The reader may find it useful to keep this alternative interpretation in mind throughout the present chapter.

1.2. A special central limit theorem. Let A be the set of all non-vanishing real vectors $a = (a_1, ..., a_N)$ of all finite dimensions $N \ge 1$. We shall say that the statistics T_a , $a \in A$, are asymptotically normal (μ_a, σ_a^2) for

(1)
$$\sum_{i=1}^{N} a_i^2 / \max_{1 \le i \le N} a_i^2 \to \infty,$$

if (1) entails

(2)
$$F(T_a \le \mu_a + x\sigma_a) \to (2\pi)^{-\frac{1}{2}} \int_{-\infty}^x \exp\left(-\frac{1}{2}y^2\right) dy, \quad -\infty < x < \infty.$$

Thus asymptotic normality (μ_a, σ_a^2) is equivalent to convergence in distribution of $(T_a - \mu_a)/\sigma_a$ to a standardized normal random variable. Obviously, asymptotic normality (μ_a, σ_a^2) is equivalent to the same property with (μ_a^*, σ_a^{*2}) , if

(3)
$$\sigma_a^*/\sigma_a \rightarrow 1$$
, $(\mu_a^* - \mu_a)/\sigma_a \rightarrow 0$.

Theorem. Let $Y_1, Y_2, ...$ be independent copies of a random variables with finite expectation μ and finite variance σ^2 . Put

$$T_a = \sum_{i=1}^{N} a_i Y_i, \quad a \in A.$$

Then, for (1), the statistics T_a are asymptotically normal (μ_a, σ_a^2) with

$$\mu_a = \mu \sum_{i=1}^{N} a_i$$

and

$$\sigma_a^2 = \sigma^2 \sum_{i=1}^N a_i^2.$$

Proof. The Lindeberg condition (Loève (1955), p. 295) takes on the form

(7)
$$\sigma_a^{-2} \sum_{i=1}^N \int_{|x| > \varepsilon \sigma_a} x^2 dP(a_i(Y_i - \mu) \leq x) \to 0,$$

where σ_a^2 is given by (6). Upon substituting $a_i y$ for x, we obtain

(8)
$$\int_{|x| > \varepsilon \sigma_a} x^2 dP(a_i(Y_i - \mu) \le x) = a_i^2 \int_{|ya_i| > \varepsilon \sigma_a} y^2 dP(Y_i - \mu \le y) \le$$
$$\le a_i^2 \int_{|y| > \varepsilon \sigma v_a} y^2 dP(Y_i - \mu \le y)$$

TISTICS

distributions as correspond ill denote the ted. However, adexed by N. Is m and n of $T_{m,n}$, $m \ge 1$, dexed by real of our study

 $\{T_{c_{\nu}}\}, c_{\nu} = 1$ under some ssert that the such that

and say that

Te are asymp-

convergence as asymptotic ε > 0 there where

$$v_a^2 = \sum_{i=1}^N a_i^2 / \max_{1 \le i \le N} a_i^2$$
.

Consequently, the Yi's having the same distribution,

(9)
$$\sigma_a^{-2} \sum_{i=1}^N \int_{|x| > a\sigma_a} x^2 dP(a_i(Y_i - \mu) \le x) \le \sigma^{-2} \int_{|y| > a\sigma_a} y^2 dP(Y_1 - \mu \le y).$$

However, the variance of Y_1 is supposed finite and $v_a \to \infty$ in view of (1), so that

$$\sigma^{-2} \int_{|y| > \epsilon v \sigma_a} y^2 dP(Y_1 - \mu \le y) \to 0, \quad \epsilon > 0,$$

which, in accordance with (9), entails (7). Q.E.D.

Remark. The above theorem could be reformulated as follows: For every $\varepsilon > 0$ there exists an n_0 such that

(10)
$$\sum_{i=1}^{N} a_i^2 / \max_{1 \le i \le N} a_i^2 > n_0$$

entails

(11)
$$\sup_{x} \left| P\left(\sum_{i=1}^{N} a_{i} Y_{i} \leq \mu_{a} + x \sigma_{a} \right) - \Phi(x) \right| < \varepsilon,$$

where Φ denotes the standardized normal distribution function.

1.3. A convergence theorem

Theorem. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space with a σ -finite measure μ . Consider a sequence $\{h_v\}$ of square integrable functions converging almost everywhere to a square integrable function h. Assume that

(1)
$$\limsup_{\nu \to \infty} \int h_{\nu}^2 d\mu \le \int h^2 d\mu.$$

Then

$$\lim_{v \to \infty} \int (h_v - h)^2 d\mu = 0.$$

Proof. Fatou's lemma together with (1) implies

$$\lim_{v \to \infty} \int h_v^2 d\mu = \int h^2 d\mu.$$

that

ery $\varepsilon > 0$

Consider

where to

Furthermore, the Schwartz inequality yields

Furthermore, the Schwartz inequality
$$\int |h_v h| d\mu \le \left[\int h_v^2 d\mu \int h^2 d\mu \right]^{\frac{1}{2}}$$
(4)

so that

$$\limsup_{\mathbf{v}\to\infty} \int \left|h_{\mathbf{v}}h\right| \,\mathrm{d}\mu \leqq \int h^2 \;\mathrm{d}\mu \ .$$

Consequently, according to Theorem II.4.2

Consequently, according to
$$\lim_{v \to \infty} \int h_v h \, d\mu = \int h^2 \, d\mu \, .$$

Now (3) and (5) imply (2).

1.4. Further preliminaries. Consider a probability space (Ω, \mathcal{A}, P) and a sequence of sub σ -fields $\mathscr{F}_1 \subset \mathscr{F}_2 \subset \ldots \subset \mathscr{A}$. Denote by \mathscr{F}_{∞} the smallest σ -field containing the field $\bigcup_{i=1}^{\infty} \mathscr{F}_{N}$. For every event $A \in \mathscr{F}_{\infty}$ and every $\varepsilon > 0$ there exists an N and $A_{N} \in \mathscr{F}_{N}$ such that

such that
$$P(A \div A_N) < \varepsilon,$$

where ÷ denotes the symmetric difference. Actually, the assertion is trivially true (1)for $A \in \bigcup_{i=1}^{\infty} \mathcal{F}_{N}$, and the events having this property obviously consist a σ -field. Denoting by I_A and I_{A_N} the respective indicators, (1) may be rewritten as follows:

by
$$I_A$$
 and I_{A_N} the resp.
$$\mathsf{E}(I_A - I_{A_N})^2 < \varepsilon \,.$$

If Y is a \mathscr{F}_{∞} -measurable function such that $EY^2 < \infty$, then there exists for every N a \mathcal{F}_N -measurable random variable Y_N such that

N a
$$\mathscr{F}_N$$
-measurable random
$$\mathsf{E}(Y_N - Y)^2 \leq \mathsf{E}(Y_N^* - Y)^2$$
(3)

for any other \mathcal{F}_N -measurable random variable Y_N^* . It is well-known that this property (3) is possessed by the conditional expectation with respect to FN,

is possessed by the contain
$$Y_N = E(Y | \mathscr{F}_N)$$
.

If \mathscr{F}_N is generated by a statistic T_N , then $\mathsf{E}(Y | \mathscr{F}_N) = \psi(T_N)$, where $\psi(t_N) = \mathsf{E}(Y | T_N = t_N)$. Now, if $I_A^N = \mathsf{E}(I_A | \mathscr{F}_N)$, then (2), (3) and (4) imply that

$$= \mathsf{E}(Y \mid T_N = t_N). \text{ Now, } n = x$$

$$\mathsf{E}(I_A - I_A^N)^2 < \varepsilon$$
(5)

for N sufficiently large, and, consequently,

$$\lim_{N\to\infty} E(I_A - I_A^N)^2 = 0.$$

Before generalizing the relation (6) to all random variables with finite variance, let us recall that

$$(7) EY_N^2 \le EY^2$$

for Y_N given by (4).

Lemma a. Let Y be a \mathcal{F}_{∞} -measurable random variable such that $EY^2 < \infty$, and let Y_N be given by (4). Then

$$\lim_{N\to\infty} E(Y_N - Y)^2 = 0$$

and

(9)
$$\lim_{N\to\infty} EY_N^2 = EY^2.$$

Proof. Fix an $\varepsilon > 0$ and find a \mathscr{F}_{∞} -measurable simple function $\sum_{i=1}^{n} c_{i}I_{A_{i}}$ such that

$$E(Y - \sum_{i=1}^n c_i I_{A_i})^2 < \frac{1}{6}\varepsilon.$$

Denoting $I_{A_i}^N = \mathbb{E}(I_{A_i} \mid \mathscr{F}_N)$ and noting (7), we have

$$\begin{split} \mathsf{E}(Y_N - Y)^2 & \leq 3\mathsf{E}(Y_N - \sum_{i=1}^n c_i I_{A_i}^N)^2 + \\ & + 3\mathsf{E}(Y - \sum_{i=1}^n c_i I_{A_i})^2 + 3\mathsf{E}[\sum_{i=1}^n c_i (I_{A_i} - I_{A_i}^N)]^2 \leq \\ & \leq 6\mathsf{E}(Y - \sum_{i=1}^n c_i I_{A_i})^2 + 3\sum_{i=1}^n c_i^2 \sum_{i=1}^n \mathsf{E}(I_{A_i} - I_{A_i}^N)^2 < \\ & < \varepsilon + 3\sum_{i=1}^n c_i^2 \sum_{i=1}^n \mathsf{E}(I_{A_i} - I_{A_i}^N)^2 \,. \end{split}$$

Since, in view of (6), the last sum converges to 0 as $N \to \infty$, we conclude that

$$E(Y_N - Y)^2 < \varepsilon$$

for N sufficiently large. This proves (8).(9) follows from the well-known relation

(10)
$$E(Y_N - Y)^2 = EY^2 - EY_N^2,$$

holding for any conditional expectation. Q.E.D.

inite variance, let

h that $EY^2 < \infty$,

 $\sum_{i=1}^{n} c_{i} I_{A_{i}}$ such that

include that

known relation

Now let U_1, U_2, \ldots be independent random variables, each uniformly distributed over (0, 1). Let R_{Ni} denote the rank of U_i , $1 \le i \le N$, in the partial sequence U_1, \ldots, U_N . Let $\varphi(u)$, 0 < u < 1, be some square integrable function

$$\int_0^1 \varphi^2(u) \, \mathrm{d}u < \infty ,$$

and put

(12)
$$a_N^{\varphi}(i) = \mathbb{E}[\varphi(U_1) | R_{N1} = i], \quad 1 \leq i \leq N < \infty.$$

Theorem a. Under assumption (11),

(13)
$$\lim_{N \to \infty} \mathbb{E}[a_N^{\varphi}(R_{N1}) - \varphi(U_1)]^2 = 0,$$

holds, where $a_N^{\varphi}(i)$ is defined by (12).

Proof. Let \mathscr{F}_N be the sub σ -field generated by $(R_{N1}, ..., R_{NN})$. Note that $\mathscr{F}_N \subset \mathscr{F}_{N+1} \subset ...$ and recall that \mathscr{F}_{∞} denotes the smallest σ -field containing $\bigcup_{1}^{\infty} \mathscr{F}_N$. We first show that $\varphi(U_1)$ is equivalent to a \mathscr{F}_{∞} -measurable random variable. In view of (II.1.2.12), we have

$$\begin{split} \mathbb{E}\left(U_{1} - \frac{R_{N1}}{N+1}\right)^{2} &= \frac{1}{N} \sum_{j=1}^{N} \mathbb{E}\left[\left(U_{1} - \frac{j}{N+1}\right)^{2} \,\middle|\, R_{N1} = j\right] = \\ &= \frac{1}{N} \sum_{j=1}^{N} \text{var } U_{N}^{(j)} = \frac{1}{N} \sum_{j=1}^{N} \frac{j(N-j+1)}{(N+1)^{2}(N+2)} < \frac{1}{N} \,, \end{split}$$

so that

$$\lim_{v \to \infty} \frac{R_{N_v 1}}{N_v + 1} = U_1$$

with probability 1 for some properly chosen subsequence $\{N_v\}$. Consequently U_1 , and hence also $\varphi(U_1)$, is equivalent to a \mathscr{F}_{∞} -measurable random variable. Now it remains to apply the above lemma with $\varphi(U_1) \equiv Y$ and $a_N^{\varphi}(R_{N1}) \equiv Y_N$. The proof is thus concluded.

Lemma b. (D.K. Faddeev.) Let the functions $f_N(t, u)$, $N \ge 1$, 0 < t, u < 1, be densities in t for each fixed u, such that for every $\varepsilon > 0$

(14)
$$\lim_{N \to \infty} \int_{u-\varepsilon}^{u+\varepsilon} f_N(t, u) dt = 1, \quad 0 < u < 1.$$

V. 1. 4

Moreover, assume that

(15)
$$f_N(t, u) \leq g_N(t, u), N \geq 1, 0 < t, u < 1,$$

where the functions $g_N(t, u)$ are increasing in $t \in (0, u)$ and decreasing in $t \in (u, 1)$ for every fixed $N \ge 1$ and 0 < u < 1, and

(16)
$$\sup_{N} \int_{0}^{1} g_{N}(t, u) dt < \infty, \quad 0 < u < 1.$$

Then for every integrable function $\varphi(u)$

(17)
$$\lim_{N\to\infty} \int_0^1 \varphi(t) f_N(t, u) dt = \varphi(u)$$

in almost all points $u \in (0, 1)$.

Proof. See I. P. NATANSON (1957), Theorem 3, § 2, Chapter X, and Theorem 5, § 4, Chapter IX.

Theorem b. Let $\varphi(u)$, 0 < u < 1, be square integrable and let $a_N^{\varphi}(i)$ be given by (12). Then

(18)
$$\lim_{N \to \infty} \int_0^1 [a_N^{\varphi}(1 + [uN]) - \varphi(u)]^2 du = 0,$$

with [uN] denoting the largest integer not exceeding uN.

Proof. Since, in accordance with (7), where $Y = \varphi(U_1)$,

(19)
$$\int_0^1 [a_N^{\varphi}(1 + [uN])]^2 du \le \int_0^1 \varphi^2(u) du ,$$

it suffices to prove that

$$\lim_{N\to\infty} a_N^{\varphi}(1 + [uN]) = \varphi(u)$$

almost everywhere and then apply Theorem 1.3.

Now (20) follows from Lemma b, if we put

(21)
$$f_N(t, u) = N {N-1 \choose i-1} t^{i-1} (1-t)^{N-1}, \quad \frac{i-1}{N} \le u < \frac{i}{N}, \quad 0 < t < 1$$

and

=(u,1)

eorem 5,

n by (12).

$$g_N(t, u) = N \binom{N-1}{i-1} \left(\frac{i-1}{N-1}\right)^{i-1} \left(\frac{N-i}{N-1}\right)^{N-i}, \quad \frac{i-1}{N} \le t, u < \frac{i}{N},$$

$$= f_N(t, u), \quad \text{otherwise}.$$

Actually, then (see (II.1.2.10))

$$a_N^{\varphi}(1 + [uN]) = \mathbb{E} \, \varphi(U_N^{(i)}) = \int_0^1 \varphi(t) \, N \binom{N-1}{i-1} t^{i-1} (1-t)^{N-1} \, \mathrm{d}t =$$

$$= \int_0^1 \varphi(t) f_N(t, u) \, \mathrm{d}t \,, \quad \frac{i-1}{N} \le u < \frac{i}{N} \,,$$

while (15) is satisfied since $f_N(t, u)$ is unimodal with mode at (i - 1)/(N - 1), which lies within the interval ((i - 1)/N, i/N). Also (16) holds true, since

$$\int_0^1 g_N(t, u) dt \le \int_0^1 f_N(t, u) dt + \binom{N-i}{i-1} \left(\frac{i-1}{N-1}\right)^{i-1} \left(\frac{N-i}{N-1}\right)^{N-i} \le 2.$$

Thus (17) holds, which is equivalent to (20). Q.E.D.

1.5. Locally optimum rank-test statistics for H_0 . Now we are prepared to prove easily all the theorems needed. Consider real vectors $c = (c_1, ..., c_N)$ such that

(1)
$$\sum_{i=1}^{N} (c_i - \bar{c})^2 > 0$$

where

$$\bar{c} = \frac{1}{N} \sum_{i=1}^{N} c_i.$$

Let C be the set of real vectors of all finite dimensions $N \ge 1$, satisfying (1). We shall consider limiting distributions of statistics indexed by $c \in C$ for

(3)
$$\frac{\sum\limits_{i=1}^{N}(c_i-\bar{c})^2}{\max\limits_{1\leq i\leq N}(c_i-\bar{c})^2}\to\infty.$$

Take a square integrable function $\varphi(u)$, 0 < u < 1, and denote by $a_N^{\varphi}(i)$ the scores associated with φ by (1.4.12). Put

$$S_c = \sum_{i=1}^N c_i \, a_N^{\varphi}(R_{Ni}), \quad c \in C$$

where R_{Ni} is the rank of X_i in a set of N independent observations X_1, \ldots, X_N , each with density f. If $U_i = F(X_i)$, $F(x) = \int_{-\infty}^x f(y) \, \mathrm{d}y$, then the random variables U_i will be uniformly distributed and R_{Ni} may be interpreted as the rank of U_i in the set U_1, \ldots, U_N as well. As we know from § II. 4, the test statistics generating locally most powerful rank tests are just of the type (4).

Theorem a. Let the scores $a_N^{\varphi}(i)$ be associated with a square integrable function $\varphi(u)$ by (1.4.12). Put $\overline{\varphi} = \int_0^1 \varphi(u) \, du$ and assume $\int_0^1 \left[\varphi(u) - \overline{\varphi}\right]^2 \, du > 0$. Assume H_0 . Then, for (3), the statistics (4) are asymptotically normal (μ_c, σ_c^2) with

$$\mu_c = \bar{c} \sum_{i=1}^N a_N(i)$$

and

(6)
$$\sigma_c^2 = \left[\sum_{i=1}^{N} (c_i - \bar{c})^2\right] \int_0^1 [\varphi(u) - \bar{\varphi}]^2 du,$$

or $\sigma_c^2 = \text{var } S_c$.

Proof. Rewrite Sc in the following form:

(7)
$$S_c = \sum_{i=1}^{N} (c_i - \bar{c}) a_N(R_{Ni}) + \bar{c} \sum_{i=1}^{N} a_N(i).$$

Introduce

(8)
$$T_{c} = \sum_{i=1}^{N} (c_{i} - \bar{c}) \varphi(U_{i}) + \bar{c} \sum_{i=1}^{N} a_{N}(i),$$

where $U_i = F(X_i)$, $1 \le i \le N$. Now drop N in R_{Ni} , and recall that the distribution of $(R_1, ..., R_N)$ is independent of $U^{(\cdot)}$. Consequently, by (II.3.1.23), we obtain

(9)
$$\mathsf{E}\{(T_c - S_c)^2 \mid U^{(\cdot)} = u^{(\cdot)}\} =$$

$$= \mathsf{E}\{\sum_{i=1}^N (c_i - \bar{c}) (a_N(R_i) - \varphi(u^{(R_i)}))\}^2 =$$

$$= \frac{1}{N-1} \sum_{i=1}^N (c_i - \bar{c})^2 \sum_{j=1}^N [a_N(j) - \varphi(u^{(j)}) - \bar{a}_N + \bar{\varphi}]^2 \le$$

$$\le \frac{1}{N-1} \sum_{i=1}^N (c_i - \bar{c})^2 \sum_{j=1}^N [a_N(j) - \varphi(u^{(j)})]^2$$

$$= \frac{N}{N-1} \sum_{i=1}^N (c_i - \bar{c})^2 \mathsf{E}\{[a_N(R_1) - \varphi(U_1)]^2 \mid U^{(\cdot)} = u^{(\cdot)}\}.$$

Consequently

(10)
$$E(T_c - S_c)^2 \leq \frac{N}{N-1} \sum_{i=1}^{N} (c_i - \bar{c})^2 E[a_N(R_1) - \varphi(U_1)]^2$$

and

(11)
$$E\left(\frac{T_c - S_c}{\sigma_c}\right)^2 \le \frac{N}{N-1} \left(\int_0^1 [\varphi(u) - \bar{\varphi}]^2 du\right)^{-1} E[a_N(R_1) - \varphi(U_1)]^2$$
.

On the other hand

(12)
$$\frac{\sum_{i=1}^{N} (c_i - \bar{c})^2}{\max_{1 \le i \le N} (c_i - \bar{c})^2} \le N$$

so that (3) entails $N \to \infty$. This fact, together with Theorem 1.4.a and (11), implies

(13)
$$\lim_{c} E \left(\frac{T_c - S_c}{\sigma_c} \right)^2 = 0,$$

and a fortiori

ution

(14)
$$\lim_{c} P\left(\left|\frac{T_{c}-S_{c}}{\sigma_{c}}\right|>\varepsilon\right)=0, \quad \varepsilon>0.$$

Now we know from Theorem 1.2 that the random variables T_c are asymptotically normal with parameters given by (5) and (6). Furthermore,

(15)
$$\frac{S_c - \mu_c}{\sigma_c} = \frac{T_c - \mu_c}{\sigma_c} + \frac{S_c - T_c}{\sigma_c},$$

where the last term converges to 0 in probability according to (14). Thus asymptotic normality (0, 1) of $(T_c - \mu_c)/\sigma_c$ implies the same for $(S_c - \mu_c)/\sigma_c$, in view of a well-known lemma (see Cramér (1945), Section 20.6).

Now σ_c^2 given by (6) equals var T_c , and (13) implies var $S_c/\text{var } T_c \to 1$, since $|(\text{var } S_c)^{\frac{1}{2}} - (\text{var } T_c)^{\frac{1}{2}}| \leq [E(T_c - S_c)^2]^{\frac{1}{2}}$. Consequently, we may put $\sigma_c^2 = \text{var } S_c$ as well. Q.E.D.

In the two-sample problem we consider statistics

(16)
$$S_{mn} = \sum_{i=1}^{m} a_{m+n} (R_{m+n,i})$$

and we are concerned with their limiting properties for

(17)
$$\min(m, n) \to \infty$$
.

Theorem b. Let the scores $a_N^{\varphi}(i)$ be associated with a square integrable function $\varphi(u)$ by (1.4.12) and assume $\int_0^1 [\varphi(u) - \overline{\varphi}]^2 du > 0$.