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The reader may find it useful to keep this alternative interpretation in mind throughout
the present chapter.

1.2. A special central limit theorem. Let A be the set of all non-vanishing real
vectors a = (ay, ..., ay) of all finite dimensions N = 1. We shall say that the statistics
T., a € A, are asymptotically normal (y,, ¢2) for
(1) ¥ a?f max a? - o,
i=1 1=Zi=N

if (1) entails

£
(2) f[?’;gp.-i-xﬁ.]-h(er}_*J exp(—-H?)dy, —w<x<o.

=m
Thus asymptotic normality (u,, o2) is equivalent to convergence in distribution

of (T, — p,)/e, to a standardized normal random variable. Obviously, asymptotic
normality (p,, ¢3) is equivalent to the same property with (uF, a3, if

() oXoy =1, (k8 — m)fou—O0.

Theorem. Let Yy, Y5, ... be independent copies of a random variables with finite
expectation p and finite variance o, Put

N
(4) T,=%aY, acd.

Then, for (1), the statistics T, are asymptotically normal (p,, o2) with

N
) T
and
N
(6) =06 Yai.
i=]

Proof. The Lindeberg condition (Loive (1955), p. 295) takes on the form

() a;ﬁi TR =) 590,

where a} is given by (6). Upon substituting a,y for x, we obtain

(8) J‘ x*dP(a(Y; — p) = x) = afJ yar(Y,-p<y) =
|x] > tea |rail >eoa

éai‘_[ Yy dP(Y, — p £ y)
|7l =eavg




by
2= » a,-zlu' max a; .
i=1  1zZizN

Consequently, the ¥.'s having the same distribution,

Ll

(9) 5;2}5 X dP(a(Y, —p) = x) = a-1J yde(Y; —p £ y).

=1
2
¥ | =] = &, |¥| =eovg

However, the variance of Y, is supposed finite and v, —+ oo in view of (1), so that

G‘ZJ ydP(Y, - p=y)=0, >0,
|¥| =evag

which, in accordance with (9), entails (7). Q.E.D.

Remark. The above theorem could be reformulated as follows: For everyv e = 0
there exists an n, such that

N

(10) ¥ a}| max al > n,
=1 1=ISN

entails

(11) sr:p IP{aiaiYi = p, + xo,) — Ox)| < &,

where @ denotes the standardized normal distribution function.

1.3, A convergence theorem

Theorem. Let (£, o, _u} be a measure space with a a-finite measure y. Consider
a sequence {h,} of square integrable functions converging almost everywhere to
a square integrable function h. Assume that

(1) lim supJ‘hf dp = jhl du.

¥

L

(2) lim j[h_ — kP du=0.

Proof. Fatou's lemma together with (1) implies

(3) lim [hf dp = Ihl du.

o |
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Furthermore, the Schwarlz inequality yields

(4) El,h,h'[ du = Uhf dp i h? de

so that
lim sup E ﬁh,hl dp = 5!11 dp -

Ll

g to Theorem 4.2

(5) lim [h,h dp = E h* dp -
Now (3) and (5) imply (2).
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such that
(1 .Fh:.‘l"f-‘i;;}{:ﬂ-,
where + denotes the S}fmmetﬂc difference. Actually, the assertion is trivially true

-]
forAe UF x and the events havin onsista g-feld. Denoting
1

gthis property olbviously €
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(3)

re exists for every
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for any other Fx
is pussc‘ssed by the conditional expectation with respect to F
# y, = E(Y| #n)-
ic Tus then E{Yl '(-?.N) = IF{TN), where 1‘-'(13] =

It Fy 18 generated by a statist
= EHF v = ty). NOW, if I = E(I. | # «)» then (2): (3) and (4) imply that

(5)

E{IA—'IE:_E{E



156

for N sufficiently large, and, consequently,

(6) lim E(T, — I})* = 0.

N=uo

Before generalizing the relation (6) to all random variables with finite variance, let
us recall that

(7) EYy = EF?
for Yy given by (4).

Lemma a. Let Y be a & _-measurable random variable such that EY? < oo,
and let Yy be given by (4). Then

(8) lim E(Yy — ¥)* = 0
N—+m

and
(9) lim E¥} = EY2.
Ne=on

Proof. Fixan ¢ > 0 and find a # ,-measurable simple function ¥ ¢;1, such that

i
i=1

E(Y-Yel,) <i.
im=]
Denoting I}, = E(I,, | #) and noting (7), we have

E(Yy — Y)* < 3E(Yy — Y e} ) +
i=1

+ 3E(Y - ) eda) + JEE_ZI‘?:'UM T

i=1

S 6By — 3 cif.t.}l + 3 Zf: E E(1y, — JTL]: =
i=1 i=1 =1

<e+ 3_;:31215{;{“ L

Since, in view of (6), the last sum converges to 0 as N — oo, we conclude that
E(Yy — Yy <e

for N sufficiently large. This proves (8).(9) follows from the well-known relation

(10) E(Yy — ¥)? = EY? — EY2,

holding for any conditional expectation. Q.E.D.
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Now let Uy, Uy, ... be independent random variables, each uniformly distributed
over (0, 1). Let Ry, denote the rank of U,, 1 = i < N, in the partial sequence U, ...
.. Uy. Let @(u), 0 < u < 1, be some square integrable function

(11) Iiﬁz{u} du < oo,
and put
(12) af(i) = E[e(U,) |Ryv=i], 1SisN<w.

Theorem a, Under assumption (11),
(13) lim E[af(Ry;) — @(U,)]* =0,
N—+w

holds, where af(i) is defined by (12).
Proof. Let # be the sub o-field generated by (Ryy, ..., Ryy). Note that F =
(-]
= Fyi = ..o and recall that F, denotes the smallest o-field containing [JF .
1

We first show that (U, ) is equivalent to a & _-measurable random variable. In view ;
of (I1.1.2.12), we have
Ry =.{| =

2 N 2
E Ui.._h_. =le Ul..._—f_
N+1 N i=1 N+1

L Serume 1 & D) A |
N i=1 Nj-1{N+l}z{N+2} N
so that
lim T8t o g,
va N, + 1

with probability 1 for some properly chosen subsequence {N,}. Consequently U,
and hence also @(U,), is equivalent to a % ,-measurable random variable. Now
it remains to apply the above lemma with @(U,) = Yand af(Ry,) = Yy. The proof
is thus concluded.

Lemma b. (D.K. Faddeev.) Let the functions fy(t.u), N2 1, 0<1t, u <1, be
densities in t for each fixed u, such that for every & = 0

WtE

(14) lim | fyt,u)di=1, O<u<l.

Fom Ju-e
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Moreover, assume that
(15) fltu) =gultu), N21,0<ru<l,

where the functions g_:ﬂ:r, u} are increasing in 1 € I:EI._ u] and decreasing in t e [u, I}
for every fixed N =2 land 0 < u < 1, and
T

‘H:.{I,H]d!{ao, O=zu=<l.

(16) sup
N Jo

Then for every integrable function ¢{u)

(17) lim Jifp{i‘]fﬂ{h u)dr = @(u)

N—wm g
in almost all points u e (0, 1).

Proof. See I. P. NaTanson (1957), Theorem 3, § 2, Chapter X, and Theorem 5,
§ 4, Chapter IX.

Theorem b. Let o(u), 0 < u < 1, be square integrable and let af(i) be given by (12).
Then

(18) Ijiqn; [ ;[aj,’;{l + [uN]) = ¢(u)]? du = 0,

with [uN] denoting the largest integer not exceeding uN.

Proof. Since, in accordance with (7), where ¥ = o(U,)

(19) J;[af{l - [1:1\?]]]2 du = [;{p:{z{] du ,

it suffices to prove that
(20) lim aj(l + [uN]) = ofu)
N=m

almost everywhere and then apply Theorem 1.3.

Now (20) follows from Lemma b, if we put

(21) It u) =_-'\-'(f:11) 1 - e, % = u < i R 2 |




(1)

i ——————— ===

I =1

and

NI\ fF—INYIN—-YT 1=1 i
t, =N pr AT ® __gts o |
ax(t, ) (i—l)(ﬁ'—l) (N-1) N R

= fy(t,u), otherwise.

Actually, then (see (I1.1.2.10))
i—1

af(1 + [uN]) = E(UY) = j:m{z}m (N B 1) 1 -0 dt =

o[ =1
_L@(;) Aewdr, = su<,

while (15) is satisfied since S8, u) is unimodal with mode at (i = 1)/(N — 1), which
lies within the interval ((i — 1)[N, i/N). Also (16) holds true, since

ﬂsn[r, u)de = E_ﬂ,{:. u) dt + (1‘:’_— ]i) ( ;r_____ll_):u, (’%:—DM

Thus (17) holds, which is equivalent to (20). Q.E.D.

1A,

2

1.5. Locally optimum rank-fest statistics for H. MNow we are prepared to prove
casily all the theorems needed. Consider real vectors ¢ = (¢4: ... €y) such that

(1) ii[cl —-&'=0 Lyl
where
@ g = i Yo

Let C be the set of real vectors of all finite dimensions N = 1, satisfying (1). We shall
consider limiting distributions of statistics indexed by ce C for

N
Lle:—29
3 g o B e ey S
® max (¢; — €)°
1ZigN
Take a square integrable function @(u), 0 < u < 1, and denote by af(i) the scores
associated with ¢ by (1.4.12). Put

1=

Cy a;’{Rh‘j}? fEE

& o

1
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where Ry, is the rank of X, in a set of N independent observations X, ..., X, each
with density f. If U, = F(X,), F(x) = [, f(y) dy, then the random variables U,
will be uniformly distributed and Ry; may be interpreted as the rank of U; in the
set U,,...,Uy as well. As we know from §II. 4, the test statistics generating
locally most powerful rank tests are just of the type (4).

Theorem a. Let the scores aj(i) be associated with a square integrable function
o(u) by (1.4.12). Put § = [ o(u)du and assume [ [p(u) — §]* du > 0. Assume H,.

Then, for (3), the statistics (4) are asymptotically normal (p,, a2) with

©) ho =23 2

and
- 2 2
© -3 —d]jh@-w1m
or 6 = var §,.
Proof. Rewrite S, in the following form:

) S, __'.:i(c‘ — &) an(Ry;) + Eii!a‘\.(i} .

Introduce
®) T, =3 (e - 9 oU) + 2 X an(d),

where U; = F(X,), 1 = i = N. Now drop N in Ry, and recall that the distribution
of (Ry, ..., Ry) is independent of U'. Consequently, by (I1.3.1.23), we obtain
® TS [U0 =)

- E{i:El(ci — &) (ay(R) — p(u™* )} =
= NL %{c.- - E]Ei [ax(i) — o(u?) - @y + 3]* <

L &rﬁil&@%ﬁﬂﬂz

N-1i

= Tl‘z_v.. (e; — 2P E{[an(R,) — o(U)]?| UY = u} .

Consequently

(10 €(7. - 5° 5 2 % 60— 9 Efay(R) - p(0)]




Btion

(1) E(Tc = S:)* gl U;[m{u) - G du)_l E[ax(Ry) = #(UL)T’ .

On the other hand

12 :i(c" i
) max (o, =
15isN

so that (3) entails N — co. This fact, together with Theorem 1.4.a and (11), implies

e 2
(13) fim E (u) i

c 18

and a fortiori
[14] limP(
(4]

Now we know from Theorem 1.2 that the random variables T, are asymptotically
normal with parameters given by (5) and (6). Furthermore,

h’~Il’|.‘:s-z.‘)=1'.li. g=0,

o

Sc"" e T‘e“ e Sc_:rl'
Be _ He . ’
a, a, [

[4

(15)

where the last term converges to 0 in probability according to (14). Thus asymptotic
normality (0, 1) of (T, — u.)[s, implies the same for (S, — p.)/o,, in view of a well-
known lemma (see CRAMER (1945), Section 20.6).

Now o2 given by (6) equals var T,, and (13) implies var S /var T, - 1, since
|(var S.)* — (var T.)}| = [E(T. — S.)*]*. Consequently, we may put g7 = var S,
as well. Q.E.D.

In the two-sample problem we consider statistics

{lﬁ) Sm e _Elaard-n{ﬁm'}'h.i}
and we are concerned with their limiting properties for
(17) min (m, n) = =0 .

Theorem b. Let the scores a:,’;-l[;') be associated with a square integrable function
@(u) by (1.4.12) and assume [5 [o(u) — #]* du > 0.
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