, =u.a, tval, | a, =ub, —v,b,
T o= T

o i
b, =va, tu.al,

requirements

©® New operators should satisfy the boson commutation rules
| besby | =0 | biuby |20, | BB =0
iff u,f —v,f =1
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Bogolyubov tfransformation
Last rearrangement

2 5 N?
" _2Zgh’2f4kz Z%){azak rala,p Z{l 5 G 43*} E

mean field anomalous

Conservation properties: momentum ... YES, particle number ... NO
NEW FIELD OPERATORS notice momentum conservation!!

— T — _ T
b, =u.a, tval, | a, =ub, —v,b,
T o= T

oo i

requirements
©® New operators should satisfy the boson commutation rules
| besby | =0 | biuby |20, | BB =0
iff u,f —v,f =1

® Interms of the new operators, the anomalous terms in the Hamiltonian
have to vanish

24




Bogolyubov tfransformation

® In terms of the new operators, the anomalous terms in the Hamiltonian
have to vanish

1 h2 1.2 i i gn Pt gN?
EZ(EI‘ +g”){"kak +ala,} +72k:{aka-k +taa, )+ 5

2
Z(;_mkz +gn){u,fb,:fbk +vibby +uv, (bbl, +bb_, )}

H

+50 % 2, {(blb, + b))+ @+ BB, +bib, )
k

gN?

57

h? 72 gn o 2 2\ _
= (ﬁk +gn)ukvk +5-(u, +v,)=0

2 2

g 3 g 3

uy = (B + gn + (k) 1 26(K) vy =Lk + gn = e(k)) /26 (k)

E(k) = \/(%kz + gn)2 —(gn)2
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Bogolyubov transformation — result

Without quoting the transformation matrix
2
H :72 g(k)Y{blb, +b' b } +ﬂ+ higher order constant
144472 4443 2% 4 43442 4 4 4 4 B
independent quasiparticles ground state energy E

2
E(k) :\/(%k2 +gn) —(gn)2 = %kz %kz +2gn

26




Bogolyubov transformation — result

Without quoting the transformation matrix

N2
H=21 Kb! + '+ higher order constant
12, Wb P74 4 454520 4 B8 B
ind. qua51—partlcles gr()und state energy E

2
E(k) :\/(%k2 +gn) —(gn)2 = %kz %kz +2gn

asymptoticall
merge

high energy region

I 02
k7 +
(k) 2 ¥ g’Z quasi-particles are
i Hep nearly just particles cross-over
_ [4mgn
k, = ™

-~  wk)=clk sound region defines scale for £

k, _ |gn quasi-particles are
C—.,[— collective excitations

27




More about the sound part of the dispersion law

@ Entirely dependent on the interactions, both the magnitude of the velocity
and the linear frequency range determined by g awk)=clk

@ Can be shown to really be a sound: an

—_n VaVVE _gN €= ;
(3] c—\/7 \/ : E= Y +L

=u,a +v,a, 005 u (a) +a,)

n, = Zq:aq-k/zaﬁk/z ~ (ak ta,)

@ Even a weakly interacting gas exhibits superfluidity; the ideal gas does not.

@ The phonons are actually Goldstone modes corresponding to a broken
symmetry

@® The dispersion law has no roton region, contrary to the reality in *He

@ The dispersion law bends upwards = quasi-particles are unstable, can
decay

28




Particles and quasi-particles

At zero temperature, there are no quasi-particles, just the condensate.

Things are different with the true particles. Not all particles are in the

condensate, but they are not thermally agitated in an incoherent way, they
are a part of the fully coherent ground state

<a}:ak> = <(—vkbk +ukbfk)(ukb_k —vkb,j)> =v. 20

The total fraction of particles outside of the condensate is
N_No ~ 3 32,12
N 3yzl23

3
a.n

square root of the
gas parameter
IS
the expansion
variable




What is the Bogolyubov approximation about

The results for various quantities are

( g 1)
NO:NX 1 3/2 1/2

e

([, 128 L 1/2\

k RPN

(1 . 32 as/znl/z\
Wn )

square root of the
gas parameter

3
an
Is the expansion
variable

general [BG] = [GP] (
pattern

L 3/2 1/2]
LJr

The Bogolyubov theory is the lowest order correction to the mean field (Gross-
Pitaevskii) approximation

It provides thus the criterion for the validity of the mean field results

It is the simplest genuine field theory for quantum liquids with a condensate

30




Trying to understand the Bogolyubov
method




© 6 0 O

O

Notes to the contents of the Bogolyubov theory

The first consistent microsopic theory of the ground state and elementary
excitations (quasi-particles) for a quantum liquid (1947)

The quantum condensate turns into the classical order parameter in the
thermodynamic limit N — o, 9 — 0o, N /1 =n= const.

The Bogolyubov transformation became one of the standard technical means for
treatment of "anomalous terms" in many body Hamiltonians (...de Gennes)

Central point of the theory is the assumption

_ ¥
a, =Ny, a "\/No

lts introduction and justification intuitive, surprisingly lacks mathematical rigor.
Two related problems:

lowering operator — ? — gauge symmetry, s. rule
a,|G,NYOH,_,  {(G,Nla,)|G,N) =N, (a,)=0

Additional assumptions: something of a crutch/bar to study of finite systems
 homogeneous system * infinite system

Infinity as a problem: philosophical, mathematical, physical 3




What next ??7?

e Off-diagonal long range order and the
Bogolyubov ground state

e Coherent state as the GP vacuum
e Spontaneous symmetry breaking




Off-Diagonal Long Range Order

Analysis of BEC on the one-particle level

ODLRO as a measure of coherence in the
system




Coherence in BEC: OPDM for non-interacting bosons
Off-Diagonal Long Range Order

Without field-theoretical means, the coherence of the condensate may be
studied using the one-particle density matrix.

35




Coherence in BEC: OPDM for non-interacting bosons

Without field-theoretical means, the coherence of the condensate may be
studied using the one-particle density matrix.

Definition of OPDM for non-interacting particles: Take an additive
observable, like local density, or current density. Its average value for the
whole assembly of atoms in a given equilibrium state |{na}>:

<X > = Z(a’ ‘X ‘ a'> <na> double average, quantum and thermal

a4
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Coherence in BEC: OPDM for non-interacting bosons

Without field-theoretical means, the coherence of the condensate may be
studied using the one-particle density matrix.

Definition of OPDM for non-interacting particles: Take an additive
observable, like local density, or current density. Its average value for the
whole assembly of atoms in a given equilibrium state |{na}>:

<X > = Z(a’ ‘X ‘ a'> <na> double average, quantum and thermal

:Z<G‘XZ‘,3><,5‘ 0’><na> insert unit operator
a ;

37




Coherence in BEC: OPDM for non-interacting bosons

Without field-theoretical means, the coherence of the condensate may be
studied using the one-particle density matrix.

Definition of OPDM for non-interacting particles: Take an additive
observable, like local density, or current density. Its average value for the
whole assembly of atoms in a given equilibrium state |{na}>:

<X > = Z(a’ ‘X ‘ a'> <na> double average, quantum and thermal

:Z<a‘XZ‘,3><,5‘ 0’><na> insert unit operator
a 5

= Z( V& Z‘ a><na><a\ X ‘ ,8> change the summation order
V4 a
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Coherence in BEC: OPDM for non-interacting bosons

Without field-theoretical means, the coherence of the condensate may be
studied using the one-particle density matrix.

Definition of OPDM for non-interacting particles: Take an additive
observable, like local density, or current density. Its average value for the
whole assembly of atoms in a given equilibrium state |{na}>

<X > = Z( ‘X ‘ a> <na> double average, quantum and thermal

‘X Z ‘ ,6’> < Vi ‘ a> <na > insert unit operator
B

o3

a

X ‘ ,6’> change the summation order

G
> (A 2la) ()@
<

Ll pX ‘ ,B> define the one-particle density matrix
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Coherence in BEC: OPDM for non-interacting bosons

Without field-theoretical means, the coherence of the condensate may be
studied using the one-particle density matrix.

Definition of OPDM for non-interacting particles: Take an additive
observable, like local density, or current density. Its average value for the
whole assembly of atoms in a given equilibrium state |{na}>

<X > = Z( ‘X ‘ a> <na> double average, quantum and thermal

Z ‘X Z‘ ,6’>< Vi ‘ a’><na> insert unit operator
a B

B

X ‘ ,6’> change the summation order

G
(A2 la)(na)la
.

Ll pX ‘ ,B> define the one-particle density matrix

r,OX

p = ¥la)(n,)a
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OPDM for homogeneous systems

In coordinate representation

Ao = (r| 2 1k) () (k') = 2 (rlfe) (e ) (k| )
— %Zk:eik(r—r') <nk>

» depends only on the relative position (transl. invariance)
* Fourier transform of the occupation numbers
e isotropic ... provided thermodynamic limit is allowed

* in systems without condensate, the momentum distribution is smooth and
the density matrix has a finite range.

CONDENSATE lowest orbital with k,

B

41




OPDM for homogeneous systems: ODLRO
1
CONDENSATE  lowest orbital with k, =O(V *)=0

,0(1’ — r!) — leiko(r—r') <n0> + l eik(r—r') <nk>

V442 48" {igry 5 4 4 3

coherent across FT of a smooth function
the sample :
has a finite range

= Ppe(r—r) +p,(r—r)
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OPDM for homogeneous systems: ODLRO
1
CONDENSATE  lowest orbital with k, =O(V *)=0

p(”' _ l"') — leiko(r—r') <n0> + l eik(r—r') <nk>

V442 48" {igry 5 4 4 3

coherent across FT of a smooth function
the sample :
has a finite range

EIOBE(I"—I”') +,0G(l/'—l"')
DIAGONAL ELEMENT r=r'
PO)= P (0)  +p,(0)

= Ngg THg
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OPDM for homogeneous systems: ODLRO
1
CONDENSATE lowest orbital with k, =O(V *)=0

p(r _ l"') — leiko(r—r') <n0> + l eik(r—r') <nk>

V442 48" {igry 5 4 4 3

coherent across FT of a smooth function
the sample :
has a finite range

EIOBE(I"—I”') +,OG(I/'—I"')
DIAGONAL ELEMENT r=r'
PO)= P (0)  +p,(0)

— Ngg thg
DISTANT OFF-DIAGONAL ELEMENT | 7 - #'| - 00
Pee(r—r") 000D n,
o.(r=r") 000D

: ODLRO
o(r-r) OO0 n,

Off-Diagonal Long Range Order
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From OPDM towards the macroscopic wave function
1

CONDENSATE lowest orbital with k, = O(V_g) =(

(l" r)__ iky(r— r)<n >+ 1 elk(r r)<nk>
Vaa2 48" Vigmy 5 44

coherent across FT of a smooth function
the sample ;
has a finite range

— Liuq&ui(gr) + Z pik(r=r) <nk>
dyadic =
MACROSCOPIC WAVE FUNCTION
W(r)=n, &% $K an arbitrary phase

» expresses ODLRO in the density matrix

* measures the condensate density

 appears like a pure state in the density matrix, but macroscopic

« expresses the notion that the condensate atoms are in the same state

* is the order parameter for the BEC transition 45




From OPDM towards the macroscopic wave function
|

CONDENSATE lowest orbital with k, = O(V_g) =(

(l" r)__ iky(r— r)<n >+ 1 elk(r r)<nk>
Vaa2 48" Vigy 5 44

coherent across FT of a smooth function
the sample ;
has a finite range

— Liuq&ui(gr) + Z plk(r=r) <nk>
dyadic =
MACROSCOPIC WAVE FUNCTION
W(r)=n, &% $K an arbitrary phase

» expresses ODLRO in the density matrix v

* measures the condensate density v

 appears like a pure state in the density matrix, but macroscopic v

« expresses the notion that the condensate atoms are in the same state

* is the order parameter for the BEC transition 46




From OPDM towards the macroscopic wave function
|

CONDENSATE lowest orbital with k, = O(V_g) =(

(l" r)__ iky(r— r)<n >+ 1 elk(r r)<nk>
Vaa2 48" Vigy 5 44

coherent across FT of a smooth function
the sample ;
has a finite range

— Liuq&ui(gr) + Z plk(r=r) <nk>
dyadic =
MACROSCOPIC WAVE FUNCTION
W(r)=n, &% $K an arbitrary phase

» expresses ODLRO in the density matrix v

* measures the condensate density v

 appears like a pure state in the density matrix, but macroscopic v

« expresses the notion that the condensate atoms are in the same state

* is the order parameter for the BEC transition 47




ODLRO for interacting bosons

Basic expressions for the OPDM for a homogeneous system
<r|p|r’> = <¢T(r’)(,0(r)> = V_1<Z e *"al, Da, eik’> by definition
=V Ze‘kr Tk <ak ak> V- Zelkr ik <a}:ak>5kk transl.invariance
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Off-diagonal long range order

ODLRO for interacting bosons

One particle density matrix
Basic expressions for the OPDM for a homogeneous system

<r|,0|r’> = <¢T(r’)w(r)> = V_1<Z e *"al, [Da, eik"> by definition
=V Zelkr e <ak ak> V_lzelkr e <a,tak>5kk transl.invariance

49




ODLRO for interacting bosons

Basic expressions for the OPDM for a homogeneous system
<r|,0|r’> = <¢T(r’)¢(r)> = V_1<Z e *"al, [Da, eikr> by definition
=V Zelkr Tk <ak ak> V_lzelkr Tk <azak>5kk transl.invariance

p(l",l" v) — V—lzeik(r—r') <nk>
k
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ODLRO for interacting bosons

Basic expressions for the OPDM for a homogeneous system

(r| o]y = (@' @) =V (e ™" af, (Ba,

—V Zelkr -ik'r’ <ak ak> V_lzelkr -ik'r’ <a;:ak

p(l",l" v) — V—lzeik(r—r') <nk>
k

e""’> by definition

>5kk transl.invariance
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ODLRO for interacting bosons

Basic expressions for the OPDM for a homogeneous system

(rlolry= (@' " wp(r))
=V Zelkr e <ak ak>

= V‘1<Z S e“‘”> by definition

-1 ke ik vari
V Ze” e <azak>5kk transl.invariance

General expression for the one particle density matrix with condensate

p(r,r') = V_IZeik(’_") <nk> k,—- 0, <n0> =N,

.//

— 771 1k0(r r') -1 ik(r—r"
.\)e,x\\\«e""‘ =N a4 ) VT 2T ()

coherent across

{\ﬂg the sample

1 4742 4 4 3

FT of a smooth function
has a finite range
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ODLRO for interacting bosons

Basic expressions for the OPDM for a homogeneous system
<r|,0|r’> = <¢T(r’)¢(r)> = V_1<Z e *"al, [Da, eik"> by definition
=V Zelkr Tk <ak ak> V_lzelkr ik <azak>5kk transl.invariance

General expression for the one particle density matrix with condensate

p(r,r') = V_IZelk(’_") <nk> k,—- 0, <n0> =N,

.//

— 771 1k0(r r') -1 ik(r-r"
el T ) VT 2 () .
: 5\\\\(\ k# N 1¢ —1kyr
% (\O(\’ coherent across 1 4 ZM- 24448 o ( ]/') = 70 (¢ 7 [ 0

80\"\(\9 the sample FT of a smooth function
'\(\\G‘ 0(\5 has a finite range .
\00° _ ﬁqu’um(’é') Ly Z k(1) <n > @K an arbitrary phase
k
4 k#k,

dyadic
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ODLRO in the Bogolyubov theory

Basic expressions for the OPDM for a homogeneous system
<r|,0|r’> = <¢T(r’)w(r)> = V_1<Z e *"al, [Da, eik"> by definition
=V Zelkr e <ak ak> V_lzelkr e <azak>5kk transl.invariance

General expression for the one particle density matrix with condensate

p(r,r') = V_IZeik(’_") <nk> k,- 0, <n0> =N,
44//
— 771 1k0(r r') -1 ik(r-r"
e =N a4 ) YT e () N
o Y(r)= 70 @Mb

(\0(\’ ‘ coherent across 4k ¢Z[2]- 2 4 4 Z.B
ao\\(\g the sample FT of a smooth function
'\(\\G‘ 0(\5 has a finite range .
\00° : 0, i k(=) @K an arbitrary phase
=TY 45 AV 2 ey
Kk,

dyadic

Interpretation in the Bogolyubov theory — at zero temperature

,O(r,r') — V—1/2 <a0 > I:V—l/z <ag> + V—l Z e1k(r r') i

k#k,

Rich microscopic content hinging on the Bogolyubov assumption o4




ODLRO in the Bogolyubov theory

Basic expressions for the OPDM for a homogeneous system
<r|,0|r’> = <¢T(r’)w(r)> = V_1<Z e *"al, [Da, eik"> by definition
=V Zelkr e <ak ak> V_lzelkr e <azak>5kk transl.invariance

General expression for the one particle density matrix with condensate

p(r,r') = V_IZeik(’_") <nk> k,- 0, <n0> =N,
44//
— 771 1k0(r r') -1 ik(r-r"
e =N a4 ) YT e () v .
o Y(r)= 70 @Mb

(\0(\’ ‘ coherent across 4k ¢Z[2]- 2 4 4 Z.B
a(;’\.\(\g the sample FT of a smooth function
el 0(\5 has a finite range
\00° _ ﬁqu’um(’é') Ly Z k(1) <n > @K an arbitrary phase
4 k

dyadic

Interpretation in the Bogolyubov theory — at zero temperature

o(r,r') = 12 <a0 > 2 <ag> + ! Z oikrr) 2

k#k,

Rich microscopic content hinging on the Bogolyubov assumption 00




ODLRO in the Bogolyubov theory

Basic expressions for the OPDM for a homogeneous system
<r|,0|r’> = <¢T(r’)w(r)> = V_1<Z e *"al, [Da, eik"> by definition
=V Zelkr e <ak ak> V_lzelkr e <azak>5kk transl.invariance

General expression for the one particle density matrix with condensate

p(r,r') = V_IZeik(’_") <nk> k,- 0, <n0> =N,
44//
— 771 1k0(r r') -1 ik(r-r"
e =N a4 ) YT e () v .
o Y(r)= 70 @Mb

(\0(\’ ‘ coherent across 4k ¢Z[2]- 2 4 4 Z.B
a(;’\.\(\g the sample FT of a smooth function
el 0(\5 has a finite range
\00° _ ﬁqu’um(’é') Ly Z k(1) <n > @K an arbitrary phase
4 k

dyadic

Interpretation in the Bogolyubov theory — at zero temperature

p(r,r') — V—1/2< >|]/ 1/2 ao _’|V—1 Z ik (rr) 2

K-/-KO

Rich microscopic content hinging on the Bogolyubov assumption o0




Three methods of reformulating the Bogolyubov theory

In the original BEC theory ... no need for non-zero averages of linear field operators

Why so important? ... microscopic view of the condensate phase
quasi-particles and superfluidity
basis for a perturbation treatment of Bose fluids

We shall explore three approaches having a common basic idea:

3t relax the particle number conservation ¥ work in the thermodynamic limit
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Three methods of reformulating the Bogolyubov theory

In the original BEC theory ... no need for non-zero averages of linear field operators

Why so important? ... microscopic view of the condensate phase
quasi-particles and superfluidity
basis for a perturbation treatment of Bose fluids

We shall explore three approaches having a common basic idea:

3t relax the particle number conservation ¥ work in the thermodynamic limit

[ |explicit construction of the classical Pitaevski in LL IX (1978)
part of the field operators

[T | the condensate represented by a Cummings & Johnston (1966)
coherent state Langer, Fisher & Ambegaokar
(1967 — 1969)
11 | spontaneous symmetry breakdown, Bogolyubov (1960)

particle number conservation violated | Hohenberg&Martin (1965)
P W Anderson (1983 — book)
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.
explicit construction of the classical part of
the field operators




136 CBEPXTRKYUYECTE

votation from Landau-Lifshitz IX ™. u

\p-orepaToOpoB, XOTOpas MeHAET Ha 1 4YMCIO yactup p KOHek
HMeeM, TaKHM o6pasoM, IO OMnpejeseHHIO, - Care,

Blm, NH1>=E|m, N>, E*|m, N>=B¥m, yij

rae cuMBOJHI [m, N> u |m, N+ 1> o6osnauaior npa “OlMHaKOBYy, -

COCTOSIHUSA, OT/IHMYAIOWHMXCA TONBKO YHC/IOM YacTHL B CHCTeMe
a E-— HEKOTOpoe KOMIIJIEKCHOE YHCJO. DTi YTBEPZKICHUS Cpapey.
JHBbI cTporo B mpepese N — qo. ITostomy OnpejeJie Hie 1.=,eJ11~1qHHIIl,~
E cJenyeT samHcaTh B BHIE !

lim <m, N|E|m, N+1>=8,

Now

lim <m, N+1|E+|m, N¥>=B*:

N->w

(26,3)

NMEPEXON K NpEfiesy COBEPINAETCH NPH 3aJaHHOM KOHEUHOM 3Hade.
HHH IJIOTHOCTH KHAKOCTH N/V. ' 5
Ecau nmpencraButh p-onepaTopel B Buje

-~

S =R Pt =B+ P+ - (26,4)

TO OCTalbHas (<HaAKOHIEHCATHAS») HX YACTH NEePEeBOAUT COCTOSHHE

|m, N> B oproronanpube EMY COCTOSIHHSA, T. €. MAaTPHYHBIE 3Jie-

MEHTHI 1)
amcm, N [m, N4-15=0,  limcm, Not1|%+ |m, N>=0.
i ; N—w , :

(26,5)

- %Vnpf,neﬂe N — 0o pasunna MEXNIy COCTOSHHAMH |m, N> H
s V 4+ 1> Hcyezaer BOBCE, M B 3TOM CMBICJIe BeJHYHHA & CTaHO-

BHTCS CPeIHUM 3HaueHuem onmeparopa ¥ mo. 3ToMy COCTOSIHHIO.

3
;;:éqepKHEM’ ATO XapaKTepHBIM NS CHCTEMBI C KOHJeHCATOM fIB-
CA HMEHHO KOHEUHOCTb 3TOrO mpegeda. |

ADATYTTAMMN ~A- - NN A
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CBEPXTEKYYECTE
[ra, o

... that part of the W operators, which changes the condensate particle number by 1,
we have, then, by definition

Elm, N1>=8|m, N>, E*|m, N>=E*|m, Ny

the symbols ~ [m, N> u |m, N+1> denoting two "identical"
states, differing only by the number of the particles in the system, and
E-is a complex number. These statements are strictly valid
in the limit ¥ —o00. The definition of the quantity

2. has thus to be written in the form
lim <m, N|E|m, N+1>=8,

Now

lim <m, N41]8+|m, ¥>— =%

N-o>w

the limiting transition is to be performed at a given fixed value of the

~liquid density n/V. -
Ecan npeacraButs p-omepaToprl B Buzue

T—E 19, U+ = B+ P+ - (26,4)

(26,3)

il'r(:'l Oj%TaJIbHaH («H&J_’(KOH}LEHC&TH&H») HX JaCThb IEPEeBOJUT COCTOSHHE
, V> B OpTOroHaJsiLbHbIE EMY COCTOAHUSA, T. e. MAaTpPHYHEIE 3JIe-

MEHTHI 1)
Tim m, N9 [m, N 415 =0, Jim<m, N 1197+ |m, > =0.

(26,5)

B ‘ |
mpenene N — oo pasuuna MEXIY COCTOAHHAMH |m, N> H

m, N
|m, + 1> ucyesaer BOBCE, W B 3TOM CMBICJE BeJIHUHHA B CTaHO-

BHT

Ho;ft?e pclfzgl\ldmm SHAUeHHEM onepatopa ¥ mo. 3TOMY COCTOSHHIO.

et e ATO XapaKTePHBIM JJIsI CHCTEMbl C KOHIGHCATOM SAB- 61
EHHO_}OHEQHOCTL\ STOTO IIpenieJa.

AVAYITAMA ~e - s A
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CBEPXTRKYUECTE
[ra, o

.. that part of the W operators, which changes the condensate particle number by 1,

we have, then, by definition
Blm, N+1>=B[m, N>, E*|m, N>=E*m, N4y

the symbols ~ [m, N> u |m, N+1> denoting two "identical"
states, differing only by the number of the particles in the system, and
E-is a complex number. These statements are strictly valid
in the limit N —o00.  The definition of the quantity
E- has thus to be written in the form

lim <m, N|E|m, N4+1>=8,

Now

lim <m, N+1]|8+%|m, ¥>— 5 - (263

> Noow :
the limiting transition is to be performed at a given fixed value of the
: liquid density N/V .-
If the W operators are represented in the form :
SR PV, W B LW e
'then their remaining ("supercondensate") parts transform the state

|m, N> to states which are orthogonal to it, that is, the matrix
elements are

dimim, N9 |m, N+-1>=0, limqm, N1 ]9+ i, WSl
In the limit N — o0, the difference between the states |m, N>and

|m, N+ Iyvanishes entirely and in this sense the quantity . be-
comes the mean value of the operator ¥ over this state.
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CBEPXTEKYURCTE
[ra, o

.. that part of the W operators, which changes the condensate particle number by 1,

we have, then, by definition
ﬂlm, Ni1>=E|m, N>, §+|m, N):’:.‘*Im-’ N1y

the symbols ~ |m, N> u |m, N+41> denoting two "identical"
states, differing only by the number of the particles in the system, and
E-is a complex number. These statements are strictly valid
in the limit N —o00.  The definition of the quantity
E- has thus to be written in the form

lim <m, N|E|m, N4+1>=8,

e - A}gﬂ::m N+1]8*|m, ¥>— B (263
Qui-capere potest;-capia

If the W operators are represented in the form

et anyonig accept his:who.can

m, N> td&states which are orthogbnal to it, that is, the matrix
elements are

Kde-miize3 pochepitiy pochgp

In the I‘ir_'nit N — oo, the difference between the states | m, N>ahd
|m, N 4+ Iyvanishes entirely and in this sense the quantity 5. be-
comes the mean value of the operator ¥ over this state.
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.
the condensate represented by
a coherent state




Reformulation of the Bogolyubov requirements

Bogolyubov himself and his faithful followers never speak of the many
particle wave function. Looks like he wanted

a,|W)=A|W), A=/N,e"?, so that
<a0> =/ The ground state
This is in contradiction with the selection rule, <a0> =0

The above eigenvalue equation is known and defines the "ground" state =
Bogolyubov condensate state to be a coherent state with the parameter /1
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Reformulation of the Bogolyubov requirements

Bogolyubov himself and his faithful followers never speak of the many
particle wave function. Looks like he wanted

a,|W)=A|W), A=/N,e"?, so that

() =4 i

This is in contradiction with the selection rule, <a0> =0

The above eigenvalue equation is known and defines the "ground" state =
Bogolyubov condensate state to be a coherent state with the parameter /1

¥ The coherent states (not their name) discovered by Schrodinger as the
minimum uncertainty wave packets, obtained by shifting the ground state
of a harmonic oscillator.

¥ These states were introduced into the quantum theory of the
coherence of light by Roy Glauber (NP 2005). Hence the name.

iy




About the coherent states

OUR BASIC DEFINITION
a,|W) = = /N, ', (ay)

If a particle is removed from a coherent state, it remains unchanged (cf. the
Pitaevskii requirement above). It has a rather uncertain particle number, but
a reasonably well defined phase

General coherent state Condensate
A= vac) =|¥)

(Ala,| )=/ = [N, ¢
(Alajaq| 1) =] A (M) =N,
(A|atayaia,| Ay =|A+|A (ng)=N; +N,
An, =|/ An, =N, = N,

67




New vacuum and the shifted field operators

Does all that make sense? Try to work in the full Fock space F rather in its
fixed N sub-space H, This implies using the "grand Hamiltonian"

H -uN

68




L1: Thermodynamics: which environment to choose?

THE ENVIRONMENT IN THE THEORY SHOULD CORRESPOND
TO THE EXPERIMENTAL CONDITIONS

. a truism difficult to satisfy

O For large systems, this is not so sensitive for two reasons
« System serves as a thermal bath or particle reservoir all by itself
 Relative fluctuations (distinguishing mark) are negligible

(2 Adiabatic system Real system |Isothermal system
SB heat exchange — the slowest medium fast the fastest
process

 temperature lag

* interface layer

© Atoms in a trap: ideal model ... isolated. In fact: unceasing energy exchange
(laser cooling). A small number of atoms may be kept (one to, say, 40).
With 107, they form a bath already. Besides, they are cooled by evaporation
and they form an open (albeit non-equilibrium) system.

® Sometime, N =const. crucial (persistent currents in non-SC mesoscopic rings)
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L1: Thermodynamics: which environment to choose?

THE ENVIRONMENT IN THE THEORY SHOULD CORRESPOND

TO THE EXPERIMENTAL CONDITIONS )
... atruism difficult to satisfy >
——

O For large systems, this is not so sensitive for two reasons
« System serves as a thermal bath or particle reservoir all by itself
 Relative fluctuations (distinguishing mark) are negligible

(2 Adiabatic system Real system |Isothermal system
SB heat exchange — the slowest medium fast the fastest
process

» temperature lag

* interface layer

© Atoms in a trap: ideal model ... isolated. In fact: unceasing energy exchange
(laser cooling). A small number of atoms may be kept (one to, say, 40).
With 107, they form a bath already. Besides, they are cooled by evaporation
and they form an open (albeit non-equilibrium) system.

® Sometime, N =const. crucial (persistent currents in non-SC mesoscopic rings)
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L1: Thermodynamics: which environment to choose?

THE ENVIRONMENT IN THE THEORY SHOULD CORRESPOND

TO THE EXPERIMENTAL CONDITIONS )
... atruism difficult to satisfy >
——

« System serves as a thermal bath or particle reservoir all by itself

O For large systems, this is not so sensitive for two reasons
 Relative fluctuations (distinguishing mark) are negligible >

e — R
(2 Adiabatic system Real system |Isothermal system
SB heat exchange — the slowest medium fast the fastest
process

» temperature lag

* interface layer

© Atoms in a trap: ideal model ... isolated. In fact: unceasing energy exchange
(laser cooling). A small number of atoms may be kept (one to, say, 40).
With 107, they form a bath already. Besides, they are cooled by evaporation
and they form an open (albeit non-equilibrium) system.

® Sometime, N =const. crucial (persistent currents in non-SC mesoscopic rings)
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L1: Homogeneous one component phase:
boundary conditions (environment) and state variables

S V' N additive variables, have densities s=S/V n=N/V "extensive"
bbb

I' P i1 dual variables, intensities "Intensive"

S V' N 1solated, conservative

open SV u Q@
S PN 1sobaric

1sothermal 7V N

grand TV 1 Q)

notinuse 17 Pu 72




L1: Homogeneous one component phase:
boundary conditions (environment) and state variables

S V' N additive variables, have densities s=S/V n=N/V "extensive"
bbb

I' P i1 dual variables, intensities "Intensive"

S V' N 1solated, conservative

At zero temperature the
two coincide

T=0 - S=0  (Thjrcf
Principle) ]

grand 7'V i Q

/3




New vacuum and the shifted field operators

Does all that make sense? Yes: work in the full Fock space F rather than in its

fixed N sub-space H, This implies using the "grand Hamiltonian"

H -uN

/4




New vacuum and the shifted field operators

Does all that make sense? Yes: work in the full Fock space F rather than in its

fixed N sub-space H, This implies using the "grand Hamiltonian"
H -uN
Let us define the shifted field operator

by=a,-/N, b =al =N
[bo,bg]:L bO‘LIJ>:O ... New vacuum
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New vacuum and the shifted field operators

Does all that make sense? Yes: work in the full Fock space F rather than in its
fixed N sub-space H, This implies using the "grand Hamiltonian"

H -uN
Let us define the shifted field operator

by=a,-A, b =da -/

_ A2
(by,by |21, b|¥)=0 ... new vacuum |W)=c

/IaT
(¢ ‘ Vac>
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New vacuum and the shifted field operators

Does all that make sense? Yes: work in the full Fock space F rather than in its
fixed N sub-space H, This implies using the "grand Hamiltonian"

H -uN
Let us define the shifted field operator
by=a,-A, bl =da -/
Na®
[bo,bg]=1, b,|¥)=0 ... new vacuum W) = 37 | vac)

What next? ... is this coherent state able to represent the condensate?

A7 /2
e

/7




New vacuum and the shifted field operators

Does all that make sense? Yes: work in the full Fock space F rather than in its
fixed N sub-space H, This implies using the "grand Hamiltonian"

H -uN
Let us define the shifted field operator
by=a,-A, bl =da -/
Na®
[bo,bg]=1, b,|¥)=0 ... new vacuum W) = 37 | vac)

What next? ... is this coherent state able to represent the condensate?

A7 /2
€
Test example: ideal Bose gas — limit of a BE system without interactions

(H =uN )| W)= X (504 - k) el | )

Z—ﬂagao‘w>=o for £=0

/78




New vacuum and the shifted field operators

Does all that make sense? Yes: work in the full Fock space F rather than in its
fixed N sub-space H, This implies using the "grand Hamiltonian"

H -uN
Let us define the shifted field operator
by=a,=A, bl =al -/ 2
[bo,bg] =1, b, ‘ LIJ> =0 ... new vacuum ‘LP> =M A% ‘ ac>
What next? ... is this coherent state able to represent the condensate?

Test example: ideal Bose gas — limit of a BE system without interactions
_ — h? 72 _ f
(H -uN )W) -Z(mk ﬂ)“kak\"’>
Z—ﬂagao‘LP> =0 for u=0

‘LIJ> a true eigenstate with € =0, [/ the same as for the partlclj\e[ number
conserving state ‘B> _‘ N,,0 ,0 K,0 K > (No !)—5 (ao) 0 ‘Vac>
/9




New vacuum and the shifted field operators

Does all that make sense? Yes: work in the full Fock space F rather than in its
fixed N sub-space H, This implies using the "grand Hamiltonian"

H -uN
Let us define the shifted field operator

by=a,-/N, b =al =N
_ AP 2/
[bo,b”:L bO‘LIJ>:O ... New vacuum ‘LP>—€ ‘ ac>

What next? ... is this coherent state able to represent the condensate?

Test example: ideal Bose gas — limit of a BE system without interactions
_ — h? 72 _ f
(H -uN )W) -Z(mk ﬂ)“z«“z«\%
Z—ﬂagao‘LP> =0 for u=0

‘ LIJ> a true eigenstate with € =0, [/ the same as for the partlclj\e[ number
conserving state ‘B> _‘ N,,0 ,0 K,0 K > (No !)—5 (ao) 0 ‘Vac>

Two different, but macroscopically equivalent possibilities. 80




General case: the approximate vacuum
H = [drg' o) (-2 A+V ) wr) + S [ dr de g oW DU G =g (r)

\/'Frial function ... a coherent state gé’(r —r')
y(r)|W)=%(r)|¥)
e should minimize the average grand energy
‘)N hould minimize th d
(WH =N |W) = [d'r () (~ 15 A+ V () - ) ¥ (r)
+L[@rdr @ WU - W)

This is precisely the energy functional of the Hartree type we met already

and theédler-Lagrange equation is the good old Gross-Pitaevski equation

h2
[—%A +V(r)+ g‘W(r)‘sz(r) = ,uQU(r)
with the normalization condition
N [n]=N = jd3 r“//(r)‘z
81




More about the approximate vacuum
Approximate vacuum ... a coherent state

@ (r)|W)=¥(r)|¥)

What is the OPDM?

(Wl ()W) = (W19 ()| @) =9/(r). (Wl (r)|9) =1 ()W) =" (1)

(r| o) = (@ @) = (W' @ (r)| W) =¥ (r)¥" ()

Full ODLRO with the normalization condition jd3 r‘QU(r)‘z =N

Explicit form of the coherent state

‘LIJ> = exp{ —%jd3 r‘QU(r)‘z} exp{“‘d3 r(ry' (r)} |vac)
(W) =1

NOTE: this is not a unitary transformation
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General case: the Bogolyubov transformation

Define the shifed field operators and the condensate as the?ew vacuum

7(r)=4(r) =9 (r). 7' (r)=0' (r) -9 (r
[n(r)n' (r)]=8(r=r). n(r)|%)=0

If we keep only the terms not more than quadratic in the new operators, the
‘a)yproximate quadratic Hamiltonian becomes

H = [dr ' () (-5 44V () - ) (o)
+£ (& m ({1 )" @) + 47" () + () () §

Now eliminate the anomalous terms by the&ogolyubov transformation.

It is required that, in terms of the new field operators,

H=>e&bb +E,

byobl | =8 [ Bysba | =0, | BLLBL =0
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General case: the Bogolyubov transformation

It is required that, in terms of the new field operators,

H = Zs b'b +E,

by.B) | =8 [ba,ba] 0, |b].b}|=0
This is achieved by the Bogolyubov transformation
1(r) = 2ty (1)by + v, (r)bg

. e
17" (r)=2.v,(r)b, +u,(r)b] with Id?’r{‘ua‘ _‘Va‘}‘

For u(r) and v(r) ... coupled Schrodinger-like Bogolyubov-de Gennes egs.

2m

2

( th+V(r)+2g\w () ,U)v(r)+g[‘l/*(r)] u(r)=-£0(r)

2m

(h2A+V(r)+2g‘QU \ ,uj )+g| ¥ (r ] V' (r)=+elu(r)




Detail: the mean-field for a homogeneous system

Before: minimize the energy functional with fixed particle number N, find the

chemical potential 1 afterwards

Now: minimize the grand energy functional with fixed chemical potential, find
the average particle number in the process
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Detail: the mean-field for a homogeneous system

Before: minimize the energy functional with fixed particle number A, find the
chemical potential 1 afterwards

Now: minimize the grand energy functional with fixed chemical potential, find
the average particle number in the process

Homogeneous system:
order parameter ¥ (r)=%¥ = const. = \/W =/n
(WH -uN |W) = [&r ¢ () (-2 A+ V ()~ )9 (1)
L [[drd e W e (g (r - )¢ (¥ (1)

=V x(-ule + L)
energy per unit volume D(QU )
(WIN W)= [¢r @ () = VW]

average particle density n ((,U )
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Detail: the mean-field for a homogeneous system
The GP equation reduces from differential to an algebraic one:

Z0(x)=0, ¥]=x

—2/,Ix+%g@rx320, ‘QU =0, ‘(,U = ﬂ, Dmin:—%g‘(ﬂ{ __H
max min g min 2g
p— :(//2. :E
n ‘ min gv/
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Detail: the mean-field for a homogeneous system
The GP equation reduces from differential to an algebraic one:

vl=

2 0(x)=

0,

max

—2,le+%g [4x° =0, ‘QU

1

min

=7 D=3l

min min

H
g

0.5}

Plot in relative units

\//'Iref /g
‘L'U‘ =P,

choose [ .; “/Jref
M= o

1ocus of the

minima

ref




11l
broken symmetry and quasi-averages




Zero temperature limit of the grand canonical ensemble

Q) — Z—l e_ﬁ(j‘[_/JW)

=7 aN>e"3(E“N‘”N) (aN|

= 27 YJoMe A (00 X oA (04

[

Picks up the correct ground state energy,

all ground states are taken with equal statistical weight

- | NORMAL

SYSTEMS | <

NON-DEGENERATE GROUND STATE

~ "ANOMALOUS"

DEGENERATE GROUND STATE
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Degenerate ground state

- | NORMAL NON-DEGENERATE GROUND STATE

SYSTEMS | <

~ "ANOMALOUS" DEGENERATE GROUND STATE

Characterized by a classical order parameter ...

Typical cause: a symmetry degeneracy

Everything depends on the system characteristic parameters
Ginsburg — Landau phenomenological model

E(Y)=a¥? +bp¥*

a>0 a<(
stable equilibrium metastable equilibrium
non-degenerate degenerate
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Degenerate ground state

- | NORMAL NON-DEGENERATE GROUND STATE

SYSTEMS | <

~ "ANOMALOUS" DEGENERATE GROUND STATE

Characterized by a classical order parameter ...

Typical cause: a symmetry degeneracy

Everything depends on the system characteristic parameters
Ginsburg — Landau phenomenological model

@
E(Y)=a¥? +bp¥*
a>0 a<(
stable equilibrium metastable equilibrium
non-degenerate degenerate
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H Rovnhovazna struktura molekul AB,

BF,

\|/

rovina F h rovina H h

U adiabaticka potencialni energie
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H Equilibrium structure of the AB, molekules

»

F plane

h

v

H :plane h

U adiabatic potential energy

stable equilibrium
non-degenerate
ground state

metastable equilibrium
degenerate
ground state
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H Equilibrium structure of the AB, molekules H

BF; . NH; -

»

F plane h H :plane h

v

U adiabatic potential energy

stable equilibrium metastable equilibrium
non-degenerate degenerate
ground state ground state
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“ Equiliorium structure of the AB; molekules H

@

Ammonia molecule
pyramidal molecule.
two minima of
potential energy
separated by a barrier.

Different from a typical
extended system:

¥ Small system:
quantum barrier &
tunneling
32 Discrete symmetry

broken:
discrete set of equivalent

~

NH,

equilibria states
\>.
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Broken contfinouous symmetries in extended systems

Three popular cases

Isotropic Atomic crystal . o
System p oy Bosonic gas/liquid
ferromagnet lattice
. . Heisenberg spin Distinguishable | Bosons with short
Hamiltonian . . . . .
Hamiltonian atoms with 1int. range mteractions
3D rotational 1n . Global gauge
Symmetry : Translational : BaUS
spin space invariance
homogeneous eriodic macroscopic
Order parameter SENCe p : P
magnetization particle density wave function
Symmetry external magnetic "empty lattice" particle
breaking field field potential source/drain
Goldstone modes magnons acoustic phonons sound waves

For a nearly exhaustive list see the PWA book of 1983




Bose condensate - degeneracy of the ground state

The coherent ground state

mean field energy E(‘»U) = (_:U“’U‘z +%g‘gu‘4)

order parameter W = ,/<NO> 'Y~ any from (0,27)  degeneracy
1 2 . . .
Ly N @ %4, genuinely different
mf ground state ‘QU > =€ 2 FAR VaC> for different @

Selection rule

<a0 >¢ = “’U‘em %0
<a0> =quﬂ<ao>¢ =0

average over all degenerate states

"Mexican hat" 98




Symmeitry breaking — removal of the degeneracy

The coherent ground state

mean field energy E(‘»U) = (_:U“’U‘z +%g‘gu‘4)

order parameter W = ,/<NO> 'Y~ any from (0,27)  degeneracy
1 2 . . .
Ly N @ %4, genuinely different
mf ground state ‘QU > =€ 2 FAR VaC> for different @

Symmetry broken by a small
perturbation picking up one @

H = UN -
H — UN -/ (ag e'?+aq, e_w)

particle number NOT conserved

"Mexican hat" 99




Symmeitry breaking — removal of the degeneracy

The coherent ground state

mean field energy E(‘»U) = (_:U“’U‘z +%g‘gu‘4)

order parameter W = ,/<NO> 'Y~ any from (0,27)  degeneracy
1 2 . . .
Ly N @ %4, genuinely different
mf ground state ‘QU > =€ 2 FAR VaC> for different @

Symmetry broken by a small
perturbation picking up one @

H = UN -
H — UN -/ (ag e'P+a, e_w)

particle number NOT conserved

ForA - 0

one particular phase selected

"Mexican hat" 100




How the symmetry breaking works — ideal BE gas

Without interactions, the ground level is uncoupled from the excited levels:
H = UN -/ (ag e'%+a, e_w)

. _: 2
=—Uaa, - A (ag e'Y+a, e 140) + Z:;l—m(k2 —,u) ala,

k#0
~ —Uala, - A (ag e'Y+aq, e_1¢)

The control parameter is the chemical potential u, but it will be adjusted to yield
a fixed average particle number in the condensate.

Transformation:

—,UaTa -/ (aT e'?+q e_w) - —,U(aTa +— A elg’ a, +—/] e_i%a j
0 0
070 0 0 070

,u(aoao Na] - /|*a0) = —,u((ag —/I*)(ao —/I)—/l*/l)
~p4(bib, = A°A)

101




How the symmetry breaking works — ideal BE gas

Now we determine the many-body ground state

~pu(bby ~AA)WY=E|W),  |h =a,-A, A=-Aue?, p<o

The lowest energy corresponds to
b, “-IJ> =0, 1e. q, “-IJ> = /I‘ l-IJ> ... coherent state
)
NA=(W|ala,|W)=N,, A=N,e"?
E = puN' /N = UN, pu=-1/ N,

The control parameter is the chemical potential , but it will be adjusted to yield
a fixed average particle number in the condensate.

Infinitesimal symmetry breaking field A - 0
A - 0 with N, fixed:

,U—)O_O
E - 0

)
N=N,e?, |W) fixed 07




How the symmetry breaking works — ideal BE gas

Now we determine the many-body ground state

~p(bjby, = A N)|W) = E| W),

)
,=a, =N, A==Au"'e?, u<o

The lowest energy corresponds to

b, |W)=0, ie. a,|W)=A|W) .

.. coherent state

)
NN=(W|ala,|W)=N,, A=N,e"?
E = puN' /N = UN, pu=-1/yN,

The control parameter is the chemical potential , but it will be adjusted to yield
a fixed average particle number in the condensate.

Infinitesimal symmetry breaking field A — 0

A - 0 with N, fixed:

,U—)O_O
E - 0

)
N=N,e?, |W) fixed

(. The coherent state is the exact
ground state for the ideal BE gas
* The order parameter picks up the
phase from the perturbing field
 The order of limits: first A — 0, only
then the thermodynamic limit N, — oo
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The end




