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2



Contents

1 Rank tests in linear regression model 5
1.1 Properties of ranks and order statistics . . . . . . . . . . . . . . . . . . . . 5

1.1.1 The distribution of X(.) and of R : . . . . . . . . . . . . . . . . . . 5
1.1.2 Marginal distributions of the random vectors R and X(.) under H0 : 6

1.2 Locally most powerful rank tests . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Structure of the locally most powerful rank tests of H0 : . . . . . . . . . . 8

1.3.1 Special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Rank tests for simple regression model

with nonrandom regressors . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.1 Rank tests for H

(1)
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.2 Rank tests for H
(2)
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Rank tests for some multiple

linear regression models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.1 Rank tests for H

(1)
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5.2 Rank tests for H
(2)
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Rank estimation
in simple linear regression models . . . . . . . . . . . . . . . . . . . . . . . 20
1.6.1 Estimation of the slope β of the regression line . . . . . . . . . . . . 20
1.6.2 Estimation in multiple regression model . . . . . . . . . . . . . . . 22

1.7 Aligned rank tests about the intercept . . . . . . . . . . . . . . . . . . . . 22
1.7.1 Regression line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.7.2 Multiple regression model . . . . . . . . . . . . . . . . . . . . . . . 24

3



4



Chapter 1

Rank tests in linear regression model

1.1 Properties of ranks and order statistics

Let X = (X1, . . . , Xn) be the vector of observations; denote Xn:1 ≤ Xn:2 . . . ≤ Xn:n the
components of X ordered according to increasing magnitude. The vector
X(.) = (Xn:1, . . . , Xn:n) is called the vector of order statistics and Xn:i is called the ith
order statistic.
Assume that the components of X are different and define the rank of Xi as Ri =∑n

j=1 I[Xj ≤ Xi]. Then the vector R of ranks of X takes on the values in the set R
of n! permutations (r1, . . . , rn) of (1,. . . , n).

1.1.1 The distribution of X(.) and of R :

Lemma 1.1.1 If X has density pn(x1, . . . , xn), then the vector X(.) of order statistics has
the distribution with the density

p̄(xn:1, . . . , xn:n) =

{ ∑
r∈R p(xn:r1 , . . . , xn:rn) . . . xn:1 ≤ . . . ≤ xn:n

0 otherwise.

(ii) The conditional distribution of R given X(.) = x(.) has the form

IP (R = r|X(.) = x(.)) =
p(xn:r1 , . . . xn:rn)

p̄(xn:1, . . . , xn:n)

for any r ∈ R and any xn:1 ≤ . . . ≤ xn:n.

Proof. For any Borel set B ∈ X(.) should hold

IP (X(.) ∈ B) =
∑
r∈R

IP (X(.) ∈ B,R = r) =
∑
r∈R

∫
x(.)∈B,R=r

. . .

∫
p(x1, . . . , xn)dx1, . . . , dxn

=
∑
r∈R

∫
B

. . .

∫
p(xn:r1 , . . . , xn:rn)dxn:1, . . . , xn:n =

∫
B

. . .

∫
p̄(xn:1, . . . , xn:n)dxn:1, . . . , xn:n,
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what proves (i). Similarly,

IP (X(.) ∈ B,R = r) =

∫
B

. . .

∫
p(xn:r1 , . . . , xn:rn)dxn:1, . . . , dxn:n

=

∫
B

. . .

∫
p(xn:r1 , . . . , xn:rn)

p̄(xn:1, . . . , xn:n)
p̄(xn:1, . . . , xn:n)dxn:1, . . . , dxn:n

=

∫
B

. . .

∫
IP (R = r

∣∣∣X(.) = x(.))p̄(xn:1, . . . , xn:n)dxn:1, . . . , dxn:n,

what proves (ii). 2

We say that the random vector X satisfies the hypothesis of randomness H0, if it has a
probability distribution with density of the form

p(x) =
n∏
i=1

f(xi), x ∈ IRn

where f is an arbitrary one-dimensional density. Otherwise speaking, X satisfies the hy-
pothesis of randomness provided its components are a random sample from an absolutely
continuous distribution. We say that the random vector X satisfies the hypothesis of
exchangeability H∗, if

p(x1, . . . , xn) = p (xr1 , . . . , xrn)

for every permutation (r1, . . . , rn) of 1, . . . , n. If X satisfies H0, then it obviously satisfies
H∗. The following Lemma follows from Lemma 1.1.1.

Lemma 1.1.2 If X satisfies H0 or H∗, then X(.) and R are independent, the vector of
ranks R has the uniform discrete distribution

IP (R = r) =
1

n!
, r ∈ R

and the distribution of X(.) has the density

p̄(xn:1, . . . , xn:n) =

{
n!p(xn:1, . . . , xn:n) . . . xn:1 ≤ . . . ≤ xn:n

0 . . . otherwise.

1.1.2 Marginal distributions of the random vectors R and X(.)

under H0 :

Lemma 1.1.3 Let X satisfy the hypothesis H0. Then

(i) Pr(Ri = j) = 1
n
∀i, j = 1, . . . , n.

(ii) Pr(Ri = k,Rj = m) = 1
n(n−1)

for 1 ≤ i, j, k,m ≤ n, i 6= j, k 6= m.

(iii) IERi = n+1
2
, i = 1, . . . , n.
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(iv) var Ri = n2−1
12

, i = 1, . . . , n.

(v) cov(Ri, Rj) = −n+1
12
, 1 ≤ i, j ≤ n, i 6= j.

(vi) If X has density p(x1, . . . , xn) =
∏n

i=1 f(xi), then Xn:k has the distribution with
density

f(n)(x) = n

(
n− 1
k − 1

)
(F (x))k−1(1− F (x))n−kf(x), x ∈ IR1

where F (x) is the distribution function of X1, . . . , Xn.

(vii) If X has uniform R[0, 1] distribution, then Xn:i has beta B(i, n− i+ 1) distribution
with the expectation and variance

IEXn:i =
i

n+ 1
, Var Xn:i =

i(n− i+ 1)

(n+ 1)2(n+ 2)
.

Proof. Lemma follows immediately from Lemma 1.1.2. 2

1.2 Locally most powerful rank tests

We want to test a hypothesis of randomness H0 on the distribution of X. The rank test
is characterized by test function Φ(R). The most powerful rank α−test of H0 against a
simple alternative K : {Q} [that X has the fixed distribution Q] follows directly from the
Neyman-Pearson Lemma:

Φ(r) =


1 ...n! Q(R = r) > kα

0 ...n! Q(R = r) < kα

γ ...n! Q(R = r) = kα, r ∈ R

where kα and γ are determined so that

#{r : n! Q(R = r) > kα)}+ γ#{r : n! Q(R = r) = kα} = n!α, 0 < α < 1.

If we want to test against a composite alternative and the uniformly most powerful
rank tests do not exist, then we look for a rank test, most powerful locally in a neighbor-
hood of the hypothesis.

Definition 1.2.1 Let d(Q) be a measure of distance of alternative Q ∈ K from the hypo-
thesis H. The α−test Φ0 is called the locally most powerful in the class M of α−tests of H
against K if, given any other test Φ ∈M, there exists ε > 0 such that the power-functions
of Φ0 and Φ satisfy the inequality

βΦ0(Q) ≥ βΦ(Q) ∀Q satisfying 0 < d(Q) < ε.
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1.3 Structure of the locally most powerful rank tests

of H0 :

Theorem 1.3.1 Let A be a class of densities, A = {g(x, θ) : θ ∈ J } such that

J ⊂ IR1 is an open interval, J 3 0.

g(x, θ) is absolutely continuous in θ for almost all x.

Moreover, let for almost all x there exist the limit

ġ(x, 0) = lim
θ→0

1

θ
[g(x, θ)− g(x, 0)]

and lim
θ→0

∫ ∞

−∞
|ġ(x, θ)|dx =

∫ ∞

−∞
|ġ(x, 0)|dx.

Consider the alternative K = {q∆ : ∆ > 0}, where

q∆(x1, . . . , xn) =
n∏
i=1

g(xi,∆ci),

c1, . . . , cn given numbers. Then the test with the critical region

n∑
i=1

cian(Ri, g) ≥ k

is the locally most powerful rank test of H0 against K on the significance level α =
P (
∑n

i=1 cian(Ri, g) ≥ k), where P is any distribution satisfying H0,

an(i, g) = IE

[
ġ(Xn:i, 0)

g(Xn:i, 0)

]
, i = 1, . . . , n are the scores

where Xn:1, . . . , Xn:n are the order statistics corresponding to the random sample of size
n from the population with the density g(x, 0).

Proof. Of Q∆ is the probability distribution with the density q∆, then, for any permu-
tation r ∈ R,

lim
∆→0

1

∆
[n! Q∆(R = r)− 1] =

n∑
i=1

ci an(ri, g). (1.3.1)

If (1.3.1) is true, then there exists an ε > 0 such that

n∑
i=1

ci an(ri, g) >
n∑
i=1

ci an(r
′
i, g) =⇒ Q∆(R = r) > Q∆(R = r′)

for all ∆ ∈ (0, ε) and for different r, r′ ∈ R; then we reject Q∆ for r ∈ R such that∑n
i=1 ci an(ri, g) > k for a suitable k. So we must prove (1.3.1), what we shall do as
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follows: We can write

1

∆
[Q∆(R = r)−Q0(R = r] =

∫
R=r

. . .

∫
1

∆

[
n∏
i=1

g(xi,∆ci)−
n∏
i=1

g(xi, 0)

]
dx1, . . . , dxn

=
n∑
i=1

∫
R=r

. . .

∫
1

∆
(g(xi,∆ci)− g(xi, 0))

i−1∏
j=1

g(xj,∆cj)
n∏

k=i+1

g(xk, 0)dx1, . . . , dxn

where we used the identity

n∏
i=1

Ai −
n∏
j=1

Bj =
n∑
i=1

(Ai −Bi)
i−1∏
j=1

Aj

n∏
k=i+1

Bk.

If ci > 0, then

lim sup
∆→0

∫
R=r

. . .

∫
1

∆
(g(xi,∆ci)− g(xi, 0))

i−1∏
j=1

g(xj,∆cj)
n∏

k=i+1

g(xk, 0)dx1, . . . , dxn

≤ ci

∫
R=r

. . .

∫
|ġ(xi, 0)|

∏
j 6=i

g(xj, 0)dx1, . . . , dxn,

analogously for ci < 0. This, combining with the Fatou lemma, leads to

lim
∆→0

n∑
i=1

∫
R=r

. . .

∫
1

∆
(g(xi,∆ci)− g(xi, 0))

i−1∏
j=1

g(xj,∆cj)
n∏

k=i+1

g(xk, 0)dx1, . . . , dxn

=
n∑
i=1

∫
R=r

. . .

∫
ciġ(xi, 0)

∏
j 6=i

g(xj, 0)dx1, . . . , dxn

n∑
i=1

ci

∫
R=r

. . .

∫
ġ(xi, 0)

g(xi, 0)

n∏
j=1

g(xj, 0)dx1, . . . , dxn =
1

n!

n∑
i=1

ciIE

[
ġ(Xi, 0)

g(Xi, 0)

∣∣∣R = r

]

=
1

n!

n∑
i=1

ci an(ri, g).

regarding that g(x, 0) = 0 and ġ(x, 0) 6= 0 can happen simultaneously only on the set of
measure 0. This implies (1.3.1). 2

1.3.1 Special cases

I. Two-sample alternative of the shift in location: K1 : {q∆ : ∆ > 0} where

q∆(x1, . . . , xN) =
m∏
i=1

f(xi)
N∏

i=m+1

f(xi −∆)
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with f being a fixed absolutely continuous density such that
∫∞
−∞ |f

′(x)|dx < ∞. Then
the locally most powerful rank α−test of H0 against K has the critical region

N∑
i=m+1

aN(Ri, f) ≥ k

where k satisfies the condition P (
∑N

i=m+1 aN(Ri, f) ≥ k) = α, P ∈ H0 and

aN(i, f) = IE

[
−f

′(XN :i)

f(XN :i)

]
, i = 1, . . . , N

where XN :1 < . . . < XN :N are the order statistics corresponding to the sample of size N
from the distribution with the density f. The scores may be also written as

aN(i, f) = IEϕ(UN :i, f), i = 1, . . . , N

where ϕ(u, f) = −f ′(F−1(u))
f(F−1(u))

, 0 < u < 1 and UN :1, . . . , UN :N are the order statistics

corresponding to the sample of size N from the uniform R(0, 1) distribution. Another
form of the scores is

aN(i, f) = N

(
N − 1
i− 1

)∫ ∞

−∞
f ′(x)F i−1(x)(1− F (x))N−idx.

Remark 1.3.1 The computation of the scores is difficult for some densities; if there are
no tables of the scores at disposal, they are often replaced by the approximate scores

aN(i, f) = ϕ

(
i

N + 1

)
= ϕ(IEUN :i, f), i = 1, . . . , N, i = 1, . . . , N.

The asymptotic critical values coincide for both types of scores.

II. Alternative of simple linear regression: K2 = {q∆ : ∆ > 0} where q∆(x1, . . . , xn) =∏n
i=1 f(xi − ∆ci) with a fixed absolutely continuous density f and with given constants

c1, . . . , cn,
∑n

i=1 c
2
i > 0. Then the locally most powerful rank α-test has the critical region

n∑
i=1

ci an(Ri, f) ≥ k (1.3.2)

with the the same scores as in case I, and with k determined by the condition

IP

(
n∑
i=1

ci an(Ri, f) > k

)
+ γIP

(
n∑
i=1

ci an(Ri, f) > k

)
= α.

In the practice we most often use the test with the Wilcoxon scores: Put
ϕ(u) = u− 1

2
and reject H0 provided

Wn =
n∑
i=1

ci Ri > k, where k is such that
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P

(
n∑
i=1

ci Ri > k
∣∣∣H0

)
+ γP

(
n∑
i=1

ci Ri = k
∣∣∣H0

)
= α, 0 ≤ γ < 1.

This test is the locally most powerful against K2 with F logistic with the density

f(x) =
e−x

(1 + e−x)2
, x ∈ IR

but is rather efficient also for other alternatives. For large n we use the normal approxi-
mation of Wn : If n → ∞, then Wn has asymptotically normal distribution under H0 in
the following sense:

lim
n→∞

PH0

{
Wn − IEWn√

var Wn

< x

}
= Φ(x), x ∈ IR1,

where Φ is the standard normal distribution function.
To be able to use the normal approximation, we must know the expectation and

variance of Wn under H0. The following Lemma gives the expectation and the variance
of a more general linear rank statistic, covering the Wilcoxon as well other rank tests.

Lemma 1.3.1 Let the random vector (R1, . . . , Rn) have the discrete uniform distribution
on the set R of all permutations of numbers 1, . . . , n, i.e. IP (R = r) = 1

n!
, r ∈ R; let

c1, . . . , cN and a1 = a(1), . . . , an = a(n) are arbitrary constants. Then the expectation and
variance of the linear statistic Sn =

∑n
i=1 ci a(Ri) are

IESN =
1

n

n∑
i=1

ci

n∑
j=1

aj

var Sn =
1

n− 1

n∑
i=1

(ci − c̄)2

n∑
j=1

(aj − ā)2,

where c̄ = 1
n

∑n
i=1 ci, ā = 1

n

∑n
i=1 ai.

Proof. The proposition follows from the distribution of R under H0.

1.4 Rank tests for simple regression model

with nonrandom regressors

Let X1, . . . , XN be independent random variables with continuous distribution funtions
F1, . . . , FN , where

Fi(x) = F (x− β0 − βci), i = 1, . . . , N, x ∈ R,

F is continuous, cN = (c1, . . . , cn)
′ is a vector of (known) regression constants (not all

equal), and (β0, β) are unknown parameters; we call β0 an intercept of the regression line
and β is called the regression coefficient. Our first hypothesis is that there is no regression,

H
(1)
0 : β = 0 against K(1) : β 6= 0 or K

(1)
+ : β > 0, (1.4.1)
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where β0 is considered as a nuisance parameter. We may be also interested in the joint
hypothesis

H
(2)
0 : (β0, β) = 0 against K(2) : (β0, β) 6= 0. (1.4.2)

The third hypothesis is

H
(3)
0 : β0 = 0 against K(3) : β0 6= 0 or K

(3)
+ : β0 > 0, (1.4.3)

where β is treated as a nuisance parameter.
In either case there exists a distribution-free rank test, whose critical values do not

depend on F. We can also consider β = β∗ or (β0, β) = (β∗0 , β
∗); then we work with

X∗
i = Xi − β∗0 − β∗ci, i = 1, . . . , N.

1.4.1 Rank tests for H
(1)
0

Let RN = (RN1, . . . , RNN) be the ranks of X1, . . . , XN . Choose some nondecreasing score
function ϕ : (0, 1) 7→ R and put

SN =
N∑
i=1

(ci − c̄N)aN(RNi), c̄N =
1

N

N∑
i=1

ci (1.4.4)

where the scores have the form

aN(i) = IEϕ(UN :i) or ϕ

(
i

N + 1

)
, 1 ≤ i ≤ N, (1.4.5)

where UN :1 ≤ . . . UN :N are the order statistics corresponding to the sample U1, . . . , UN
from the uniform R(0, 1) distribution. Under H

(1)
0 , it holds F1(x) = . . . = FN(x) =

F (x − β0) = F0(x) (say), where F0 is continuous. Because the ties between X1, . . . , XN

can happen with probability 0, we have

IP
{
RN = rN

∣∣∣H(1)
0

}
=

1

N !
∀rN ∈ RN (permutations),

hence

IP{RNi = k| H(1)
0 } = 1

N
∀i, k, 1 ≤ i, k ≤ N

IP{RNi = k,RNj = `| H(1)
0 } = 1

N(N−1)
∀i, j, k, `, 1 ≤ i 6= j, k 6= ` ≤ N.

Hence,

IE{SN | H(1)
0 } =

N∑
i=1

(ci − c̄N)IE{aN(RNi)| H(1)
0 } =

1

N

N∑
i=1

(ci − c̄N)
N∑
j=1

aN(i) = 0,

Var {SN | H(1)
0 } =

1

N − 1

N∑
i=1

(ci − c̄N)2

N∑
j=1

(aN(i)− āN)2
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The distribution of SN under H
(1)
0 does not depend on F and on β0, hence we reject H

(1)
0

in favor of {K(1)
+ : β > 0} when SN > k+

α and reject with probability γ when SN = k+
α ,

where k+
α is determined so that

IP{SN > k+
α | H

(1)
0 }+ γIP{SN = k+

α | H
(1)
0 } = α

and α = 0.05 or 0.01, for instance. Similarly, we reject H
(1)
0 in favor of {K(1) : β 6= 0}

when |SN | > kα and reject with probability γ ∈ [0, 1) when |SN | = kα, where kα is
determined so that

IP{|SN | > kα| H(1)
0 }+ γIP{|SN | = kα| H(1)

0 } = α.

For small N we can calculate the critical values k+
α and kα; but for large N we must use

an asymptotic approximation. The asymptotic distribution of SN under H
(1)
0 is based on

the following theorems, proved by Hájek (1961):

Theorem 1.4.1 Let RN = (RN1, . . . , RNN) be a random vector such that

IP{R = r} =
1

N !
∀r ∈ R

and let {aN(i), 1 ≤ i ≤ N} and {cN(i), 1 ≤ i ≤ N} be two sequences of real numbers
such that, as N →∞,

max
1≤i≤N

(aN(i)− āN)2∑N
j=1(aN(j)− āN)2

→ 0, max
1≤i≤N

(cN(i)− c̄N)2∑N
j=1(cN(j)− c̄N)2

→ 0 (Noether condition).

(1.4.6)
Then

IP

{
SN − IESN√

Var SN
≤ x

}
→ Φ(x) as N →∞ ∀x ∈ R

where Φ is the standard normal distribution function, if and only if, for every ε > 0,

lim
N→∞

{
1

N

N∑
i=1

N∑
j=1

κ2
N, ij I[|κN, ij| > ε]

}
= 0 (Lindeberg condition) (1.4.7)

and

κN, ij =
(aN(i)− āN)(cN(j)− c̄N){

N−1
∑N

k=1(aN(k)− āN)2
∑N

`=1(cN(`)− c̄N)2
}1/2

, i, j = 1, . . . , N.

Theorem 1.4.2 (Projection theorem). If aN(1) ≤ . . . ≤ aN(N) and

max
1≤i≤N

(aN(i)− āN)2∑N
j=1(aN(j)− āN)2

→ 0 as N →∞,

then SN is asymptotically equivalent in the quadratic mean to the statistic

TN =
N∑
i=1

(cN(i)− c̄N)a0
N(Ui) +Nc̄N āN
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in the sense that

lim
N→∞

IE

[
(SN − TN)2

Var SN

]
= 0.

Here

a0
N(i) = aN(i) for

i− 1

N
< u ≤ i

N
, i = 1, . . . , N

and U1, . . . , UN is a random sample from the uniform R(0, 1) distribution.

Corollary 1.4.1 Let

κN, ij =
(aN(i)− āN)(ci − c̄N)

ANCN
, i, j = 1, . . . , N,

A2
N = (N − 1)−1

N∑
k=1

(ak − āN)2, C2
N =

N∑
`=1

(c` − c̄N)2,

and let the sequences {aN(1) . . . , aN(N)} and {c1, . . . , cN} satisfy the Noether condition
(1.4.6). Then

lim
N→∞

IP

{
SN

ANCN
≤ x

∣∣∣H(1)
0

}
= Φ(x) ∀x ∈ R.

The asymptotic rank test rejects H
(1)
0 in favor of K

(1)
+ on the significance level α if

SN
ANCN

≥ Φ−1(1− α)

and in favor of K(1) if
|SN |
ANCN

≥ Φ−1
(
1− α

2

)
,

respectively.

1.4.2 Rank tests for H
(2)
0

The hypothesis
H

(2)
0 : (β0, β) = 0

we shall test under the condition of symmetry on F, i.e.

F (x) + F (−x) = 1 for x ∈ R.

Because the ranks are invariant to the shift in location, the test should also involve the
signs of observations. Let R+

Ni be the rank of |X|Ni among |X|N1, . . . , |X|NN , i = 1, . . . , N.
Choose a score-generating function ϕ∗ : (0, 1) 7→ [0,∞) and the scores a∗N(1), . . . , a∗N(N)

generated by ϕ∗ in the same manner as in (1.4.5). Under the hypothesis H
(2)
0 , the observa-

tions are independent and identically distributed with a continuous distribution function
F, symmetric about 0. Consider two statistics

S+
N,1 =

N∑
i=1

a∗N(R+
Ni)sign Xi, S+

N,2 =
N∑
i=1

cia
∗
N(R+

Ni)sign Xi, SN = (S+
N,1, S

+
N,2)

′
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and denote

λ
(N)
11 = N, λ

(N)
12 =

N∑
i=1

ci, λ
(N)
22 =

N∑
i=1

c2i , Λ(N) =
∥∥∥λ(N)

ij

∥∥∥
i,j=1,2

.

Under H
(2)
0 and under symmetry of F, the vector (sign X1 · R+

N1, . . . , sign XN · R+
NN)

can take on N !2N values, each with probability 1/(N !2N), and sign Xi is independent of
R+
Ni, i = 1, . . . , N. Hence,

IE(S+
N |H

(2)
0 ) = 0,

IE(S+
NS+′

N |H
(2)
0 ) = A∗2NΛ(N),

A∗2N =
1

N

N∑
i=1

(a∗N(i))2 .

Consider the following test criterion

W+
N = S+′

N

(
IE

H
(2)
0

S+
NS+′

N

)−1

S+
N =

(
S+′
N Λ−1

N SN
)
/A∗2N . (1.4.8)

Under H
(2)
0 and under symmetry of F, the distribution of W+

N does not depend on the
unknown F. However, the exact distribution of W+

N is very laborious to calculate, hence
we should again use the asymptotic approximation. The asymptotic behavior is described
in the following theorem:

Theorem 1.4.3 Assume that the sequences {aN(i), 1 ≤ i ≤ N} and {cNi, 1 ≤ i ≤ N}
satisfy, as N →∞,

max1≤i≤N a
2
N(i)∑N

j=1 a
2
N(j)

→ 0,
max1≤i≤N c

2
Ni∑N

j=1 c
2
Nj

→ 0.

Denote

κN,ij =
aN(i)cNj[

N−1
∑N

k=1 a
2
N(k)

∑N
`=1 c

2
N`

]1/2 , i, j = 1, . . . , N.

Then, under H
(2)
0 and under symmetry of F, the sequence (S+

N2 − IES+
N2)/

√
VarS+

N2 is
asymptotically normally distributed N(0, 1) if and only if, for every ε > 0,

lim
N→∞

{
1

N

N∑
i=1

N∑
j=1

κ2
N,ijI[|κN,ij| > ε]

}
= 0 (Lindeberg condition).

If we further apply Theorem 1.4.3 to cni = 1, i = 1, . . . , N, we conclude that the ran-

dom vector S+
N has asymptotically a bivariate normal distribution N2

(
0, A∗NΛ(N)

)
. This

implies that under H
(2)
0 and under symmetry of F, W+

N has asymptotically χ2 distribu-

tion with 2 degrees of freedom. Hence, the asymptotic test rejects H
(2)
0 in favor K(2) if

W+
N ≥ χ2

2,α.
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1.4.3 Example

A group of students, boys and girls, graduated in a summer language course. They passed
two tests, before and after the course. The responses in the table are differences in the
tests scores for each individual; ci = 1 for a boy and ci = −1 for a girl.

# response ci RNi R+
Ni ciRNi sign XiR

+
Ni

1 5.2 1 19 19 19 19
2 -0.7 1 6 63 6 -6
3 -2.3 1 2 13 2 -13
4 3.2 1 16 15 16 15
5 -1.5 1 4 9 4 -9
6 4.7 1 18 18 18 18
7 1.8 1 14 12 14 12
8 -0.4 1 8 3 8 -3
9 0.6 1 11 5 11 5

10 6.6 1 20 20 20 20
11 -0.9 -1 5 8 -5 -8
12 1.7 -1 13 11 -13 11
13 -0.3 -1 9 2 -9 -2
14 2.4 -1 15 14 -15 146
15 4.2 -1 17 16 -17 16
16 -1.6 -1 3 10 -3 -10
17 -4.3 -1 1 17 -1 -17
18 0.8 -1 12 7 -12 7
19 -0.5 -1 7 4 -7 -4
20 -0.2 -1 10 1 -10 -1

We want to test whether the course had an effect and whether there is a difference between
the performance of boys and girls. We take the Wilcoxon scores, aN(i) = a∗N(i) = i

21
, i =

1, . . . , 20 and get
SN

ANCN
= 0.9826 < 1.96 = Φ−1(0.95),

W+
N = 2.368 < 5.99 = χ2

2(0.95).

Hence, we cannot reject either of the hypotheses.
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1.5 Rank tests for some multiple

linear regression models

Consider the linear regression model

Yi = β0 + x′iβ + ei, i = 1, . . . , N (1.5.1)

where β0 ∈ R1, β ∈ Rp are unknown parameters and ei, . . . , eN are independent errors,
identically distributed according to a continuous d.f. F and xi ∈ Rp are given regressors,
i = 1, . . . , N. Denote

XN =

 x′1
...

x′N


the regression matrix. We shall first consider the hypotheses

H
(1)
0 : β = 0 versus K(1) : β 6= 0

and
H

(2)
0 : β∗ = (β0,β

′)′ = 0 versus K(2) : β∗ 6= 0.

The hypotheses and tests are extensions of those for the regression line.

1.5.1 Rank tests for H
(1)
0

Let RN1, . . . , RNN be the ranks of Y1, . . . , YN and let aN(1), . . . , aN(N) be the scores
generated by a nondecreasing, square-integrable score function ϕ : (0, 1) 7→ R1 so that
aN(i) = ϕ

(
i

N+1

)
, i = 1, . . . , N.

Consider the linear rank statistics

SNj =
N∑
i=1

(xij − x̄Nj)aN(RNi), x̄Nj =
1

N

N∑
i=1

xij, j = 1, . . . , N

and the vector

SN =
N∑
i=1

(xi − x̄N)aN(RNi) = (SN1, . . . , SNp)
′.

The distribution function of observation Yi under H
(1)
0 is F (y− β0), i = 1, . . . , N. Hence,

(RN1, . . . , RNN) assumes all possible permutations of (1, 2, . . . , N) with equal probability
1
N !
. Hence, the expectation and covariance matrix of SN under H

(1)
0 are

IE(SN |H(1)
0 ) = 0 and IE(SNS′N |H

(1)
0 ) = A2

NQN ,

where

A2
N =

1

N − 1

N∑
i=1

(aN(i)− āN)2, QN =
N∑
i=1

(xi − x̄N)(xi − x̄N)′.
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Our test for H
(1)
0 is based on the quadratic form

SN = A−2
N

(
S′NQ−1

N SN
)
, (1.5.2)

where Q−1
N is replaced by the generalized inverse Q−

N if QN is singular. We reject H
(1)
0 if

SN > kα where kα is a suitable critical value.

Notice that SN depends only on x1, . . . ,xN , on the scores aN(1), . . . , aN(N) and on
the ranks RN1, . . . , RNN . Hence, the distribution of SN and thus also that of SN under
the hypothesis H

(1)
0 does not depend on the distribution function F of the errors. For

small N, the critical value can be calculated numerically, but it would become laborious
with increasing N. Hence, again, we should use the large-sample approximation. This can
be derived under some conditions on the matrix XN , and on the scores:

Theorem 1.5.1 Assume that

(i) the matrix QN is regular for N > N0 and

max
1≤i≤N

(xi − x̄N)′Q−1
N (xi − x̄N) → 0 as N →∞,

(ii) the scores satisfy the Noether condition, i.e.

max
1≤i≤N

(aN(i)− āN)2∑N
j=1(aN(j)− āN)2

→ 0 as N →∞,

(iii)

lim
N→∞

[
1

N

N∑
i=1

N∑
j=1

δ2
N,ijkI[|δN,ijk| > ε]

]
= 0 for every ε > 0, ∀k = 1, . . . , p,

where

δN,ijk =
(aN(i)− āN)(xjk − x̄k)[

N−1
∑N

i=1(aN(i)− āN)2
∑N

j=1(xjk − x̄k)2
]1/2 , k = 1, . . . , p, i, j = 1, . . . , N.

Then, under H
(1)
0 , the criterion SN in (1.5.2) has asymptotically χ2 distribution with p

degrees of freedom.

Remark 1.5.1 We reject hypothesis H
(1)
0 on the significance level α if

SN > χ2
p(1− α),

where χ2
p(1− α) is the (1− α) quantile of the χ2 distribution with p degrees of freedom.
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Sketch of the proof. It suffices to show that under H
(1)
0 the asymptotic distribution of

SN is p-dimensional normal with expectation equal to 0 and dispersion matrix A2
NQN .

Then the quadratic form SN will have asymptotically the χ2(p). To prove the asymptotic
normality of SN , we must prove that, for any vector λ ∈ Rp, λ 6= 0, the scalar product
λ′SN has asymptotically normal distribution N (0,λ′A2

NQNλ). But

λ′SN =
N∑
i=1

[λ′(xi − x̄N)]aN(RNi)

and its coefficients λ′(xi − x̄N) satisfy the Noether condition (1.4.6), because

max
1≤i≤N

[λ′(xi − x̄N)]2∑N
j=1[λ

′(xj − x̄N)]2
= max

1≤i≤N

λ′(xi − x̄N)(xi − x̄N)′λ

λ′QNλ

≤ max
1≤i≤N

‖xi − x̄‖2 · κmax(Q−1
N ) = max

1≤i≤N
κmax{(xi − x̄)′Q−1(xi − x̄)} → 0.

Moreover, we can show by some arithmetics that the entities

δN,ij(λ) =
λ′(xi − x̄)(aN(j)− āN)

N−1
∑N

i=1[λ
′(xi − x̄)]2

∑N
j=1(aN(j)− āN)2

satisfy the Lindeberg condition (1.4.7). Then the asymptotic normality of the scalar pro-
duct will follow from Theorem 1.4.3 for every λ 6= 0. 2

1.5.2 Rank tests for H
(2)
0

Consider again the model Yi = β0 +x′iβ+ei, i = 1, . . . , N, and assume that the errors ei
have a symmetric distribution function, F (x) + F (−x) = 1 ∀x. Let R+

N1, . . . , R
+
NN be the

ranks of |Y1|, . . . , |YN |. Choose a score-generating function ϕ∗ : (0, 1) 7→ [0,∞) and the
scores a∗N(1), . . . , a∗N(N) generated by ϕ∗. Put xi0 = 1, i = 1, . . . , N, and for j = 0, 1, . . . , p
consider the signed-rank statistics

S+
N,j =

N∑
i=1

xij sign Yi a
∗
N(R+

Ni)

and the vector
S+
N = (S+

N,0, S
+
N,1, . . . , S

+
N,p)

′.

Then, under H
(2)
0 ,

IE
(
S+
N |H

(2)
0

)
= 0 and IE

(
S+
NS+′

N |H
(2)
0

)
= A∗2NQ∗

N ,

where A∗2N = 1
N

∑N
i=1[a

∗
N(i)]2 and

Q∗
N =

N∑
i=1

x∗ix
∗′
i =

[
N∑
i=1

xijxij′

]
j,j′=0,1,...,p
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and x∗i = (xi0,, xi1, . . . , xip)
′.

The test criterion will be the quadratic form

S+
N = A∗−2

N

(
S+′
N (Q∗

N)−1S+
N

)
.

The distribution of S+
N (and hence of S+

N) is generated by N !2N equally probable realiza-
tions of (sign Y1, . . . , sign YN) and (R+

N1, . . . , R
+
NN).

The asymptotic distribution of S+
N under H

(2)
0 will be χ2(p+ 1), provided

max
1≤i≤N

x∗′i (Q∗
N)−1x∗i → 0 as N →∞,

(a∗N(1), . . . , a∗N(N)) satisfy the Noether condition (1.4.6), and under the Lindeberg con-
dition (1.4.7) on some mixed terms corresponding to x∗i and a∗N(i), analogously as under
the regression line.

1.6 Rank estimation

in simple linear regression models

1.6.1 Estimation of the slope β of the regression line

Let Y1, . . . , YN be independent random variables, Yi have a distribution function

Fi(y) = F (y − β0 − β(xi − x̄N)), i = 1, . . . , N

where F is continuous. We want to estimate the parameter β with the aid of ranks.
Denote

Yi(b) = Yi − (xi − x̄N)b, 1 ≤ i ≤ N, b ∈ R1.

Let TN(Y1, . . . , YN) be a test statistics for testing H0 : β = 0 and assume that under H0

the distribution of TN is symmetric about µN or that IEH0TN = µN .
If TN(Y1(b), . . . , YN(b)) is nonincreasing in b ∈ R1, then we can define the estimate of

β as

β̂N = 1
2
(β̂−N + β̂+

N), (1.6.1)

β̂−N = sup{b : TN(b) > µN}, β̂+
N = inf{b : TN(b) < µN}.

If TN =
∑N

i=1(xi − x̄N)(Yi − ȲN), then µN = 0 and TN(b) is linear in b; the estimator is
the least-squares estimator 0f β.

Lemma 1.6.1 Let TN = SN =
∑N

i=1(xi − x̄N)aN(RNi) where aN(1) ≤ . . . ≤ aN(N) (not
all equal) and RNi is the rank of Yi, i = 1, . . . , N. Then SN(b) is nonincreasing in b.

Proof. See Puri and Sen (1985).

The following Lemma shows that SN is symmetrically distributed under some condi-
tions.
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Lemma 1.6.2 Let either

xi − x̄N = x̄N − xN−i+1, i = 1, . . . , N (1.6.2)

or

ai − āN = āN − aN−i+1, i = 1, . . . , N. (1.6.3)

Then, if β = 0, the distribution of SN is symmetric about 0.

Proof. Let (1.6.2) hold. Because (RN1, . . . , RNN) have the same distribution as
(RNN , . . . , RN1), then SN has the same distribution as S̄N =

∑N
i=1(xi−x̄N)aN(RN,N−i+1) =

−SN .
Similarly we proceed under (1.6.2). 2

Properties of β̂N :

1. β̂N(Y1 + x1b, . . . , YN + xNb) = β̂N(Y1, . . . , YN) + b ∀b ∈ R1.

2. β̂N(cY1, . . . , cYN) = cβ̂N(Y1, . . . , YN) ∀c > 0.

3. IP (β̂N < a) ≤ IP (SN(a) < µn) ≤ IP (SN(a) ≤ µN) ≤ IP (β̂N ≤ a)

Asymptotic normality of β̂N :

Theorem 1.6.1 Assume that {xN1, . . . , xNN} satisfy the conditions

0 < lim
N→∞

1

N

N∑
i=1

(xNi − x̄N)2 = C2
0 <∞, (1.6.4)

max
1≤i≤N

1

N
(xNi − x̄N)2 → 0 as N →∞.

Let aN(i) = IEϕ(UN :i) or = ϕ
(

i
N+1

)
, i = 1, . . . , N, where ϕ is nondecreasing on (0, 1)

and

A2
ϕ =

∫ 1

0

ϕ2(u)du <∞,

∫ 1

0

ϕ(u)du = 0.

Let F have finite Fisher’s information, i.e.

A2
ψ =

∫ 1

0

ψ2(u)du, where ψ(u) = −f
′(F−1(u))

f(F−1(u))
, 0 < u < 1.

Then
{
N1/2(β̂N − β)

}∞
N=1

is asymptotically normally distributed

N
(

0,
A2
ϕ

C2
0γ

2(ϕ, F )

)
, γ(ϕ, F ) =

∫ 1

0

ϕ(u)ψ(u)du.
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1.6.2 Estimation in multiple regression model

Let Y1, . . . , YN be independent observations, Yi have distribution function

Fi(y) = F (y − β0 − (xi − x̄N)′β), xi ∈ Rp, 1 ≤ i ≤ N.

Consider the (vector) linear rank statistic

SN(b) =
N∑
i=1

(xi − x̄N)aN(RNi(b)) = (SN1(b), . . . , SNN(b))′,

where RNi(b) is the rank of Yi − x′b, i = 1, . . . , N, and the scores are nondecreasing.
Obviously IESN(0) = 0. Define

DN =
{
b : ‖SN(b)‖ = min, b ∈ Rp

}
where ‖ · ‖ is either L1 or the L2-norm. If DN is a convex set, then we can define the

center of gravity of DN as an estimator β̂N of β.
Assume that xNi satisfy the (Noether) condition

max
1≤i≤N

(xNi − x̄N)′Q−1
N (xNi − x̄N) → 0 as N →∞,

where QN =
∑N

i=1(xNi − x̄N)(xNi − x̄N)′. If F has the finite Fisher’s information, then{
N1/2(β̂N − β)

}
is asymptotically normally distributed

Np

(
0,

A2
ϕ

γ2(ϕ, F )

(
1
N
QN

)−1
)
.

1.7 Aligned rank tests about the intercept

1.7.1 Regression line

Let Y1, . . . , YN are independent, Yi has distribution function

Fi(y) = IP (Yi ≤ y) = F (y − β0 − (xi − x̄N)β), 1 ≤ i ≤ N, y ∈ R.

Consider the hypothesis

H0 : β0 = 0 versus K+ : β0 > 0 or K : β0 6= 0

where β is treated as a nuisance parameter. If β 6= 0, then Y1, . . . , YN are not identically
distributed, and we cannot use their ranks. If we have an estimate β̂N of β, we can
consider the ranks of the residuals |Yi − (xi − x̄N)β̂N |, i = 1, . . . , N (aligned ranks) and
an (aligned) signed rank statistics based on them. Under some conditions, such statistic
is asymptotically distribution-free, i.e. under the hypothesis H0 : β0 = 0, its asymptotic
distribution does not depend on F.
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Let β̂N be the rank estimate (1.6.1) based on the linear rank statistic

N∑
i=1

(xi − x̄N)aN(RNi(b)), b ∈ R1.

Ŷi = Yi − (xi − x̄N)β̂N , i = 1, . . . , N and the aligned signed rank statistic

ŜN =
N∑
i=1

sign Ŷi a
∗
N(R+

Ni),

where R+
Ni is the rank of |Yi − (xi − x̄N)β̂N |, i = 1, . . . , N. The test criterion for H0 will

be

TN =
N−1/2ŜN
A∗N

, (A∗N)2 =
1

N

N∑
i=1

(a∗N(i))2.

We reject H0 in favor of K+ if TN > k+
α , and reject H0 in favor of K if |TN | > kα. The

critical values k+
α and kα are determined from the asymptotic normal distribution of TN .

Theorem 1.7.1 Assume that

(i) F is symmetric about 0 and has an absolutely continuous density f and finite and

positive Fisher information, 0 < I(f) =
∫ (f ′(z)

f(z)

)2

dF (z) <∞.

(ii) 1
N

∑N
i=1(xi−x̄N)2 → C2, 0 < C <∞, and 1

N
[max1≤i≤N(xi − x̄N)2] → 0 as N →∞.

(iii) ϕ(t) is nondecreasing, ϕ(1− t) = −ϕ(t), t ∈ (0, 1), and

0 < A2(ϕ) =
∫ 1

0
ϕ2(t)dt <∞. Put ϕ∗(u) = ϕ

(
u+1

2

)
, 0 < u < 1 and

a∗N(i) = IEϕ∗(UN :i) or a∗N(i) = ϕ∗
(

i
N+1

)
, i = 1, . . . , N.

Then, under H0 : β0 = 0, the criterion TN has asymptotically normal distribution with
mean 0 and variance 1.

Sketch of he proof. Because limN→∞ A∗N = A2(ϕ) and N1/2(β̂N − β) = Op(1), it can
be proved (not elementary) that under H0

N−1/2[ŜN − SN(β)]
p→ 0 as N →∞, (1.7.5)

where

SN(β) =
N∑
i=1

sign(Yi(β)) a∗N(R+
Ni(β)),

where Yi(β) = Yi−(xi−x̄N)β and R+
Ni(β) is the rank of Yi(β) = Yi−(xi−x̄N)β, 1 ≤ i ≤ N.

Under H0 are Yi(β) = Yi − (xi − x̄N)β independent and identically distributed with d.f.
F symmetric about 0. It was shown earlier that

N−1/2SN(β)
d→ N (0, A2(ϕ)),

hence, regarding (1.7.5), also N−1/2ŜN
d→ N (0, A2(ϕ)). 2

Remark 1.7.1 We reject H0 in favor of K+ on the asymptotic significance level α, pro-
vided TN ≥ Φ−1(1− α), and we reject H0 in favor of K provided |TN | ≥ Φ

(
1− α

2

)
.
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Powers of the tests against local alternatives:

The tests are consistent in the sense that their powers tend to 1 as β0 →∞ (or |β0| → ∞).
However, important is the power for alternatives close the the hypothesis, namely

K1N : β0 = N−1/2λ, λ 6= 0 fixed .

Such alternative is contiguous in the sense of LeCam/Hájek, and it can be shown that the
approximation (1.7.5) holds not only under the hypothesis, but also under K1N . Hence,

N−1/2ŜN has the same asymptotic distribution as SN(β) also under K1N .
Denote τα = Φ−1(1−α), 0 < α < 1. The asymptotic power of the aligned rank test is

IP{TN ≥ τα|K1N} → 1− Φ

(
τα −

λ

Aϕ

∫ 1

0

ϕ(u)ϕf (u)du

)
one-sided test

Comparison: Classical test of H0

The least-squares estimator of β0 is

β̃0N = ȲN =
1

N

N∑
i=1

Yi

and the likelihood ratio statistic is

LN =
√
N
ȲN
sN

, where

s2
N =

1

N − 2

N∑
i=1

[Yi − ȲN − (xi − x̄N)β̃N ]2,

β̃N =

∑N
i=1(xi − x̄N)(Yi − ȲN)∑N

i=1(xi − x̄N)2
.

If σ2 =
∫
z2dF (z) <∞, then

s2
N

p→ σ2, ȲN
p→ β0, β̃N

p→ β as N →∞.

Under H0 : β0 = 0, the likelihood ratio is asymptotically N (0, 1). The asymptotic relative
efficiency of the aligned signed rank test with respect to the likelihood ratio test is

σ2

(∫ 1

0
ϕ(u)ϕf (u)du

)2

∫ 1

0
ϕ2(u)du

≤ σ2I(f).

1.7.2 Multiple regression model

Let Y1, . . . , YN be independent with distribution functions F1, . . . , FN such that

Fi(y) = IP (Yi ≤ y) = F (y − β0 − (xi − x̄N)′β), 1 ≤ i ≤ N, y ∈ R1, β ∈ Rp.
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We want to test the hypothesis

H1 : β0 = 0 versus K+
1 : β0 > 0 or K1 : β0 6= 0,

where β is unspecified. We may also partition β as

β =

(
β1

β2

)
where β1 ∈ Rp1 , β2 ∈ Rp2 , p1 + p2 = p. We want to test the hypothesis

H2 : β2 = 0 versus β2 6= 0

where β0, β1 are unspecified.

Test of H1

Let β̂N be the estimator of β. Consider the residuals Ŷi = Yi − x′iβ̂, i = 1, . . . , N and

the (aligned) ranks R̂+
N1, . . . , R̂

+
NN of |Ŷi|, i = 1, . . . , N. Similarly as in the case of the

regression line, the test is based on the aligned sign rank statistic

ŜN =
N∑
i=1

sign(Ŷi) a
∗
N(R+

Ni)

and the test criterion is

T 2
N =

Ŝ2
N

NA∗2N
, (A∗N)2 =

1

N

N∑
i=1

(a∗N(i))2

T 2
N has asymptotically χ2 distribution with 1 d.f.


