ROBUST AND NONPARAMETRIC METHODS

Jana Jurečková

Contents

1 Rank tests in linear regression model 5
1.1 Properties of ranks and order statistics 5
1.1.1 The distribution of $\mathbf{X}_{(.)}$and of \mathbf{R} : 5
1.1.2 Marginal distributions of the random vectors \mathbf{R} and $\mathbf{X}_{(.)}$under \mathbf{H}_{0} : 6
1.2 Locally most powerful rank tests 7
1.3 Structure of the locally most powerful rank tests of \mathbf{H}_{0} : 8
1.3.1 Special cases 9
1.4 Rank tests for simple regression model with nonrandom regressors 11
1.4.1 Rank tests for $\mathbf{H}_{0}^{(1)}$ 12
1.4.2 Rank tests for $\mathbf{H}_{0}^{(2)}$ 14
1.4.3 Example 16
1.5 Rank tests for some multiple linear regression models 17
1.5.1 Rank tests for $\mathbf{H}_{0}^{(1)}$ 17
1.5.2 Rank tests for $\mathbf{H}_{0}^{(2)}$ 19
1.6 Rank estimation
in simple linear regression models 20
1.6.1 Estimation of the slope β of the regression line 20
1.6.2 Estimation in multiple regression model 22
1.7 Aligned rank tests about the intercept 22
1.7.1 Regression line 22
1.7.2 Multiple regression model 24

Chapter 1

Rank tests in linear regression model

1.1 Properties of ranks and order statistics

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ be the vector of observations; denote $X_{n: 1} \leq X_{n: 2} \ldots \leq X_{n: n}$ the components of \mathbf{X} ordered according to increasing magnitude. The vector $\mathbf{X}_{(.)}=\left(X_{n: 1}, \ldots, X_{n: n}\right)$ is called the vector of order statistics and $X_{n: i}$ is called the i th order statistic.
Assume that the components of \mathbf{X} are different and define the rank of X_{i} as $R_{i}=$ $\sum_{j=1}^{n} I\left[X_{j} \leq X_{i}\right]$. Then the vector \mathbf{R} of ranks of \mathbf{X} takes on the values in the set \mathcal{R} of n ! permutations $\left(r_{1}, \ldots, r_{n}\right)$ of $(1, \ldots, n)$.

1.1.1 The distribution of $X_{(.)}$and of \mathbf{R} :

Lemma 1.1.1 If \mathbf{X} has density $p_{n}\left(x_{1}, \ldots, x_{n}\right)$, then the vector $\mathbf{X}_{(.)}$of order statistics has the distribution with the density

$$
\bar{p}\left(x_{n: 1}, \ldots, x_{n: n}\right)=\left\{\begin{array}{l}
\sum_{r \in \mathcal{R}} p\left(x_{n: r_{1}}, \ldots, x_{n: r_{n}}\right) \quad \ldots x_{n: 1} \leq \ldots \leq x_{n: n} \\
0 \quad \text { otherwise } .
\end{array}\right.
$$

(ii) The conditional distribution of R given $\mathbf{X}_{(.)}=\mathbf{x}_{(.)}$has the form

$$
\mathbb{P}\left(R=r \mid \mathbf{X}_{(.)}=\mathbf{x}_{(.)}\right)=\frac{p\left(x_{n: r_{1}}, \ldots x_{n: r_{n}}\right)}{\bar{p}\left(x_{n: 1}, \ldots, x_{n: n}\right)}
$$

for any $r \in \mathcal{R}$ and any $x_{n: 1} \leq \ldots \leq x_{n: n}$.

Proof. For any Borel set $B \in \mathcal{X}_{\text {(.) }}$ should hold

$$
\begin{aligned}
& \mathbb{P}\left(\mathbf{X}_{(\cdot)} \in B\right)=\sum_{r \in \mathcal{R}} \mathbb{P}\left(\mathbf{X}_{(\cdot)} \in B, R=r\right)=\sum_{r \in \mathcal{R}} \int_{\left.\mathbf{x}_{(\cdot)}\right) \in B, R=r} \ldots \int p\left(x_{1}, \ldots, x_{n}\right) d x_{1}, \ldots, d x_{n} \\
& =\sum_{r \in \mathcal{R}} \int_{B} \ldots \int p\left(x_{n: r_{1}}, \ldots, x_{n: r_{n}}\right) d x_{n: 1}, \ldots, x_{n: n}=\int_{B} \ldots \int \bar{p}\left(x_{n: 1}, \ldots, x_{n: n}\right) d x_{n: 1}, \ldots, x_{n: n},
\end{aligned}
$$

what proves (i). Similarly,

$$
\begin{aligned}
& \mathbb{P}\left(\mathbf{X}_{(.)} \in B, R=r\right)=\int_{B} \ldots \int p\left(x_{n: r_{1}}, \ldots, x_{n: r_{n}}\right) d x_{n: 1}, \ldots, d x_{n: n} \\
& =\int_{B} \ldots \int \frac{p\left(x_{n: r_{1}}, \ldots, x_{n: r_{n}}\right)}{\bar{p}\left(x_{n: 1}, \ldots, x_{n: n}\right)} \bar{p}\left(x_{n: 1}, \ldots, x_{n: n}\right) d x_{n: 1}, \ldots, d x_{n: n} \\
& =\int_{B} \ldots \int \mathbb{P}\left(R=r \mid \mathbf{X}_{(.)}=\mathbf{x}_{(.)}\right) \bar{p}\left(x_{n: 1}, \ldots, x_{n: n}\right) d x_{n: 1}, \ldots, d x_{n: n}
\end{aligned}
$$

what proves (ii).
We say that the random vector \mathbf{X} satisfies the hypothesis of randomness \mathbf{H}_{0}, if it has a probability distribution with density of the form

$$
p(\mathbf{x})=\prod_{i=1}^{n} f\left(x_{i}\right), \mathbf{x} \in \mathbb{R}^{n}
$$

where f is an arbitrary one-dimensional density. Otherwise speaking, \mathbf{X} satisfies the hypothesis of randomness provided its components are a random sample from an absolutely continuous distribution. We say that the random vector \mathbf{X} satisfies the hypothesis of exchangeability \mathbf{H}_{*}, if

$$
p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{r_{1}}, \ldots, x_{r_{n}}\right)
$$

for every permutation $\left(r_{1}, \ldots, r_{n}\right)$ of $1, \ldots, n$. If \mathbf{X} satisfies \mathbf{H}_{0}, then it obviously satisfies \mathbf{H}_{*}. The following Lemma follows from Lemma 1.1.1.

Lemma 1.1.2 If \mathbf{X} satisfies \mathbf{H}_{0} or \mathbf{H}_{*}, then $\mathbf{X}_{(.)}$and \mathbf{R} are independent, the vector of ranks \mathbf{R} has the uniform discrete distribution

$$
\mathbb{P}(\mathbf{R}=r)=\frac{1}{n!}, r \in \mathcal{R}
$$

and the distribution of $\mathbf{X}_{(.)}$has the density

$$
\bar{p}\left(x_{n: 1}, \ldots, x_{n: n}\right)= \begin{cases}n!p\left(x_{n: 1}, \ldots, x_{n: n}\right) & \ldots x_{n: 1} \leq \ldots \leq x_{n: n} \\ 0 & \ldots \text { otherwise }\end{cases}
$$

1.1.2 Marginal distributions of the random vectors R and $X_{(.)}$ under \mathbf{H}_{0} :

Lemma 1.1.3 Let \mathbf{X} satisfy the hypothesis \mathbf{H}_{0}. Then
(i) $\operatorname{Pr}\left(R_{i}=j\right)=\frac{1}{n} \forall i, j=1, \ldots, n$.
(ii) $\operatorname{Pr}\left(R_{i}=k, R_{j}=m\right)=\frac{1}{n(n-1)}$
for $1 \leq i, j, k, m \leq n, i \neq j, k \neq m$.
(iii) $\mathbb{E} R_{i}=\frac{n+1}{2}, i=1, \ldots, n$.
(iv) $\operatorname{var} R_{i}=\frac{n^{2}-1}{12}, i=1, \ldots, n$.
(v) $\operatorname{cov}\left(R_{i}, R_{j}\right)=-\frac{n+1}{12}, 1 \leq i, j \leq n, i \neq j$.
(vi) If \mathbf{X} has density $p\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f\left(x_{i}\right)$, then $X_{n: k}$ has the distribution with density

$$
f_{(n)}(x)=n\binom{n-1}{k-1}(F(x))^{k-1}(1-F(x))^{n-k} f(x), \quad x \in \mathbb{R}^{1}
$$

where $F(x)$ is the distribution function of X_{1}, \ldots, X_{n}.
(vii) If \mathbf{X} has uniform $R[0,1]$ distribution, then $X_{n: i}$ has beta $B(i, n-i+1)$ distribution with the expectation and variance

$$
\mathbb{E} X_{n: i}=\frac{i}{n+1}, \quad \text { Var } X_{n: i}=\frac{i(n-i+1)}{(n+1)^{2}(n+2)}
$$

Proof. Lemma follows immediately from Lemma 1.1.2.

1.2 Locally most powerful rank tests

We want to test a hypothesis of randomness \mathbf{H}_{0} on the distribution of \mathbf{X}. The rank test is characterized by test function $\Phi(\mathbf{R})$. The most powerful rank α-test of \mathbf{H}_{0} against a simple alternative $\mathbf{K}:\{Q\}$ [that \mathbf{X} has the fixed distribution $Q]$ follows directly from the Neyman-Pearson Lemma:

$$
\Phi(r)= \begin{cases}1 & \ldots n!Q(R=r)>k_{\alpha} \\ 0 & \ldots n!Q(R=r)<k_{\alpha} \\ \gamma & \ldots n!Q(R=r)=k_{\alpha}, r \in \mathcal{R}\end{cases}
$$

where k_{α} and γ are determined so that

$$
\left.\#\left\{r: n!Q(R=r)>k_{\alpha}\right)\right\}+\gamma \#\left\{r: n!Q(R=r)=k_{\alpha}\right\}=n!\alpha, 0<\alpha<1
$$

If we want to test against a composite alternative and the uniformly most powerful rank tests do not exist, then we look for a rank test, most powerful locally in a neighborhood of the hypothesis.

Definition 1.2.1 Let $d(Q)$ be a measure of distance of alternative $Q \in K$ from the hypothesis \mathbf{H}. The α-test Φ_{0} is called the locally most powerful in the class \mathcal{M} of α-tests of \mathbf{H} against \mathbf{K} if, given any other test $\Phi \in \mathcal{M}$, there exists $\varepsilon>0$ such that the power-functions of Φ_{0} and Φ satisfy the inequality

$$
\beta_{\Phi_{0}}(Q) \geq \beta_{\Phi}(Q) \quad \forall Q \quad \text { satisfying } \quad 0<d(Q)<\varepsilon
$$

1.3 Structure of the locally most powerful rank tests of H_{0} :

Theorem 1.3.1 Let A be a class of densities, $A=\{g(x, \theta): \theta \in \mathcal{J}\}$ such that

$$
\begin{aligned}
& \mathcal{J} \subset \mathbb{R}^{1} \text { is an open interval, } \mathcal{J} \ni 0 . \\
& g(x, \theta) \text { is absolutely continuous in } \theta \text { for almost all } x .
\end{aligned}
$$

Moreover, let for almost all x there exist the limit

$$
\begin{aligned}
& \dot{g}(x, 0)=\lim _{\theta \rightarrow 0} \frac{1}{\theta}[g(x, \theta)-g(x, 0)] \\
& \quad \text { and } \lim _{\theta \rightarrow 0} \int_{-\infty}^{\infty}|\dot{g}(x, \theta)| d x=\int_{-\infty}^{\infty}|\dot{g}(x, 0)| d x .
\end{aligned}
$$

Consider the alternative $\mathbf{K}=\left\{q_{\Delta}: \Delta>0\right\}$, where

$$
q_{\Delta}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} g\left(x_{i}, \Delta c_{i}\right)
$$

c_{1}, \ldots, c_{n} given numbers. Then the test with the critical region

$$
\sum_{i=1}^{n} c_{i} a_{n}\left(R_{i}, g\right) \geq k
$$

is the locally most powerful rank test of \mathbf{H}_{0} against \mathbf{K} on the significance level $\alpha=$ $P\left(\sum_{i=1}^{n} c_{i} a_{n}\left(R_{i}, g\right) \geq k\right)$, where P is any distribution satisfying \mathbf{H}_{0},

$$
a_{n}(i, g)=\mathbb{E}\left[\frac{\dot{g}\left(X_{n: i}, 0\right)}{g\left(X_{n: i}, 0\right)}\right], i=1, \ldots, n \quad \text { are the scores }
$$

where $X_{n: 1}, \ldots, X_{n: n}$ are the order statistics corresponding to the random sample of size n from the population with the density $g(x, 0)$.

Proof. Of Q_{Δ} is the probability distribution with the density q_{Δ}, then, for any permutation $\mathbf{r} \in \mathcal{R}$,

$$
\begin{equation*}
\lim _{\Delta \rightarrow 0} \frac{1}{\Delta}\left[n!Q_{\Delta}(\mathbf{R}=\mathbf{r})-1\right]=\sum_{i=1}^{n} c_{i} a_{n}\left(r_{i}, g\right) \tag{1.3.1}
\end{equation*}
$$

If (1.3.1) is true, then there exists an $\varepsilon>0$ such that

$$
\sum_{i=1}^{n} c_{i} a_{n}\left(r_{i}, g\right)>\sum_{i=1}^{n} c_{i} a_{n}\left(r_{i}^{\prime}, g\right) \Longrightarrow Q_{\Delta}(\mathbf{R}=\mathbf{r})>Q_{\Delta}\left(\mathbf{R}=\mathbf{r}^{\prime}\right)
$$

for all $\Delta \in(0, \varepsilon)$ and for different $\mathbf{r}, \mathbf{r}^{\prime} \in \mathcal{R}$; then we reject Q_{Δ} for $\mathbf{r} \in \mathcal{R}$ such that $\sum_{i=1}^{n} c_{i} a_{n}\left(r_{i}, g\right)>k$ for a suitable k. So we must prove (1.3.1), what we shall do as
follows: We can write

$$
\begin{aligned}
& \frac{1}{\Delta}\left[Q_{\Delta}(\mathbf{R}=\mathbf{r})-Q_{0}(\mathbf{R}=\mathbf{r}]=\int_{\mathbf{R}=\mathbf{r}} \ldots \int \frac{1}{\Delta}\left[\prod_{i=1}^{n} g\left(x_{i}, \Delta c_{i}\right)-\prod_{i=1}^{n} g\left(x_{i}, 0\right)\right] d x_{1}, \ldots, d x_{n}\right. \\
& =\sum_{i=1}^{n} \int_{\mathbf{R}=\mathbf{r}} \ldots \int \frac{1}{\Delta}\left(g\left(x_{i}, \Delta c_{i}\right)-g\left(x_{i}, 0\right)\right) \prod_{j=1}^{i-1} g\left(x_{j}, \Delta c_{j}\right) \prod_{k=i+1}^{n} g\left(x_{k}, 0\right) d x_{1}, \ldots, d x_{n}
\end{aligned}
$$

where we used the identity

$$
\prod_{i=1}^{n} A_{i}-\prod_{j=1}^{n} B_{j}=\sum_{i=1}^{n}\left(A_{i}-B_{i}\right) \prod_{j=1}^{i-1} A_{j} \prod_{k=i+1}^{n} B_{k}
$$

If $c_{i}>0$, then

$$
\begin{aligned}
& \limsup _{\Delta \rightarrow 0} \int_{\mathbf{R}=\mathbf{r}} \ldots \int \frac{1}{\Delta}\left(g\left(x_{i}, \Delta c_{i}\right)-g\left(x_{i}, 0\right)\right) \prod_{j=1}^{i-1} g\left(x_{j}, \Delta c_{j}\right) \prod_{k=i+1}^{n} g\left(x_{k}, 0\right) d x_{1}, \ldots, d x_{n} \\
& \leq c_{i} \int_{\mathbf{R}=\mathbf{r}} \ldots \int\left|\dot{g}\left(x_{i}, 0\right)\right| \prod_{j \neq i} g\left(x_{j}, 0\right) d x_{1}, \ldots, d x_{n},
\end{aligned}
$$

analogously for $c_{i}<0$. This, combining with the Fatou lemma, leads to

$$
\begin{aligned}
& \lim _{\Delta \rightarrow 0} \sum_{i=1}^{n} \int_{\mathbf{R}=\mathbf{r}} \ldots \int \frac{1}{\Delta}\left(g\left(x_{i}, \Delta c_{i}\right)-g\left(x_{i}, 0\right)\right) \prod_{j=1}^{i-1} g\left(x_{j}, \Delta c_{j}\right) \prod_{k=i+1}^{n} g\left(x_{k}, 0\right) d x_{1}, \ldots, d x_{n} \\
& =\sum_{i=1}^{n} \int_{\mathbf{R}=\mathbf{r}} \ldots \int c_{i} \dot{g}\left(x_{i}, 0\right) \prod_{j \neq i} g\left(x_{j}, 0\right) d x_{1}, \ldots, d x_{n} \\
& \sum_{i=1}^{n} c_{i} \int_{\mathbf{R}=\mathbf{r}} \ldots \int \frac{\dot{g}\left(x_{i}, 0\right)}{g\left(x_{i}, 0\right)} \prod_{j=1}^{n} g\left(x_{j}, 0\right) d x_{1}, \ldots, d x_{n}=\frac{1}{n!} \sum_{i=1}^{n} c_{i} \mathbb{E}\left[\left.\frac{\dot{g}\left(X_{i}, 0\right)}{g\left(X_{i}, 0\right)} \right\rvert\, \mathbf{R}=\mathbf{r}\right] \\
& =\frac{1}{n!} \sum_{i=1}^{n} c_{i} a_{n}\left(r_{i}, g\right) .
\end{aligned}
$$

regarding that $g(x, 0)=0$ and $\dot{g}(x, 0) \neq 0$ can happen simultaneously only on the set of measure 0 . This implies (1.3.1).

1.3.1 Special cases

I. Two-sample alternative of the shift in location: $\mathbf{K}_{1}:\left\{q_{\Delta}: \Delta>0\right\}$ where

$$
q_{\Delta}\left(x_{1}, \ldots, x_{N}\right)=\prod_{i=1}^{m} f\left(x_{i}\right) \prod_{i=m+1}^{N} f\left(x_{i}-\Delta\right)
$$

with f being a fixed absolutely continuous density such that $\int_{-\infty}^{\infty}\left|f^{\prime}(x)\right| d x<\infty$. Then the locally most powerful rank α-test of \mathbf{H}_{0} against \mathbf{K} has the critical region

$$
\sum_{i=m+1}^{N} a_{N}\left(R_{i}, f\right) \geq k
$$

where k satisfies the condition $P\left(\sum_{i=m+1}^{N} a_{N}\left(R_{i}, f\right) \geq k\right)=\alpha, P \in \mathbf{H}_{0}$ and

$$
a_{N}(i, f)=\mathbb{E}\left[-\frac{f^{\prime}\left(X_{N: i}\right)}{f\left(X_{N: i}\right)}\right], i=1, \ldots, N
$$

where $X_{N: 1}<\ldots<X_{N: N}$ are the order statistics corresponding to the sample of size N from the distribution with the density f. The scores may be also written as

$$
a_{N}(i, f)=\mathbb{E} \varphi\left(U_{N: i}, f\right), i=1, \ldots, N
$$

where $\varphi(u, f)=-\frac{f^{\prime}\left(F^{-1}(u)\right)}{f\left(F^{-1}(u)\right)}, 0<u<1$ and $U_{N: 1}, \ldots, U_{N: N}$ are the order statistics corresponding to the sample of size N from the uniform $R(0,1)$ distribution. Another form of the scores is

$$
a_{N}(i, f)=N\binom{N-1}{i-1} \int_{-\infty}^{\infty} f^{\prime}(x) F^{i-1}(x)(1-F(x))^{N-i} d x .
$$

Remark 1.3.1 The computation of the scores is difficult for some densities; if there are no tables of the scores at disposal, they are often replaced by the approximate scores

$$
a_{N}(i, f)=\varphi\left(\frac{i}{N+1}\right)=\varphi\left(\mathbb{E} U_{N: i}, f\right), i=1, \ldots, N, \quad i=1, \ldots, N .
$$

The asymptotic critical values coincide for both types of scores.
II. Alternative of simple linear regression: $\mathbf{K}_{2}=\left\{q_{\Delta}: \Delta>0\right\}$ where $q_{\Delta}\left(x_{1}, \ldots, x_{n}\right)=$ $\prod_{i=1}^{n} f\left(x_{i}-\Delta c_{i}\right)$ with a fixed absolutely continuous density f and with given constants $c_{1}, \ldots, c_{n}, \sum_{i=1}^{n} c_{i}^{2}>0$. Then the locally most powerful rank α-test has the critical region

$$
\begin{equation*}
\sum_{i=1}^{n} c_{i} a_{n}\left(R_{i}, f\right) \geq k \tag{1.3.2}
\end{equation*}
$$

with the the same scores as in case I, and with k determined by the condition

$$
\mathbb{P}\left(\sum_{i=1}^{n} c_{i} a_{n}\left(R_{i}, f\right)>k\right)+\gamma \mathbb{P}\left(\sum_{i=1}^{n} c_{i} a_{n}\left(R_{i}, f\right)>k\right)=\alpha .
$$

In the practice we most often use the test with the Wilcoxon scores: Put $\varphi(u)=u-\frac{1}{2}$ and reject \mathbf{H}_{0} provided

$$
W_{n}=\sum_{i=1}^{n} c_{i} R_{i}>k, \text { where } k \text { is such that }
$$

$$
P\left(\sum_{i=1}^{n} c_{i} R_{i}>k \mid \mathbf{H}_{0}\right)+\gamma P\left(\sum_{i=1}^{n} c_{i} R_{i}=k \mid \mathbf{H}_{0}\right)=\alpha, 0 \leq \gamma<1 .
$$

This test is the locally most powerful against \mathbf{K}_{2} with F logistic with the density

$$
f(x)=\frac{\mathrm{e}^{-x}}{\left(1+\mathrm{e}^{-x}\right)^{2}}, x \in \mathbb{R}
$$

but is rather efficient also for other alternatives. For large n we use the normal approximation of W_{n} : If $n \rightarrow \infty$, then W_{n} has asymptotically normal distribution under \mathbf{H}_{0} in the following sense:

$$
\lim _{n \rightarrow \infty} P_{H_{0}}\left\{\frac{W_{n}-\mathbb{E} W_{n}}{\sqrt{\operatorname{var} W_{n}}}<x\right\}=\Phi(x), x \in \mathbb{R}^{1}
$$

where Φ is the standard normal distribution function.
To be able to use the normal approximation, we must know the expectation and variance of W_{n} under \mathbf{H}_{0}. The following Lemma gives the expectation and the variance of a more general linear rank statistic, covering the Wilcoxon as well other rank tests.

Lemma 1.3.1 Let the random vector $\left(R_{1}, \ldots, R_{n}\right)$ have the discrete uniform distribution on the set \mathcal{R} of all permutations of numbers $1, \ldots, n$, i.e. $\mathbb{P}(\mathbf{R}=\mathbf{r})=\frac{1}{n!}, \mathbf{r} \in \mathcal{R}$; let c_{1}, \ldots, c_{N} and $a_{1}=a(1), \ldots, a_{n}=a(n)$ are arbitrary constants. Then the expectation and variance of the linear statistic $S_{n}=\sum_{i=1}^{n} c_{i} a\left(R_{i}\right)$ are

$$
\begin{gathered}
\mathbb{E} S_{N}=\frac{1}{n} \sum_{i=1}^{n} c_{i} \sum_{j=1}^{n} a_{j} \\
\operatorname{var} S_{n}=\frac{1}{n-1} \sum_{i=1}^{n}\left(c_{i}-\bar{c}\right)^{2} \sum_{j=1}^{n}\left(a_{j}-\bar{a}\right)^{2}
\end{gathered}
$$

where $\bar{c}=\frac{1}{n} \sum_{i=1}^{n} c_{i}, \quad \bar{a}=\frac{1}{n} \sum_{i=1}^{n} a_{i}$.
Proof. The proposition follows from the distribution of \mathbf{R} under \mathbf{H}_{0}.

1.4 Rank tests for simple regression model with nonrandom regressors

Let X_{1}, \ldots, X_{N} be independent random variables with continuous distribution funtions F_{1}, \ldots, F_{N}, where

$$
F_{i}(x)=F\left(x-\beta_{0}-\beta c_{i}\right), \quad i=1, \ldots, N, x \in \mathbb{R}
$$

F is continuous, $\mathrm{c}_{N}=\left(c_{1}, \ldots, c_{n}\right)^{\prime}$ is a vector of (known) regression constants (not all equal), and (β_{0}, β) are unknown parameters; we call β_{0} an intercept of the regression line and β is called the regression coefficient. Our first hypothesis is that there is no regression,

$$
\begin{equation*}
\mathbf{H}_{0}^{(1)}: \beta=0 \text { against } \mathbf{K}^{(1)}: \beta \neq 0 \text { or } \mathbf{K}_{+}^{(1)}: \beta>0 \tag{1.4.1}
\end{equation*}
$$

where β_{0} is considered as a nuisance parameter. We may be also interested in the joint hypothesis

$$
\begin{equation*}
\mathbf{H}_{0}^{(2)}:\left(\beta_{0}, \beta\right)=0 \text { against } \mathbf{K}^{(2)}:\left(\beta_{0}, \beta\right) \neq 0 \tag{1.4.2}
\end{equation*}
$$

The third hypothesis is

$$
\begin{equation*}
\mathbf{H}_{0}^{(3)}: \beta_{0}=0 \text { against } \mathbf{K}^{(3)}: \beta_{0} \neq 0 \text { or } \mathbf{K}_{+}^{(3)}: \beta_{0}>0, \tag{1.4.3}
\end{equation*}
$$

where β is treated as a nuisance parameter.
In either case there exists a distribution-free rank test, whose critical values do not depend on F. We can also consider $\beta=\beta^{*}$ or $\left(\beta_{0}, \beta\right)=\left(\beta_{0}^{*}, \beta^{*}\right)$; then we work with $X_{i}^{*}=X_{i}-\beta_{0}^{*}-\beta^{*} c_{i}, i=1, \ldots, N$.

1.4.1 Rank tests for $\mathbf{H}_{0}^{(1)}$

Let $\mathbf{R}_{N}=\left(R_{N 1}, \ldots, R_{N N}\right)$ be the ranks of X_{1}, \ldots, X_{N}. Choose some nondecreasing score function $\varphi:(0,1) \mapsto \mathbb{R}$ and put

$$
\begin{equation*}
S_{N}=\sum_{i=1}^{N}\left(c_{i}-\bar{c}_{N}\right) a_{N}\left(R_{N i}\right), \quad \bar{c}_{N}=\frac{1}{N} \sum_{i=1}^{N} c_{i} \tag{1.4.4}
\end{equation*}
$$

where the scores have the form

$$
\begin{equation*}
a_{N}(i)=\mathbb{E} \varphi\left(U_{N: i}\right) \quad \text { or } \quad \varphi\left(\frac{i}{N+1}\right), \quad 1 \leq i \leq N \tag{1.4.5}
\end{equation*}
$$

where $U_{N: 1} \leq \ldots U_{N: N}$ are the order statistics corresponding to the sample U_{1}, \ldots, U_{N} from the uniform $R(0,1)$ distribution. Under $\mathbf{H}_{0}^{(1)}$, it holds $F_{1}(x)=\ldots=F_{N}(x)=$ $F\left(x-\beta_{0}\right)=F_{0}(x)$ (say), where F_{0} is continuous. Because the ties between X_{1}, \ldots, X_{N} can happen with probability 0 , we have

$$
\mathbb{P}\left\{\mathbf{R}_{N}=\mathbf{r}_{N} \mid \mathbf{H}_{0}^{(1)}\right\}=\frac{1}{N!} \quad \forall \mathbf{r}_{N} \in \mathcal{R}_{N} \quad \text { (permutations) }
$$

hence

$$
\begin{gathered}
\mathbb{P}\left\{R_{N i}=k \mid \mathbf{H}_{0}^{(1)}\right\}=\frac{1}{N} \quad \forall i, k, 1 \leq i, k \leq N \\
\mathbb{P}\left\{R_{N i}=k, R_{N j}=\ell \mid \mathbf{H}_{0}^{(1)}\right\}=\frac{1}{N(N-1)} \quad \forall i, j, k, \ell, 1 \leq i \neq j, k \neq \ell \leq N .
\end{gathered}
$$

Hence,

$$
\begin{aligned}
& \mathbb{E}\left\{S_{N} \mid \mathbf{H}_{0}^{(1)}\right\}=\sum_{i=1}^{N}\left(c_{i}-\bar{c}_{N}\right) \mathbb{E}\left\{a_{N}\left(R_{N i}\right) \mid \mathbf{H}_{0}^{(1)}\right\}=\frac{1}{N} \sum_{i=1}^{N}\left(c_{i}-\bar{c}_{N}\right) \sum_{j=1}^{N} a_{N}(i)=0, \\
& \operatorname{Var}\left\{S_{N} \mid \mathbf{H}_{0}^{(1)}\right\}=\frac{1}{N-1} \sum_{i=1}^{N}\left(c_{i}-\bar{c}_{N}\right)^{2} \sum_{j=1}^{N}\left(a_{N}(i)-\bar{a}_{N}\right)^{2}
\end{aligned}
$$

The distribution of S_{N} under $\mathbf{H}_{0}^{(1)}$ does not depend on F and on β_{0}, hence we reject $\mathbf{H}_{0}^{(1)}$ in favor of $\left\{\mathbf{K}_{+}^{(1)}: \beta>0\right\}$ when $S_{N}>k_{\alpha}^{+}$and reject with probability γ when $S_{N}=k_{\alpha}^{+}$, where k_{α}^{+}is determined so that

$$
\mathbb{P}\left\{S_{N}>k_{\alpha}^{+} \mid \mathbf{H}_{0}^{(1)}\right\}+\gamma \mathbb{P}\left\{S_{N}=k_{\alpha}^{+} \mid \mathbf{H}_{0}^{(1)}\right\}=\alpha
$$

and $\alpha=0.05$ or 0.01 , for instance. Similarly, we reject $\mathbf{H}_{0}^{(1)}$ in favor of $\left\{\mathbf{K}^{(1)}: \beta \neq 0\right\}$ when $\left|S_{N}\right|>k_{\alpha}$ and reject with probability $\gamma \in[0,1)$ when $\left|S_{N}\right|=k_{\alpha}$, where k_{α} is determined so that

$$
\mathbb{P}\left\{\left|S_{N}\right|>k_{\alpha} \mid \mathbf{H}_{0}^{(1)}\right\}+\gamma \mathbb{P}\left\{\left|S_{N}\right|=k_{\alpha} \mid \mathbf{H}_{0}^{(1)}\right\}=\alpha .
$$

For small N we can calculate the critical values k_{α}^{+}and k_{α}; but for large N we must use an asymptotic approximation. The asymptotic distribution of S_{N} under $\mathbf{H}_{0}^{(1)}$ is based on the following theorems, proved by Hájek (1961):

Theorem 1.4.1 Let $\mathbf{R}_{N}=\left(R_{N 1}, \ldots, R_{N N}\right)$ be a random vector such that

$$
\mathbb{P}\{\mathbf{R}=\mathbf{r}\}=\frac{1}{N!} \quad \forall \mathbf{r} \in \mathcal{R}
$$

and let $\left\{a_{N}(i), 1 \leq i \leq N\right\}$ and $\left\{c_{N}(i), 1 \leq i \leq N\right\}$ be two sequences of real numbers such that, as $N \rightarrow \infty$,

$$
\begin{equation*}
\max _{1 \leq i \leq N} \frac{\left(a_{N}(i)-\bar{a}_{N}\right)^{2}}{\sum_{j=1}^{N}\left(a_{N}(j)-\bar{a}_{N}\right)^{2}} \rightarrow 0, \quad \max _{1 \leq i \leq N} \frac{\left(c_{N}(i)-\bar{c}_{N}\right)^{2}}{\sum_{j=1}^{N}\left(c_{N}(j)-\bar{c}_{N}\right)^{2}} \rightarrow 0 \quad \text { (Noether condition). } \tag{1.4.6}
\end{equation*}
$$

Then

$$
\mathbb{P}\left\{\frac{S_{N}-\mathbb{E} S_{N}}{\sqrt{\operatorname{Var} S_{N}}} \leq x\right\} \rightarrow \Phi(x) \quad \text { as } \quad N \rightarrow \infty \quad \forall x \in \mathbb{R}
$$

where Φ is the standard normal distribution function, if and only if, for every $\varepsilon>0$,

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left\{\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \kappa_{N, i j}^{2} I\left[\left|\kappa_{N, i j}\right|>\varepsilon\right]\right\}=0 \quad \text { (Lindeberg condition) } \tag{1.4.7}
\end{equation*}
$$

and

$$
\kappa_{N, i j}=\frac{\left(a_{N}(i)-\bar{a}_{N}\right)\left(c_{N}(j)-\bar{c}_{N}\right)}{\left\{N^{-1} \sum_{k=1}^{N}\left(a_{N}(k)-\bar{a}_{N}\right)^{2} \sum_{\ell=1}^{N}\left(c_{N}(\ell)-\bar{c}_{N}\right)^{2}\right\}^{1 / 2}}, \quad i, j=1, \ldots, N .
$$

Theorem 1.4.2 (Projection theorem). If $a_{N}(1) \leq \ldots \leq a_{N}(N)$ and

$$
\max _{1 \leq i \leq N} \frac{\left(a_{N}(i)-\bar{a}_{N}\right)^{2}}{\sum_{j=1}^{N}\left(a_{N}(j)-\bar{a}_{N}\right)^{2}} \rightarrow 0 \quad \text { as } N \rightarrow \infty
$$

then S_{N} is asymptotically equivalent in the quadratic mean to the statistic

$$
T_{N}=\sum_{i=1}^{N}\left(c_{N}(i)-\bar{c}_{N}\right) a_{N}^{0}\left(U_{i}\right)+N \bar{c}_{N} \bar{a}_{N}
$$

in the sense that

$$
\lim _{N \rightarrow \infty} \mathbb{E}\left[\frac{\left(S_{N}-T_{N}\right)^{2}}{\operatorname{Var} S_{N}}\right]=0
$$

Here

$$
a_{N}^{0}(i)=a_{N}(i) \quad \text { for } \quad \frac{i-1}{N}<u \leq \frac{i}{N}, \quad i=1, \ldots, N
$$

and U_{1}, \ldots, U_{N} is a random sample from the uniform $R(0,1)$ distribution.
Corollary 1.4.1 Let

$$
\begin{gathered}
\kappa_{N, i j}=\frac{\left(a_{N}(i)-\bar{a}_{N}\right)\left(c_{i}-\bar{c}_{N}\right)}{A_{N} C_{N}}, \quad i, j=1, \ldots, N, \\
A_{N}^{2}=(N-1)^{-1} \sum_{k=1}^{N}\left(a_{k}-\bar{a}_{N}\right)^{2}, \quad C_{N}^{2}=\sum_{\ell=1}^{N}\left(c_{\ell}-\bar{c}_{N}\right)^{2},
\end{gathered}
$$

and let the sequences $\left\{a_{N}(1) \ldots, a_{N}(N)\right\}$ and $\left\{c_{1}, \ldots, c_{N}\right\}$ satisfy the Noether condition (1.4.6). Then

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left\{\left.\frac{S_{N}}{A_{N} C_{N}} \leq x \right\rvert\, \mathbf{H}_{0}^{(1)}\right\}=\Phi(x) \quad \forall x \in \mathbb{R}
$$

The asymptotic rank test rejects $\mathbf{H}_{0}^{(1)}$ in favor of $\mathbf{K}_{+}^{(1)}$ on the significance level α if

$$
\frac{S_{N}}{A_{N} C_{N}} \geq \Phi^{-1}(1-\alpha)
$$

and in favor of $\mathbf{K}^{(1)}$ if

$$
\frac{\left|S_{N}\right|}{A_{N} C_{N}} \geq \Phi^{-1}\left(1-\frac{\alpha}{2}\right)
$$

respectively.

1.4.2 Rank tests for $\mathrm{H}_{0}^{(2)}$

The hypothesis

$$
\mathbf{H}_{0}^{(2)}:\left(\beta_{0}, \beta\right)=0
$$

we shall test under the condition of symmetry on F, i.e.

$$
F(x)+F(-x)=1 \quad \text { for } \quad x \in \mathbb{R}
$$

Because the ranks are invariant to the shift in location, the test should also involve the signs of observations. Let $R_{N i}^{+}$be the rank of $|X|_{N i}$ among $|X|_{N 1}, \ldots,|X|_{N N}, i=1, \ldots, N$. Choose a score-generating function $\varphi^{*}:(0,1) \mapsto[0, \infty)$ and the scores $a_{N}^{*}(1), \ldots, a_{N}^{*}(N)$ generated by $\varphi *$ in the same manner as in (1.4.5). Under the hypothesis $\mathbf{H}_{0}^{(2)}$, the observations are independent and identically distributed with a continuous distribution function F, symmetric about 0 . Consider two statistics

$$
S_{N, 1}^{+}=\sum_{i=1}^{N} a_{N}^{*}\left(R_{N i}^{+}\right) \operatorname{sign} X_{i}, \quad S_{N, 2}^{+}=\sum_{i=1}^{N} c_{i} a_{N}^{*}\left(R_{N i}^{+}\right) \operatorname{sign} X_{i}, \quad \mathbf{S}_{N}=\left(S_{N, 1}^{+}, S_{N, 2}^{+}\right)^{\prime}
$$

and denote

$$
\lambda_{11}^{(N)}=N, \quad \lambda_{12}^{(N)}=\sum_{i=1}^{N} c_{i}, \quad \lambda_{22}^{(N)}=\sum_{i=1}^{N} c_{i}^{2}, \quad \Lambda^{(N)}=\left\|\lambda_{i j}^{(N)}\right\|_{i, j=1,2} .
$$

Under $\mathbf{H}_{0}^{(2)}$ and under symmetry of F, the vector ($\operatorname{sign} X_{1} \cdot R_{N 1}^{+}, \ldots, \operatorname{sign} X_{N} \cdot R_{N N}^{+}$) can take on $N!2^{N}$ values, each with probability $1 /\left(N!2^{N}\right)$, and sign X_{i} is independent of $R_{N i}^{+}, i=1, \ldots, N$. Hence,

$$
\begin{aligned}
& \mathbb{E}\left(\mathbf{S}_{N}^{+} \mid \mathbf{H}_{0}^{(2)}\right)=0, \\
& \mathbb{E}\left(\mathbf{S}_{N}^{+} \mathbf{S}_{N}^{+\prime} \mid \mathbf{H}_{0}^{(2)}\right)=A_{N}^{* 2} \boldsymbol{\Lambda}^{(N)}, \\
& A_{N}^{* 2}=\frac{1}{N} \sum_{i=1}^{N}\left(a_{N}^{*}(i)\right)^{2} .
\end{aligned}
$$

Consider the following test criterion

$$
\begin{equation*}
W_{N}^{+}=\mathbf{S}_{N}^{+\prime}\left(\mathbb{E}_{\mathbf{H}_{0}^{(2)}} \mathbf{S}_{N}^{+} \mathbf{S}_{N}^{+\prime}\right)^{-1} \mathbf{S}_{N}^{+}=\left(\mathbf{S}_{N}^{+\prime} \boldsymbol{\Lambda}_{N}^{-1} \mathbf{S}_{N}\right) / A_{N}^{* 2} \tag{1.4.8}
\end{equation*}
$$

Under $\mathbf{H}_{0}^{(2)}$ and under symmetry of F, the distribution of W_{N}^{+}does not depend on the unknown F. However, the exact distribution of W_{N}^{+}is very laborious to calculate, hence we should again use the asymptotic approximation. The asymptotic behavior is described in the following theorem:

Theorem 1.4.3 Assume that the sequences $\left\{a_{N}(i), 1 \leq i \leq N\right\}$ and $\left\{c_{N i}, 1 \leq i \leq N\right\}$ satisfy, as $N \rightarrow \infty$,

$$
\frac{\max _{1 \leq i \leq N} a_{N}^{2}(i)}{\sum_{j=1}^{N} a_{N}^{2}(j)} \rightarrow 0, \quad \frac{\max _{1 \leq i \leq N} c_{N i}^{2}}{\sum_{j=1}^{N} c_{N j}^{2}} \rightarrow 0
$$

Denote

$$
\kappa_{N, i j}=\frac{a_{N}(i) c_{N j}}{\left[N^{-1} \sum_{k=1}^{N} a_{N}^{2}(k) \sum_{\ell=1}^{N} c_{N \ell}^{2}\right]^{1 / 2}}, \quad i, j=1, \ldots, N .
$$

Then, under $\mathbf{H}_{0}^{(2)}$ and under symmetry of F, the sequence $\left(S_{N 2}^{+}-\mathbb{E} S_{N 2}^{+}\right) / \sqrt{\operatorname{Var} S_{N 2}^{+}}$is asymptotically normally distributed $N(0,1)$ if and only if, for every $\varepsilon>0$,

$$
\lim _{N \rightarrow \infty}\left\{\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \kappa_{N, i j}^{2} I\left[\left|\kappa_{N, i j}\right|>\varepsilon\right]\right\}=0 \quad \text { (Lindeberg condition). }
$$

If we further apply Theorem 1.4 .3 to $c_{n i}=1, i=1, \ldots, N$, we conclude that the random vector \mathbf{S}_{N}^{+}has asymptotically a bivariate normal distribution $\mathcal{N}_{2}\left(0, A_{N}^{*} \boldsymbol{\Lambda}^{(N)}\right)$. This implies that under $\mathbf{H}_{0}^{(2)}$ and under symmetry of F, W_{N}^{+}has asymptotically χ^{2} distribution with 2 degrees of freedom. Hence, the asymptotic test rejects $\mathbf{H}_{0}^{(2)}$ in favor $\mathbf{K}^{(2)}$ if $W_{N}^{+} \geq \chi_{2, \alpha}^{2}$.

1.4.3 Example

A group of students, boys and girls, graduated in a summer language course. They passed two tests, before and after the course. The responses in the table are differences in the tests scores for each individual; $c_{i}=1$ for a boy and $c_{i}=-1$ for a girl.

$\#$	response	c_{i}	$R_{N i}$	$R_{N i}^{+}$	$c_{i} R_{N i}$	$\operatorname{sign} X_{i} R_{N i}^{+}$
1	5.2	1	19	19	19	19
2	-0.7	1	6	63	6	-6
3	-2.3	1	2	13	2	-13
4	3.2	1	16	15	16	15
5	-1.5	1	4	9	4	-9
6	4.7	1	18	18	18	18
7	1.8	1	14	12	14	12
8	-0.4	1	8	3	8	-3
9	0.6	1	11	5	11	5
10	6.6	1	20	20	20	20
11	-0.9	-1	5	8	-5	-8
12	1.7	-1	13	11	-13	11
13	-0.3	-1	9	2	-9	-2
14	2.4	-1	15	14	-15	146
15	4.2	-1	17	16	-17	16
16	-1.6	-1	3	10	-3	-10
17	-4.3	-1	1	17	-1	-17
18	0.8	-1	12	7	-12	7
19	-0.5	-1	7	4	-7	-4
20	-0.2	-1	10	1	-10	-1

We want to test whether the course had an effect and whether there is a difference between the performance of boys and girls. We take the Wilcoxon scores, $a_{N}(i)=a_{N}^{*}(i)=\frac{i}{21}, i=$ $1, \ldots, 20$ and get

$$
\begin{aligned}
\frac{S_{N}}{A_{N} C_{N}} & =0.9826<1.96=\Phi^{-1}(0.95), \\
W_{N}^{+} & =2.368<5.99=\chi_{2}^{2}(0.95)
\end{aligned}
$$

Hence, we cannot reject either of the hypotheses.

1.5 Rank tests for some multiple linear regression models

Consider the linear regression model

$$
\begin{equation*}
Y_{i}=\beta_{0}+\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+e_{i}, \quad i=1, \ldots, N \tag{1.5.1}
\end{equation*}
$$

where $\beta_{0} \in \mathbb{R}_{1}, \boldsymbol{\beta} \in \mathbb{R}_{p}$ are unknown parameters and e_{i}, \ldots, e_{N} are independent errors, identically distributed according to a continuous d.f. F and $\mathbf{x}_{i} \in \mathbb{R}_{p}$ are given regressors, $i=1, \ldots, N$. Denote

$$
\mathbf{X}_{N}=\left[\begin{array}{c}
\mathbf{x}_{1}^{\prime} \\
\vdots \\
\mathbf{x}_{N}^{\prime}
\end{array}\right]
$$

the regression matrix. We shall first consider the hypotheses

$$
\mathbf{H}_{0}^{(1)}: \boldsymbol{\beta}=0 \text { versus } \mathbf{K}^{(1)}: \boldsymbol{\beta} \neq 0
$$

and

$$
\mathbf{H}_{0}^{(2)}: \boldsymbol{\beta}^{*}=\left(\beta_{0}, \boldsymbol{\beta}^{\prime}\right)^{\prime}=0 \quad \text { versus } \mathbf{K}^{(2)}: \boldsymbol{\beta}^{*} \neq 0
$$

The hypotheses and tests are extensions of those for the regression line.

1.5.1 Rank tests for $\mathbf{H}_{0}^{(1)}$

Let $R_{N 1}, \ldots, R_{N N}$ be the ranks of Y_{1}, \ldots, Y_{N} and let $a_{N}(1), \ldots, a_{N}(N)$ be the scores generated by a nondecreasing, square-integrable score function $\varphi:(0,1) \mapsto \mathbb{R}_{1}$ so that $a_{N}(i)=\varphi\left(\frac{i}{N+1}\right), i=1, \ldots, N$.

Consider the linear rank statistics

$$
S_{N j}=\sum_{i=1}^{N}\left(x_{i j}-\bar{x}_{N j}\right) a_{N}\left(R_{N i}\right), \quad \bar{x}_{N j}=\frac{1}{N} \sum_{i=1}^{N} x_{i j}, \quad j=1, \ldots, N
$$

and the vector

$$
\mathbf{S}_{N}=\sum_{i=1}^{N}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{N}\right) a_{N}\left(R_{N i}\right)=\left(S_{N 1}, \ldots, S_{N p}\right)^{\prime}
$$

The distribution function of observation Y_{i} under $\mathbf{H}_{0}^{(1)}$ is $F\left(y-\beta_{0}\right), i=1, \ldots, N$. Hence, $\left(R_{N 1}, \ldots, R_{N N}\right)$ assumes all possible permutations of $(1,2, \ldots, N)$ with equal probability $\frac{1}{N!}$. Hence, the expectation and covariance matrix of \mathbf{S}_{N} under $\mathbf{H}_{0}^{(1)}$ are

$$
\mathbb{E}\left(\mathbf{S}_{N} \mid \mathbf{H}_{0}^{(1)}\right)=0 \quad \text { and } \quad \mathbb{E}\left(\mathbf{S}_{N} \mathbf{S}_{N}^{\prime} \mid \mathbf{H}_{0}^{(1)}\right)=A_{N}^{2} \mathbf{Q}_{N}
$$

where

$$
A_{N}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(a_{N}(i)-\bar{a}_{N}\right)^{2}, \quad \mathbf{Q}_{N}=\sum_{i=1}^{N}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{N}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{N}\right)^{\prime} .
$$

Our test for $\mathbf{H}_{0}^{(1)}$ is based on the quadratic form

$$
\begin{equation*}
\mathcal{S}_{N}=A_{N}^{-2}\left(\mathbf{S}_{N}^{\prime} \mathbf{Q}_{N}^{-1} \mathbf{S}_{N}\right) \tag{1.5.2}
\end{equation*}
$$

where \mathbf{Q}_{N}^{-1} is replaced by the generalized inverse \mathbf{Q}_{N}^{-}if \mathbf{Q}_{N} is singular. We reject $\mathbf{H}_{0}^{(1)}$ if $\mathcal{S}_{N}>k_{\alpha}$ where k_{α} is a suitable critical value.

Notice that \mathbf{S}_{N} depends only on $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$, on the scores $a_{N}(1), \ldots, a_{N}(N)$ and on the ranks $R_{N 1}, \ldots, R_{N N}$. Hence, the distribution of \mathbf{S}_{N} and thus also that of \mathcal{S}_{N} under the hypothesis $\mathbf{H}_{0}^{(1)}$ does not depend on the distribution function F of the errors. For small N, the critical value can be calculated numerically, but it would become laborious with increasing N. Hence, again, we should use the large-sample approximation. This can be derived under some conditions on the matrix \mathbf{X}_{N}, and on the scores:

Theorem 1.5.1 Assume that
(i) the matrix \mathbf{Q}_{N} is regular for $N>N_{0}$ and

$$
\max _{1 \leq i \leq N}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{N}\right)^{\prime} \mathbf{Q}_{N}^{-1}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{N}\right) \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty
$$

(ii) the scores satisfy the Noether condition, i.e.

$$
\max _{1 \leq i \leq N} \frac{\left(a_{N}(i)-\bar{a}_{N}\right)^{2}}{\sum_{j=1}^{N}\left(a_{N}(j)-\bar{a}_{N}\right)^{2}} \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty
$$

(iii)

$$
\lim _{N \rightarrow \infty}\left[\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \delta_{N, i j k}^{2} I\left[\left|\delta_{N, i j k}\right|>\varepsilon\right]\right]=0 \quad \text { for every } \varepsilon>0, \forall k=1, \ldots, p,
$$

where

$$
\delta_{N, i j k}=\frac{\left(a_{N}(i)-\bar{a}_{N}\right)\left(x_{j k}-\bar{x}_{k}\right)}{\left[N^{-1} \sum_{i=1}^{N}\left(a_{N}(i)-\bar{a}_{N}\right)^{2} \sum_{j=1}^{N}\left(x_{j k}-\bar{x}_{k}\right)^{2}\right]^{1 / 2}}, \quad k=1, \ldots, p, i, j=1, \ldots, N .
$$

Then, under $\mathbf{H}_{0}^{(1)}$, the criterion \mathcal{S}_{N} in (1.5.2) has asymptotically χ^{2} distribution with p degrees of freedom.

Remark 1.5.1 We reject hypothesis $\mathbf{H}_{0}^{(1)}$ on the significance level α if

$$
\mathcal{S}_{N}>\chi_{p}^{2}(1-\alpha),
$$

where $\chi_{p}^{2}(1-\alpha)$ is the $(1-\alpha)$ quantile of the χ^{2} distribution with p degrees of freedom.

Sketch of the proof. It suffices to show that under $\mathbf{H}_{0}^{(1)}$ the asymptotic distribution of \mathbf{S}_{N} is p-dimensional normal with expectation equal to 0 and dispersion matrix $A_{N}^{2} \mathbf{Q}_{N}$. Then the quadratic form \mathcal{S}_{N} will have asymptotically the $\chi^{2}(p)$. To prove the asymptotic normality of \mathbf{S}_{N}, we must prove that, for any vector $\boldsymbol{\lambda} \in \mathbb{R}_{p}, \boldsymbol{\lambda} \neq 0$, the scalar product $\boldsymbol{\lambda}^{\prime} \mathbf{S}_{N}$ has asymptotically normal distribution $\mathcal{N}\left(0, \boldsymbol{\lambda}^{\prime} A_{N}^{2} \mathbf{Q}_{N} \boldsymbol{\lambda}\right)$. But

$$
\boldsymbol{\lambda}^{\prime} \mathbf{S}_{N}=\sum_{i=1}^{N}\left[\boldsymbol{\lambda}^{\prime}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{N}\right)\right] a_{N}\left(R_{N i}\right)
$$

and its coefficients $\boldsymbol{\lambda}^{\prime}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{N}\right)$ satisfy the Noether condition (1.4.6), because

$$
\begin{aligned}
& \max _{1 \leq i \leq N} \frac{\left[\boldsymbol{\lambda}^{\prime}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{N}\right)\right]^{2}}{\sum_{j=1}^{N}\left[\boldsymbol{\lambda}^{\prime}\left(\mathbf{x}_{j}-\overline{\mathbf{x}}_{N}\right)\right]^{2}}=\max _{1 \leq i \leq N} \frac{\boldsymbol{\lambda}^{\prime}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{N}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{N}\right)^{\prime} \boldsymbol{\lambda}}{\boldsymbol{\lambda}^{\prime} \mathbf{Q}_{N} \boldsymbol{\lambda}} \\
& \leq \max _{1 \leq i \leq N}\left\|\mathbf{x}_{i}-\overline{\mathbf{x}}\right\|^{2} \cdot \kappa_{\max }\left(\mathbf{Q}_{N}^{-1}\right)=\max _{1 \leq i \leq N} \kappa_{\max }\left\{\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\prime} \mathbf{Q}^{-1}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\right\} \rightarrow 0
\end{aligned}
$$

Moreover, we can show by some arithmetics that the entities

$$
\delta_{N, i j}(\boldsymbol{\lambda})=\frac{\boldsymbol{\lambda}^{\prime}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(a_{N}(j)-\bar{a}_{N}\right)}{N^{-1} \sum_{i=1}^{N}\left[\boldsymbol{\lambda}^{\prime}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\right]^{2} \sum_{j=1}^{N}\left(a_{N}(j)-\bar{a}_{N}\right)^{2}}
$$

satisfy the Lindeberg condition (1.4.7). Then the asymptotic normality of the scalar product will follow from Theorem 1.4.3 for every $\boldsymbol{\lambda} \neq 0$.

1.5.2 Rank tests for $\mathbf{H}_{0}^{(2)}$

Consider again the model $Y_{i}=\beta_{0}+\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+e_{i}, \quad i=1, \ldots, N$, and assume that the errors e_{i} have a symmetric distribution function, $F(x)+F(-x)=1 \forall x$. Let $R_{N 1}^{+}, \ldots, R_{N N}^{+}$be the ranks of $\left|Y_{1}\right|, \ldots,\left|Y_{N}\right|$. Choose a score-generating function $\varphi^{*}:(0,1) \mapsto[0, \infty)$ and the scores $a_{N}^{*}(1), \ldots, a_{N}^{*}(N)$ generated by φ^{*}. Put $x_{i 0}=1, i=1, \ldots, N$, and for $j=0,1, \ldots, p$ consider the signed-rank statistics

$$
S_{N, j}^{+}=\sum_{i=1}^{N} x_{i j} \operatorname{sign} Y_{i} a_{N}^{*}\left(R_{N i}^{+}\right)
$$

and the vector

$$
\mathbf{S}_{N}^{+}=\left(S_{N, 0}^{+}, S_{N, 1}^{+}, \ldots, S_{N, p}^{+}\right)^{\prime}
$$

Then, under $\mathbf{H}_{0}^{(2)}$,

$$
\mathbb{E}\left(\mathbf{S}_{N}^{+} \mid \mathbf{H}_{0}^{(2)}\right)=0 \quad \text { and } \quad \mathbb{E}\left(\mathbf{S}_{N}^{+} \mathbf{S}_{N}^{+\prime} \mid \mathbf{H}_{0}^{(2)}\right)=A_{N}^{* 2} \mathbf{Q}_{N}^{*}
$$

where $A_{N}^{* 2}=\frac{1}{N} \sum_{i=1}^{N}\left[a_{N}^{*}(i)\right]^{2}$ and

$$
\mathbf{Q}_{N}^{*}=\sum_{i=1}^{N} \mathbf{x}_{i}^{*} \mathbf{x}_{i}^{* \prime}=\left[\sum_{i=1}^{N} x_{i j} x_{i j^{\prime}}\right]_{j, j^{\prime}=0,1, \ldots, p}
$$

and $\mathbf{x}_{i}^{*}=\left(x_{i 0}, x_{i 1}, \ldots, x_{i p}\right)^{\prime}$.
The test criterion will be the quadratic form

$$
\mathcal{S}_{N}^{+}=A_{N}^{*-2}\left(\mathbf{S}_{N}^{+\prime}\left(\mathbf{Q}_{N}^{*}\right)^{-1} \mathbf{S}_{N}^{+}\right)
$$

The distribution of \mathbf{S}_{N}^{+}(and hence of \mathcal{S}_{N}^{+}) is generated by $N!2^{N}$ equally probable realizations of $\left(\operatorname{sign} Y_{1}, \ldots, \operatorname{sign} Y_{N}\right)$ and $\left(R_{N 1}^{+}, \ldots, R_{N N}^{+}\right)$.

The asymptotic distribution of \mathcal{S}_{N}^{+}under $\mathbf{H}_{0}^{(2)}$ will be $\chi^{2}(p+1)$, provided

$$
\max _{1 \leq i \leq N} \mathbf{x}_{i}^{* \prime}\left(\mathbf{Q}_{N}^{*}\right)^{-1} \mathbf{x}_{i}^{*} \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty
$$

$\left(a_{N}^{*}(1), \ldots, a_{N}^{*}(N)\right)$ satisfy the Noether condition (1.4.6), and under the Lindeberg condition (1.4.7) on some mixed terms corresponding to \mathbf{x}_{i}^{*} and $a_{N}^{*}(i)$, analogously as under the regression line.

1.6 Rank estimation in simple linear regression models

1.6.1 Estimation of the slope β of the regression line

Let Y_{1}, \ldots, Y_{N} be independent random variables, Y_{i} have a distribution function

$$
F_{i}(y)=F\left(y-\beta_{0}-\beta\left(x_{i}-\bar{x}_{N}\right)\right), \quad i=1, \ldots, N
$$

where F is continuous. We want to estimate the parameter β with the aid of ranks.
Denote

$$
Y_{i}(b)=Y_{i}-\left(x_{i}-\bar{x}_{N}\right) b, \quad 1 \leq i \leq N, \quad b \in \mathbb{R}_{1} .
$$

Let $T_{N}\left(Y_{1}, \ldots, Y_{N}\right)$ be a test statistics for testing $\mathbf{H}_{0}: \beta=0$ and assume that under \mathbf{H}_{0} the distribution of T_{N} is symmetric about μ_{N} or that $\mathbb{E}_{\mathbf{H}_{0}} T_{N}=\mu_{N}$.

If $T_{N}\left(Y_{1}(b), \ldots, Y_{N}(b)\right)$ is nonincreasing in $b \in \mathbb{R}_{1}$, then we can define the estimate of β as

$$
\begin{align*}
& \widehat{\beta}_{N}=\frac{1}{2}\left(\widehat{\beta}_{N}^{-}+\widehat{\beta}_{N}^{+}\right) \tag{1.6.1}\\
& \widehat{\beta}_{N}^{-}=\sup \left\{b: T_{N}(b)>\mu_{N}\right\}, \quad \widehat{\beta}_{N}^{+}=\inf \left\{b: T_{N}(b)<\mu_{N}\right\}
\end{align*}
$$

If $T_{N}=\sum_{i=1}^{N}\left(x_{i}-\bar{x}_{N}\right)\left(Y_{i}-\bar{Y}_{N}\right)$, then $\mu_{N}=0$ and $T_{N}(b)$ is linear in b; the estimator is the least-squares estimator of β.

Lemma 1.6.1 Let $T_{N}=S_{N}=\sum_{i=1}^{N}\left(x_{i}-\bar{x}_{N}\right) a_{N}\left(R_{N i}\right)$ where $a_{N}(1) \leq \ldots \leq a_{N}(N)$ (not all equal) and $R_{N i}$ is the rank of $Y_{i}, i=1, \ldots, N$. Then $S_{N}(b)$ is nonincreasing in b.

Proof. See Puri and Sen (1985).
The following Lemma shows that S_{N} is symmetrically distributed under some conditions.

Lemma 1.6.2 Let either

$$
\begin{equation*}
x_{i}-\bar{x}_{N}=\bar{x}_{N}-x_{N-i+1}, \quad i=1, \ldots, N \tag{1.6.2}
\end{equation*}
$$

or

$$
\begin{equation*}
a_{i}-\bar{a}_{N}=\bar{a}_{N}-a_{N-i+1}, \quad i=1, \ldots, N . \tag{1.6.3}
\end{equation*}
$$

Then, if $\beta=0$, the distribution of S_{N} is symmetric about 0 .
Proof. Let (1.6.2) hold. Because ($R_{N 1}, \ldots, R_{N N}$) have the same distribution as $\left(R_{N N}, \ldots, R_{N 1}\right)$, then S_{N} has the same distribution as $\bar{S}_{N}=\sum_{i=1}^{N}\left(x_{i}-\bar{x}_{N}\right) a_{N}\left(R_{N, N-i+1}\right)=$ $-S_{N}$.

Similarly we proceed under (1.6.2).
Properties of $\widehat{\beta}_{N}$:

1. $\widehat{\beta}_{N}\left(Y_{1}+x_{1} b, \ldots, Y_{N}+x_{N} b\right)=\widehat{\beta}_{N}\left(Y_{1}, \ldots, Y_{N}\right)+b \quad \forall b \in \mathbb{R}_{1}$.
2. $\widehat{\beta}_{N}\left(c Y_{1}, \ldots, c Y_{N}\right)=c \widehat{\beta}_{N}\left(Y_{1}, \ldots, Y_{N}\right) \quad \forall c>0$.
3. $\mathbb{P}\left(\widehat{\beta}_{N}<a\right) \leq \mathbb{P}\left(S_{N}(a)<\mu_{n}\right) \leq \mathbb{P}\left(S_{N}(a) \leq \mu_{N}\right) \leq \mathbb{P}\left(\widehat{\beta}_{N} \leq a\right)$

Asymptotic normality of $\widehat{\beta}_{N}$:

Theorem 1.6.1 Assume that $\left\{x_{N 1}, \ldots, x_{N N}\right\}$ satisfy the conditions

$$
\begin{align*}
& 0<\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N}\left(x_{N i}-\bar{x}_{N}\right)^{2}=C_{0}^{2}<\infty \tag{1.6.4}\\
& \max _{1 \leq i \leq N} \frac{1}{N}\left(x_{N i}-\bar{x}_{N}\right)^{2} \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty
\end{align*}
$$

Let $a_{N}(i)=\mathbb{E} \varphi\left(U_{N: i}\right)$ or $=\varphi\left(\frac{i}{N+1}\right), \quad i=1, \ldots, N$, where φ is nondecreasing on $(0,1)$ and

$$
A_{\varphi}^{2}=\int_{0}^{1} \varphi^{2}(u) d u<\infty, \int_{0}^{1} \varphi(u) d u=0 .
$$

Let F have finite Fisher's information, i.e.

$$
A_{\psi}^{2}=\int_{0}^{1} \psi^{2}(u) d u, \quad \text { where } \quad \psi(u)=-\frac{f^{\prime}\left(F^{-1}(u)\right)}{f\left(F^{-1}(u)\right)}, 0<u<1 .
$$

Then $\left\{N^{1 / 2}\left(\widehat{\beta}_{N}-\beta\right)\right\}_{N=1}^{\infty}$ is asymptotically normally distributed

$$
\mathcal{N}\left(0, \frac{A_{\varphi}^{2}}{C_{0}^{2} \gamma^{2}(\varphi, F)}\right), \quad \gamma(\varphi, F)=\int_{0}^{1} \varphi(u) \psi(u) d u
$$

1.6.2 Estimation in multiple regression model

Let Y_{1}, \ldots, Y_{N} be independent observations, Y_{i} have distribution function

$$
F_{i}(y)=F\left(y-\beta_{0}-\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{N}\right)^{\prime} \boldsymbol{\beta}\right), \quad \mathbf{x}_{i} \in \mathbb{R}_{p}, \quad 1 \leq i \leq N .
$$

Consider the (vector) linear rank statistic

$$
\mathbf{S}_{N}(\mathbf{b})=\sum_{i=1}^{N}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{N}\right) a_{N}\left(R_{N i}(\mathbf{b})\right)=\left(S_{N 1}(\mathbf{b}), \ldots, S_{N N}(\mathbf{b})\right)^{\prime}
$$

where $R_{N i}(\mathbf{b})$ is the rank of $Y_{i}-\mathbf{x}^{\prime} \mathbf{b}, i=1, \ldots, N$, and the scores are nondecreasing. Obviously $\mathbb{E} \mathbf{S}_{N}(0)=0$. Define

$$
\mathcal{D}_{N}=\left\{\mathrm{b}:\left\|\mathbf{S}_{N}(\mathbf{b})\right\|=\min , \mathrm{b} \in \mathbb{R}_{p}\right\}
$$

where $\|\cdot\|$ is either L_{1} or the L_{2}-norm. If \mathcal{D}_{N} is a convex set, then we can define the center of gravity of \mathcal{D}_{N} as an estimator $\widehat{\boldsymbol{\beta}}_{N}$ of $\boldsymbol{\beta}$.

Assume that $\mathbf{x}_{N i}$ satisfy the (Noether) condition

$$
\max _{1 \leq i \leq N}\left(\mathbf{x}_{N i}-\bar{x}_{N}\right)^{\prime} \mathbf{Q}_{N}^{-1}\left(\mathbf{x}_{N i}-\bar{x}_{N}\right) \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty
$$

where $\mathbf{Q}_{N}=\sum_{i=1}^{N}\left(\mathbf{x}_{N i}-\bar{x}_{N}\right)\left(\mathbf{x}_{N i}-\bar{x}_{N}\right)^{\prime}$. If F has the finite Fisher's information, then $\left\{N^{1 / 2}\left(\widehat{\boldsymbol{\beta}}_{N}-\boldsymbol{\beta}\right)\right\}$ is asymptotically normally distributed

$$
\mathcal{N}_{p}\left(0, \frac{A_{\varphi}^{2}}{\gamma^{2}(\varphi, F)}\left(\frac{1}{N} \mathbf{Q}_{N}\right)^{-1}\right) .
$$

1.7 Aligned rank tests about the intercept

1.7.1 Regression line

Let Y_{1}, \ldots, Y_{N} are independent, Y_{i} has distribution function

$$
F_{i}(y)=\mathbb{P}\left(Y_{i} \leq y\right)=F\left(y-\beta_{0}-\left(x_{i}-\bar{x}_{N}\right) \beta\right), 1 \leq i \leq N, y \in \mathbb{R}
$$

Consider the hypothesis

$$
\mathbf{H}_{0}: \beta_{0}=0 \quad \text { versus } \quad \mathbf{K}^{+}: \beta_{0}>0 \text { or } \quad \mathbf{K}: \beta_{0} \neq 0
$$

where β is treated as a nuisance parameter. If $\beta \neq 0$, then Y_{1}, \ldots, Y_{N} are not identically distributed, and we cannot use their ranks. If we have an estimate $\widehat{\beta}_{N}$ of β, we can consider the ranks of the residuals $\left|Y_{i}-\left(x_{i}-\bar{x}_{N}\right) \widehat{\beta}_{N}\right|, i=1, \ldots, N$ (aligned ranks) and an (aligned) signed rank statistics based on them. Under some conditions, such statistic is asymptotically distribution-free, i.e. under the hypothesis $\mathbf{H}_{0}: \beta_{0}=0$, its asymptotic distribution does not depend on F.

Let $\widehat{\beta}_{N}$ be the rank estimate (1.6.1) based on the linear rank statistic

$$
\sum_{i=1}^{N}\left(x_{i}-\bar{x}_{N}\right) a_{N}\left(R_{N i}(b)\right), b \in \mathbb{R}_{1}
$$

$\widehat{Y}_{i}=Y_{i}-\left(x_{i}-\bar{x}_{N}\right) \widehat{\beta}_{N}, i=1, \ldots, N$ and the aligned signed rank statistic

$$
\widehat{S}_{N}=\sum_{i=1}^{N} \operatorname{sign} \widehat{Y}_{i} a_{N}^{*}\left(R_{N i}^{+}\right),
$$

where $R_{N i}^{+}$is the rank of $\left|Y_{i}-\left(x_{i}-\bar{x}_{N}\right) \widehat{\beta}_{N}\right|, i=1, \ldots, N$. The test criterion for \mathbf{H}_{0} will be

$$
T_{N}=\frac{N^{-1 / 2} \widehat{S}_{N}}{A_{N}^{*}}, \quad\left(A_{N}^{*}\right)^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(a_{N}^{*}(i)\right)^{2} .
$$

We reject \mathbf{H}_{0} in favor of \mathbf{K}^{+}if $T_{N}>k_{\alpha}^{+}$, and reject \mathbf{H}_{0} in favor of \mathbf{K} if $\left|T_{N}\right|>k_{\alpha}$. The critical values k_{α}^{+}and k_{α} are determined from the asymptotic normal distribution of T_{N}.
Theorem 1.7.1 Assume that
(i) F is symmetric about 0 and has an absolutely continuous density f and finite and positive Fisher information, $0<I(f)=\int\left(\frac{f^{\prime}(z)}{f(z)}\right)^{2} d F(z)<\infty$.
(ii) $\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}_{N}\right)^{2} \rightarrow C^{2}, 0<C<\infty$, and $\frac{1}{N}\left[\max _{1 \leq i \leq N}\left(x_{i}-\bar{x}_{N}\right)^{2}\right] \rightarrow 0$ as $N \rightarrow \infty$.
(iii) $\varphi(t)$ is nondecreasing, $\varphi(1-t)=-\varphi(t), \quad t \in(0,1)$, and $0<A^{2}(\varphi)=\int_{0}^{1} \varphi^{2}(t) d t<\infty$. Put $\varphi^{*}(u)=\varphi\left(\frac{u+1}{2}\right), 0<u<1$ and $a_{N}^{*}(i)=\mathbb{E} \varphi^{*}\left(U_{N: i}\right)$ or $a_{N}^{*}(i)=\varphi^{*}\left(\frac{i}{N+1}\right), i=1, \ldots, N$.
Then, under $\mathbf{H}_{0}: \beta_{0}=0$, the criterion T_{N} has asymptotically normal distribution with mean 0 and variance 1.
Sketch of he proof. Because $\lim _{N \rightarrow \infty} A_{N}^{*}=A^{2}(\varphi)$ and $N^{1 / 2}\left(\widehat{\beta}_{N}-\beta\right)=O_{p}(1)$, it can be proved (not elementary) that under \mathbf{H}_{0}

$$
\begin{equation*}
N^{-1 / 2}\left[\widehat{S}_{N}-S_{N}(\beta)\right] \xrightarrow{p} 0 \quad \text { as } N \rightarrow \infty \tag{1.7.5}
\end{equation*}
$$

where

$$
S_{N}(\beta)=\sum_{i=1}^{N} \operatorname{sign}\left(Y_{i}(\beta)\right) a_{N}^{*}\left(R_{N i}^{+}(\beta)\right)
$$

where $Y_{i}(\beta)=Y_{i}-\left(x_{i}-\bar{x}_{N}\right) \beta$ and $R_{N i}^{+}(\beta)$ is the rank of $Y_{i}(\beta)=Y_{i}-\left(x_{i}-\bar{x}_{N}\right) \beta, 1 \leq i \leq N$. Under \mathbf{H}_{0} are $Y_{i}(\beta)=Y_{i}-\left(x_{i}-\bar{x}_{N}\right) \beta$ independent and identically distributed with d.f. F symmetric about 0 . It was shown earlier that

$$
N^{-1 / 2} S_{N}(\beta) \xrightarrow{d} \mathcal{N}\left(0, A^{2}(\varphi)\right)
$$

hence, regarding (1.7.5), also $N^{-1 / 2} \widehat{S}_{N} \xrightarrow{d} \mathcal{N}\left(0, A^{2}(\varphi)\right)$.
Remark 1.7.1 We reject \mathbf{H}_{0} in favor of \mathbf{K}^{+}on the asymptotic significance level α, provided $T_{N} \geq \Phi^{-1}(1-\alpha)$, and we reject \mathbf{H}_{0} in favor of \mathbf{K} provided $\left|T_{N}\right| \geq \Phi\left(1-\frac{\alpha}{2}\right)$.

Powers of the tests against local alternatives:

The tests are consistent in the sense that their powers tend to 1 as $\beta_{0} \rightarrow \infty$ (or $\left.\left|\beta_{0}\right| \rightarrow \infty\right)$. However, important is the power for alternatives close the the hypothesis, namely

$$
\mathbf{K}_{1 N}: \beta_{0}=N^{-1 / 2} \lambda, \quad \lambda \neq 0 \text { fixed }
$$

Such alternative is contiguous in the sense of LeCam/Hájek, and it can be shown that the approximation (1.7.5) holds not only under the hypothesis, but also under $\mathbf{K}_{1 N}$. Hence, $N^{-1 / 2} \widehat{S}_{N}$ has the same asymptotic distribution as $S_{N}(\beta)$ also under $\mathbf{K}_{1 N}$.

Denote $\tau_{\alpha}=\Phi^{-1}(1-\alpha), 0<\alpha<1$. The asymptotic power of the aligned rank test is

$$
\mathbb{P}\left\{T_{N} \geq \tau_{\alpha} \mid \mathbf{K}_{1 N}\right\} \rightarrow 1-\Phi\left(\tau_{\alpha}-\frac{\lambda}{A_{\varphi}} \int_{0}^{1} \varphi(u) \varphi_{f}(u) d u\right) \text { one-sided test }
$$

Comparison: Classical test of \mathbf{H}_{0}

The least-squares estimator of β_{0} is

$$
\tilde{\beta}_{0 N}=\bar{Y}_{N}=\frac{1}{N} \sum_{i=1}^{N} Y_{i}
$$

and the likelihood ratio statistic is

$$
\begin{aligned}
L_{N} & =\sqrt{N} \frac{\bar{Y}_{N}}{s_{N}}, \text { where } \\
s_{N}^{2} & =\frac{1}{N-2} \sum_{i=1}^{N}\left[Y_{i}-\bar{Y}_{N}-\left(x_{i}-\bar{x}_{N}\right) \tilde{\beta}_{N}\right]^{2} \\
\tilde{\beta}_{N} & =\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}_{N}\right)\left(Y_{i}-\bar{Y}_{N}\right)}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}_{N}\right)^{2}}
\end{aligned}
$$

If $\sigma^{2}=\int z^{2} d F(z)<\infty$, then

$$
s_{N}^{2} \xrightarrow{p} \sigma^{2}, \quad \bar{Y}_{N} \xrightarrow{p} \beta_{0}, \quad \tilde{\beta}_{N} \xrightarrow{p} \beta \text { as } N \rightarrow \infty .
$$

Under $\mathbf{H}_{0}: \beta_{0}=0$, the likelihood ratio is asymptotically $\mathcal{N}(0,1)$. The asymptotic relative efficiency of the aligned signed rank test with respect to the likelihood ratio test is

$$
\sigma^{2} \frac{\left(\int_{0}^{1} \varphi(u) \varphi_{f}(u) d u\right)^{2}}{\int_{0}^{1} \varphi^{2}(u) d u} \leq \sigma^{2} \mathcal{I}(f)
$$

1.7.2 Multiple regression model

Let Y_{1}, \ldots, Y_{N} be independent with distribution functions F_{1}, \ldots, F_{N} such that

$$
F_{i}(y)=\mathbb{P}\left(Y_{i} \leq y\right)=F\left(y-\beta_{0}-\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{N}\right)^{\prime} \boldsymbol{\beta}\right), 1 \leq i \leq N, y \in \mathbb{R}_{1}, \boldsymbol{\beta} \in \mathbb{R}_{p}
$$

We want to test the hypothesis

$$
\mathbf{H}_{1}: \beta_{0}=0 \text { versus } \mathbf{K}_{1}^{+}: \beta_{0}>0 \text { or } \mathbf{K}_{1}: \beta_{0} \neq 0
$$

where $\boldsymbol{\beta}$ is unspecified. We may also partition $\boldsymbol{\beta}$ as

$$
\boldsymbol{\beta}=\binom{\boldsymbol{\beta}_{1}}{\boldsymbol{\beta}_{2}}
$$

where $\boldsymbol{\beta}_{1} \in \mathbb{R}_{p_{1}}, \boldsymbol{\beta}_{2} \in \mathbb{R}_{p_{2}}, p_{1}+p_{2}=p$. We want to test the hypothesis

$$
\mathbf{H}_{2}: \boldsymbol{\beta}_{2}=0 \text { versus } \boldsymbol{\beta}_{2} \neq 0
$$

where $\beta_{0}, \boldsymbol{\beta}_{1}$ are unspecified.

Test of \mathbf{H}_{1}

Let $\widehat{\boldsymbol{\beta}}_{N}$ be the estimator of $\boldsymbol{\beta}$. Consider the residuals $\widehat{Y}_{i}=Y_{i}-\mathbf{x}_{i}^{\prime} \widehat{\boldsymbol{\beta}}, i=1, \ldots, N$ and the (aligned) ranks $\widehat{R}_{N 1}^{+}, \ldots, \widehat{R}_{N N}^{+}$of $\left|\widehat{Y}_{i}\right|, i=1, \ldots, N$. Similarly as in the case of the regression line, the test is based on the aligned sign rank statistic

$$
\widehat{S}_{N}=\sum_{i=1}^{N} \operatorname{sign}\left(\widehat{Y}_{i}\right) a_{N}^{*}\left(R_{N i}^{+}\right)
$$

and the test criterion is

$$
T_{N}^{2}=\frac{\widehat{S}_{N}^{2}}{N A_{N}^{* 2}}, \quad\left(A_{N}^{*}\right)^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(a_{N}^{*}(i)\right)^{2}
$$

T_{N}^{2} has asymptotically χ^{2} distribution with 1 d.f.

