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1 Introduction 
Robust estimators are constructed in such a way that they are insensitive to small devia
tions from the assumed distribution of the model errors; for instance, the Huber estimator 
of the location or regression parameters is minimaximally robust over a family of conta
minated normal distributions. 

Before using a robust estimator, likely operating well in a neighborhood of some distri
bution, we can try to verify a hypothesis on the shape of this distribution; otherwise, we 
can start with a suitable goodness-of-fit test. The %2 and the Kolmogorov-Smirnov tests 
are probably most well-known. Many various other tests can be found in the literature 
(e.g., Huber-Carol et al. (2002)). 

These tests work well in the simplest situation, when our observations Y\,..., Yn are 
independent and identically distributed with a distribution function F, and we want to 
verify the hypothesis H 0 : F = F0, where F0 is a fully specified distribution function. 

However, the hypothetical distribution function F0 is often specified only up to several 
unknown parameters, e.g., up to the location, scale or regression parameters. This is a 
typical situation: our observations can follow a linear regression model, whose parameters 
we want to estimate by a suitable robust estimator, and an approximate knowledge of the 
shape of the distribution of errors would lead to a good choice of the score function. This 
situation is more realistic, but the standard goodness-of-fit tests then lose their simplicity. 

Taking these facts into account, we want to offer some goodness-of-fit tests on the 
shape of the distribution in the presence of nuisance regression and scale parameters. 

2 Tests of normality of the Shapiro-Wilk type with 
nuisance regression and scale parameters 

If the distribution seems to have a symmetric unimodal density, then the first natural 
idea is to test for its normality. A highly intuitive goodness-of-fit test of normality with 
nuisance location and scale parameters was proposed by Shapiro and Wilk (1965). Their 
test has received considerable attention in the literature; its asymptotic null distribution 
was later studied by de Wet and Venter (1973), and recently by Sen (2002). Because 
we often also have a nuisance regression, we shall describe an extension of the Shapiro-
Wilk test of normality to the situation with nuisance regression and scale parameters, 
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constructed by Sen, Jurečková and Picek (2003). Their test is based on the pair of two 
estimators of the standard deviation of errors in the linear regression model, namely on the 
maximum likelihood estimator and on an L-estimator. Similar to the Shapiro-Wilk test, 
the asymptotic equivalence of these estimators is a characteristic property of the normal 
distribution of the errors, i.e., it is true only under the normality, and thus provides a 
test. 

Let Yi,..., Yn be independent observations following the linear model 

Yi = 9 + x'iß + aei, i = l,...,n (2.1) 

where x» E Mp, i = 1 , . . . , n are given regressors, not all equal, 9 E M1, ß E Rp and a > 0 
are unknown intercept, regression and scale parameters, and the errors e j are independent 
and identically distributed according to a continuous distribution function F with location 
0 and scale parameter 1. 

We want to test the hypothesis 

H0 : F = $, against Hi : F = Fi ^ $ (2.2) 

where $ is the standard normal distribution function, F\ is a general nonnormal distrib
ution function, and 9, ß, and a are treated as nuisance parameters. 

For the special location-scale model (i.e., when ß = 0), Shapiro and Wilk (1965) 
proposed a goodness-of-fit test based on two estimators of er: Ln, the BLUE (best linear 
estimator) under H0, and an, the maximum likelihood estimator (MLE) under H0. 

Suppose that Y\,... ,Yn are i.i.d. observations with the distribution Af(ß,a2). Then 
the MLE of a is an, where 

K = n-^(Yt-Y^ (2.3) 
i=\ 

The best linear unbiased estimate (BLUE) Ln of a has the form 

n 

J-'n / J Q"ni* ní V J 
i=\ 

where 
a , = (ai , . . . ,a r a) = (M;V- 1 M r a ) - 1 (M;V; 1 ) , a ^ = 0 (2-5) 

and where Mra = M denotes the vector of expected values of order statistics and Vn = V 
is their variance matrix. Shapiro and Wilk (1965) modified the BLUE of a to Ln0 = 
YH=I am,oYni where (a„i)0, • • •, ann>0)' = a„o is such that 

, _ M'V" 1 

ara° ~ (M'V-iV-iM) 1 7 2 

then a^lra = 0 and a^a^o = 1- Ln0 is asymptotically equivalent to 

T» = - E $ " 1 í ^ r r V n ť (2.7) 
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(see, e.g., Serfling (1980)). Let us write the Shapiro-Wilk criterion in the form 

L 
Wn = n \ l - - ^ \ (2.8) 

Two scale estimators Ln0 and an are asymptotically equivalent if and only if F = $, i.e., if 
the hypothesis of normality is true, while under nonnormal alternative F\ with the finite 
second moment, the sequence \Jn í 1 —-fr j has a nondegenerate asymptotic (normal) 

distribution. It means that the test criterion is consistent with respect to the non-normal 
alternatives. 

We propose the goodness-of-fit test of the hypothesis (2.2) of the normality, based on 
the observations Yi , . . . , Yn, following the linear regression model (2.1) with unknown 9, ß 
and a. The test criterion is 

Wn = nll-^\ (2.9) 

where 

1 '" 

- "£(y* - F™ - $*# 
n 

n 
í=i 

n 

Ĺn = Y,anŕ™ (2.10) 
í=l 

are the residual variance and the linear estimator of a with anito, i = 1 , . . . , n defined in 
(2.6) and the rn:i are the order statistics corresponding to the residuals 

~7 
rni = Yi-Yn-ßxi, i=l,...,n (2.11) 

We assume that the n x p matrix Xra = [xi , . . . , xra]' satisfies 

X'l ra = 0, Rank(Xra) = p < n - 1 
and (2.12) 

max hn>ii = ö(n~l) as n —• oo (the balanced design) 
Ki<n 

where hn>ij = Xj(X'X) 1Xj, i,j = l,...,n. The MLE of parameters 9, ß, a under normal 
$ have the form 

Un 1 n n ±n 1 n V \ 6«,, G« IT' *-n n 

ßn = ( X X ) - 1 ^ = ß + < j(X;Xn)-1en (2.13) 
n 

lY,^-0n-<ßn? ol = n 
í=\ 

Sen, Jurečková and Picek (2003) proved that the asymptotic null distribution of Wn 
coincides with that of Wn; hence, the test rejects the hypothesis of the normality on the 
asymptotic significance level a provided 

Wn > ra (2.14) 
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where ra is the asymptotic critical value of the Shapiro-Wilk test of normality with nui
sance location and scale. The coefficients anito, i = 1 , . . . , n and the critical values of the 
original Shapiro-Wilk test for n < 50 are tabulated in Shapiro and Wilk (1965). The 
critical values for n > 50 we have calculated by a Monte Carlo procedure. 

3 Goodness-of-fit tests for general distribution with 
nuisance regression and scale 

Consider again the linear model (2.1), but this time we have another distribution of 
errors e\,...,en, in mind, and we want to test the hypothesis H 0 : F(e) = F0(e/a), 
for a specified distribution function F0. This is not necessarily normal, but for simplicity 
we assume that F0 G J7, the class of distribution functions is symmetric around 0 and 
possessing a positive density, finite variance and finite Fisher's information. Similarly 
as in the test of normality, our proposed test of H 0 is based on the ratio of two scale 
statistics: the first one is based on regression rank scores äni(a), i = 1,... ,n, 0 < a < 1, 
introduced in Section 4.6, and the second one is an extension of the interquartile range 
to the regression quantiles. 

If F0 E J7, we may choose the score generating function ipo(u) = F0~ľ(u) 
o r ~fó(Fo1(u))/fo(F~~1(u)), 0 < u < 1 (if F0 is strongly unimodal with finite Fisher 
information), because F(e) = F0(e/a), F _ 1 ( M ) = uF~~l{u) under H 0 . Our proposed test 
is based on the statistic 

Tn* = n * { l o g | g - l o g £ ( F o ) } (3-15) 

where 
n 

Sn0 = Sn0(Y) = n-'Ys^bm = n-'Y'K (3.16) 

and bn = (bn\,..., bnn) are the regression scores generated by ipo in the following way: 

l>ni = - <Po(u)däni(u), 2 = 1 , . . . , U (3.17) 

./o 
The second scale statistic Sn\ will be based on the regression quantiles; note that the 
regression quantiles and regression rank scores are asymptotically independent. For sim
plicity, we recommend the regression interquartile range, 

Sm = ßi{\)-ßi{\) (3.18) 

where ß\(a) is the first component of the Cü-regression quantile. Moreover, denote 

So(F) = í vo{u)F-\u)du 
Jo 

S1(F) = F-l(l)-F-l(l) = 2F-l(l) (3.19) 

e(F) = So(F) 
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Note that £(F0) = 6°L°j is a completely known function, because it depends on the chosen 
ifo and on the hypothetical F0, and does not depend on a. 

Jurečková, Picek and Sen (2003) proved that the asymptotic (null) distribution of the 
criterion T* under the hypothesis HQ is normal 

where 

where 

T:^+M(0,T£) (3.20) 

1 
Til = W^)^°° " 2e(Foho1 + e ( F ° h ľ l * (3'21) 

Too = i(ßi- ßl) 

-FöHb 
7o°i = 7ľo = 9 f , F - i , 3 v > / , ! e2dFo(e) - \ß2 

7ľl = WŘW) (3-22) 
ß2= e2dF0(e), ßA= l e4dF0(e) 

JR JR 

qn is the first diagonal element of the matrix D _ 1 where D = lim^^oo D n = lim™-^ n_ 1X'X. 
Then r^ does not depend on a and is positive unless |^y = £(F0) (what happens with 

probability 0). 
We are almost ready to formulate the critical region of the test; however, we should 

think over alternative distributions F against which we wish to have the test consistent. 
We shall introduce the following one- and two-sided alternatives of H0. For a pair 

(F0, F) of distributions, let 

A(F0, F) = So(F)^l^ - So(F0) (3.23) 

and set the partial ordering 

F y F0 or F -< F0 accordingly A(F0,F) is > or < 0 

This partial ordering is linked to Hájek's (1969) interpretation of F having heavier or 
lighter tails than F0. Consider the following alternatives to H0: 

H^ : F y Fo, H r : F -< F0, Uf : H^ U H^ 

Then 

• we reject H0 in favor of H^ on the asymptotic significance level a if 

rp* 

Tbl 
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• we reject H0 in favor of H^ on the asymptotic significance level a if 

rp* 

TOI 

we reject H0 in favor of R"f on the asymptotic significance level a if 

> Ui 
rp* 

n 
2 

where u a = $ ľ(l — a) and $ is the standard normal distribution function. 

4 Numerical illustration 

4.1 Comparison of tests for testing normality 
Let us illustrate the performance of the proposed test on the simulated regression model. 
Concerning the design matrix, we generate three columns as independent identically dis
tributed random variables with uniform distribution on (—10,10) with the first column 
ln added; ß = (2, —2, 1,-1)' and consider 25 rows for it. 

The errors were generated from the following densities: 

normal Af(0,1) : / ( * ) = 
i - Í -= ~/fee 2 

normal A/"(0, 4) : / ( * ) = 
1 - ^ 

= — 7 = e 32 

logistic (0,1) : / ( * ) = 
e-x 

logistic (0,1) : / ( * ) = - (1+e-z)2 

logistic (0, 4) : / ( * ) = 
e-x/4 logistic (0, 4) : / ( * ) = (1+e-^/4)2 

Laplace (0,1) : / ( * ) = 
- le-\x\ 

Laplace (0,4) : / ( * ) = 
- 4 p - 4 | x | 

Cauchy: / ( * ) = 
1 

In order to gain insight into larger sample size behavior for our proposed tests, we also 
generate the design matrix of 100, 250 and 500 rows, respectively; in each case the errors 
&i are generated to insure independence. 

1000 replications were simulated for each case. Based on these data, we calculated the 
test statistics 

hüL | — r, I 1 - ( ^ ľ = l ani,0rn:i) 
š2 \ Tn r2 Wn = n[l-% U J l - ^ ^ ] (4.24) 

where 
r • — D"1 /2 (Y- — 6 - x'/3 
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and 

xnO — (Onl,0) • • • j Q>nnfl) — 
M'V 

(4.25) 
(M'V-iV-iM) 1 7 2 

Because the asymptotic null distributions of the test statistics of the Shapiro-Wilk 
type test Wn are not known for n > 50, they were approximated by the following simple 
Monte Carlo procedure: 
For a fixed n, a random sample of size n from the normal distribution was generated and 
Wn was computed, and this random experiment was repeated 100, 000 times. 

For the sake of comparison, the nonparametric test of Section 7.3 was performed on 
the same data for testing the normality. 
Tables 1-4 give the numbers of rejections of H0 (among 1000 tests) for both statistics 
described above. 

Distribution of errors 

a=0.01 a=0.05 a=0.1 

Distribution of errors wn 
rp* 

n wn 
rp* 

n wn 
rp* 

n 

Normal N{0,1) 

Normal N(0, 4) 

Logistic (0,1) 

Logistic (0,4) 

Laplace (0,1) 

Laplace (0, 4) 

Cauchy (0,1) 

21 

9 

42 

42 

141 

148 

838 

13 

12 

22 

19 

56 

54 

624 

42 

54 

136 

131 

275 

255 

900 

61 

57 

76 

76 

127 

120 

720 

105 

90 

175 

182 

365 

320 

920 

142 

118 

139 

130 

212 

216 

765 

Table 1: Numbers of rejections of H0 among 1000 cases on level a for matrix (25x4) 

Distribution of errors 

a=0.01 a=0.05 a=0.1 

Distribution of errors Wn 
rp* 

n wn 
rp* 

n Wn 
rp* 

n 

Normal N(0,1) 8 12 46 60 104 143 

Normal N(0,4) 8 12 47 57 96 119 

Logistic (0,1) 51 22 119 76 174 137 

Logistic (0, 4) 44 18 112 76 158 131 

Laplace (0,1) 333 63 499 127 581 210 

Laplace (0, 4) 354 60 539 125 616 224 

Cauchy (0,1) 1000 620 1000 730 1000 773 

Table 2: Numbers of rejections of H0 among 1000 cases on level a for matrix (100x4) 



Distribution of errors 

a=0.01 o;=0.05 a=0.1 

Distribution of errors Wn 
rp* 

n wn 
rp* 

n wn 
rp* 

n 

Normal N(0,1) 

Normal N(0,4) 

Logistic (0,1) 

Logistic (0, 4) 

Laplace (0,1) 

Laplace (0, 4) 

Cauchy (0,1) 

10 

10 

52 

44 

546 

563 

1000 

9 

13 

88 

86 

669 

687 

1000 

49 

50 

96 

98 

721 

719 

1000 

56 

57 

206 

197 

836 

832 

1000 

96 

100 

147 

146 

782 

796 

1000 

107 

113 

302 

289 

890 

891 

1000 

Table 3: Numbers of rejections of H0 among 1000 cases on level a for matrix (250x4) 

Distribution of errors 

a=0.01 o;=0.05 a=0.1 

Distribution of errors Wn 
rp* 

n Wn 
rp* 

n Wn 
rp* 

n 

Normal N(0,1) 

Normal N(0,4) 

Logistic (0,1) 

Logistic (0, 4) 

Laplace (0,1) 

Laplace (0, 4) 

Cauchy (0,1) 

10 

9 

56 

49 

869 

856 

1000 

15 

10 

199 

185 

967 

963 

1000 

56 

56 

96 

95 

937 

926 

1000 

53 

51 

389 

369 

991 

990 

1000 

102 

100 

142 

136 

960 

939 

1000 

107 

101 

495 

489 

995 

995 

1000 

Table 4: Numbers of rejections of HQ among 1000 cases on level a for matrix (500x4) 
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4.2 Testing for nonnormal distributions 
We used the test of Section 3 for verifying the following three null hypotheses: 

(i) H 0 : F = logistic 
Logistic scores for Sno : 

ipo(u) = logu — log(l — u), 0 < u < 1 

(ii) H 0 : F = normal 
Normal scores for Sno : 

ipo(u) = $ _ 1 ( « ) , 0 < u < 1 

where $ is the standard normal distribution function. 

(iii) H 0 : F = Laplace 
Laplace scores for Sno :) 

, s _ í log 2« 0 < u < 0.5 
'^u>- \ - l o g ( 2 ( l - u ) ) « > 0 . 5 

The errors were generated by sampling from the hypothetical F0 (normal, logistic, Laplace), 
and from the following alternative densities: 

-si-normal Al (0,1) : f(x) = -?K=G 2 

-si-normal Al (0,4) : f (x) = 775= e 32 

logistic (0,1) : f (x) = ( 1 ^ e -s ) 2 

logistic (0 ,4 ) : f (x) = {1*~-í4/4)2 

Lapiace (0,1) : f (x) = | e " | : c | 

Lapiace (0,4) : f (x) = f e " 4 ^ 

Cauchy: f (x) = ľ ( 1 ^ 2 ) 

1000 replications were simulated for each case. Based on these data, we calculated the 
test statistics 

?: = ^ {log l^-logÉ(Fo)} 

for the hypothesis H 0 : F = F0, (ß,a unspecified). 
We took the regression interquartile range ß\{\) — ßi{\) in the role of Sn\. 

Tables 5-7 give the numbers of rejections of H 0 (among 1000 tests) for all above cases. 
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I. HQ : F = LOGISTIC (0,1) (i.e., we used logistic scores). 

Distribution 

n=27 n=108 

Distribution a=0.01 o;=0.05 a=0.1 a=0.01 o;=0.05 a=0.1 

Normal N(0,1) 

Normal N(0,4) 

Logistic (0,1) 

Logistic (0, 4) 

Laplace (0,1) 

Laplace (0, 4) 

Cauchy (0,1) 

19 

18 

24 

18 

21 

22 

513 

124 

92 

93 

86 

87 

100 

632 

213 

197 

169 

181 

149 

169 

687 

45 

45 

12 

10 

84 

88 

999 

163 

187 

61 

62 

199 

210 

1000 

279 

286 

127 

114 

286 

298 

999 

Table 5: Numbers of rejections of H0 among 1000 cases on level a for matrix (25x4) 
and for matrix (100 x 3) 

II. H0 : F = NORMAL (0,1) (i.e., we used van der Waerden scores). 

Distribution 

n=27 n=108 

Distribution a=0.01 o;=0.05 a=0.1 a=0.01 o;=0.05 a=0.1 

Normal N(0,1) 

Normal N(0,4) 

Logistic (0,1) 

Logistic (0, 4) 

Laplace (0,1) 

Laplace (0, 4) 

Cauchy (0,1) 

11 

11 

22 

18 

55 

53 

626 

60 

59 

77 

77 

129 

124 

722 

142 

129 

136 

132 

212 

216 

765 

12 

11 

40 

38 

337 

331 

1000 

52 

53 

116 

122 

516 

509 

1000 

116 

112 

183 

192 

611 

607 

1000 

Table 6: Numbers of rejections of H0 among 1000 cases on level a for matrix (25x4) 
and for matrix (100 x 3) 
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III . H0 : F = LAPLACE (0,1) (i.e., we used Laplace scores). 

Distribution 

n=27 n=108 

Distribution a=0.01 a=0.05 a=0.1 a=0.01 a=0.05 a=0.1 

Normal N(0,1) 
Normal N(0,4) 
Logistic (0,1) 
Logistic (0, 4) 
Laplace (0,1) 
Laplace (0, 4) 
Cauchy (0,1) 

43 
42 
37 
44 
19 
24 

342 

259 
251 
189 
203 
121 
131 
452 

424 
378 
319 
337 
189 
231 
515 

366 
365 
153 
144 

11 
9 

971 

689 
687 
378 
375 
69 
73 

991 

806 
802 
516 
511 
135 
145 

1000 

Table 7: Numbers of rejections of Ho among 1000 cases on level a for for matrix 
(25x4) and for matrix (100 x 3) 
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