Chapter VI

LIMITING DISTRIBUTIONS OF TEST STATISTICS
UNDER THE ALTERNATIVES

1. Contiguity

1.1. Asymptotic methods, Contizuity. The asymptotic approach consists in re-
garding a given testing problem as a member of a sequence {H,, K.}, v = 1, of similar
testing problems. In this sequence the v-th testing problem concerns N, observations
Xiseon Xy, with N, — oo as v — co. As a rule, H, depends on v through N, only,
i.e. H, = H(N,), whereas K, depends on some parameters d,;, 0 £ i £ N,, in ad-
dition. For example, we might assume that H, = H,, H, being applied to N = N,
observations, and that K, consists of a single density g,,

N
gy = Hfu{-x: = w‘]'
i=1

Of course, there are infinitely many such sequences, and we try to choose one which
resembles the given testing problem as much as possible. First of all it would be
desirable to keep the envelope power function f(z, H,. K,) independent of v, Since
this is usually difficult or even impossible, we shall be satisfied with the existence
of a limit f{x):

(1) lim (e, H, K,)=P(a), 02a=1.

As in the previous chapter, we shall also consider indexed sets of testing problems
{Hy, K4 d e D}, where the convergence will be equivalent to the convergence to a
fixed limit for all sequences selected from the set and satisfying certain requirements.
As a rule, K, will be simple, consisting of a density q,.

The limiting relation (1) entails that f(x, H,, K,) will approximately equal f(x)
for v = vy, The usefulness of the asymptotic results will depend on whether the
problems “H, against K,”” with v = v,, may occur in practice or not. The value
of v, is usually guessed on the basis of numerical calculations for selected +'s and
the assumption that the convergence is more or less monotone,

In this book we shall not investigate the somewhat degenerate cases in which

(2) Plz)=1 forall «=0.
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We shall even exclude the cases in which
(3) Plz) +0 for a—0.

However, it may be shown, that in problems dealt with in the sequel, (3) implies (2).
The requirement that (3) should not take place finds its theoretical expression
in the notion of contiguity, which is due to LECaMm (1960). The notion of contiguity
is basic for the asymptotic methods of the theory of hypothesis testing,
Consider a sequence {p,, g,} of simple hypotheses p, and simple alternatives g,
defined on measure spaces (X,, &, p,), v = 1, respectively.

Definition. If for any sequence of events {4,}, 4, &,

) [P.(4,) = 0] = [Q,(4,) = 0]

holds, we say that the densities g, are contiguous to the densities p,, where dP, =
= p,dp,, dQ, = g, dp,, v = L.

If H, is composite, we say that g, is contiguous to H, if for each v the convex
hull H, of H, contains a density p, such that (4) holds.

If both H, and K, are composite, we say that K, is contiguous to H, if (4) holds
for some p,e H, and g, e K,.

Contiguity implies that any sequence of random variables converging to zero
in P -probability converges to zero in @, -probability, v — oo.

1.2. LeCam’s first lemma. According to the Neyman-Pearson lemma, for any event
A, there exists a critical function &, such that

{1] ¢, =0, f q,=kp,.
=&, if q,=kp,,
=1, if ¢,> kp,,

where 0 = £ £ 1, and that

Pl J' ®,dp,,

0.(4,) < fﬁ, a0, .

Thus contiguity will follow if we show that

o [

for critical functions of the type (1).
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Introduce the likelihood ratio L, = g,[p,, or more precisaly,

(3) L(x,) = q/x.)/plx). if pfx)>0,
i, it px) = a(x) =0,
=, if pJhx,)=0<agqlx,),

where x, denotes the typical point of the space X, v = 1.
Let F, be the distribution function of L, under P,:

(@) Fx) = P(L, £ %),
where L, = L(X,), v = 1.

Lemma. Assume that F, given by (4) converges weakly (at continuity points)
fo a distribution function F such that

(5) J:xdF{x} g

Then the densities q, are contiguous to the densities p,, v = 1.

Proof. Take a sequence of critical functions @, of the type (1) and such that

(6) Jw, dpP, - 0.

Then note that

-

(7 [pa0.=| ad0+| ad0s
[LeZ¥)} o [Ly>y)

y |®.4P, + do, =
o o [Lw>¥}
™

¢r_dP,,+l—J do, =
iLvS7)

Il

rIr,dP,+1-J L,dP, =
[Le=x)

. ny
y|#,dP, +1 = | xdF,.

- w0

MNow for any £ > 0 we can find a continuity point y of F such that, in view of (3),

*F
1—‘ xdF < le.
0
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Since F, = F entails

we shall have for some v,

"y
(8) 1— | xdF, <3, vzv,.
o O

Furthermore, (6) ensures the existence of v, such that

9 py | dP, <dz, v=v,.
r:] o L 1

w

Finally, from (7) through (9) it follows that

Jiiin dQ, <& for vz max (v, v,).

Thus J'nl‘*1r d@, = 0, which concludes the proof.

Remark. Note that contiguity does not entail that the @, are absolutely continuous
with respect to the P,. The singular part of Q,, however, must tend to zero,

Qr{Fr = U} —+0

as a consequence of Pv{p_‘, = l.'_ll} = [ =0

The asymptotic distribution of the likelihoods L, will regularly be log-normal.
We shall say that a random variable Y is log-normal (g, &%), if log Yis normal (g, o).
MNow let us establish the condition under which we obtain

=]
EYz[xszl

w0

for a log-normal random variable Y. We obviously have

EY=Eexp(log Y) = (2r) ¥ o™? exp [x — H{x — u) a'_z] dx = gt
W =

This equals 1 for

3

(10) p= —4a*.

Thus we have the following

Corollary. If L, is asymptotically log-normal (—1a*, ¢?), then the densities g,
are contiguous to the densities p,.
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1.3. LeCam’s second lemma. Assume that x, = (x,, ..., xy ) and

() px) = TiAdx)

and

(2) a.(x) = [19.(x)-
From (1) and (2) we have

Ny
(3) logL, = E}__'_lllog [awxdifdx]
which makes sense even if log L, = +o0, sinee on the right side the summands
are < oo with P -probability 1 and are > — oo with Q,-probability 1.

Thus we may regard log L, as an extended random variable allowed to attain
— o0 with positive probability under P,. However, asymptotic normality of log L,
is defined in the same way as for an ordinary random variable, i.e. as convergence
of P (log L, < x)to a normal distribution function in every real point x. Thus asymp-
totic normality entails P,(log L, = —) — 0.

In what follows we restrict ourselves to cases in which the summands in (3) are
uniformly asymptotically negligible, i.c.

|
4 lim max P m)—1|}£ =0.
(4) i
o 1zish \| fLdX}) | ;

Under this condition necessary and sufficient conditions of asymptotic normality
are well-known, These conditions are considerably simpler if the summands have
finite variance. However, this fails sometimes to be satisfied in (3) within the class
of problems considered below. For this reason we instead consider the statistic

©) W, = 23 ([aXNAC - 1

which always consists of summands with finite variances, as may be easily seen, and
has additional advantages. The following lemma, due to LeCam, shows that asympto-
tic normality of log I, may be established by proving asymptotic normality of W,.

Lemma. Assume that [:4} holds and that the statistics W,, v = 1, are asymptotically
normal (—1a?, ¢*) under P,.

Then the statistics log L, satisfy
(6) lim P,(ilcg L —W+ i::rz[ >g=0, §>0,

Y=o

and are asymptotically normal (—1a°, ¢°) under P,.
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Proof. If a function h(x) has a second derivative 4*(x), then

(7) h(x) = h(xo) + (x — x5) h(x,) +

+ 3x — xDJEJHE{ 1 = A) h'[xp + Ax — x,)] dA,

as may be easily seen by integration by parts. Thus, putting

{E} T, = 2[§v!{X:].{fri{XJ]* Tl
we oblain

th |
i:" IV_F fﬂfj \H iDE {gviffvi} =2 ]'-:"S {1 + "E'T\-lj T

| —— {
s e g
i !'_Il IxJ',_.".‘.-'l

T grjr[z{l — A1 + 3iT,)*] dA.

T
K= A i - T
4 ¥l i

Jﬁonsequent]y._,
1 Ny I
9 og L, = W, - § ¥ 73 J [2(1 — (L + AT, )] da.
= 0

This holds even for log L, = — o,
Introduce

Tfj r Tv!l If |T\-|| :—:“':‘:i:l
=10, otherwise .

As is well known (LoivE (1955), p. 316), asymptotic normality (—3a?, ¢*) of W,
implies under (4) that for every 6 > 0

Ny
(10) ¥ P.,l[[T;,-[ =>d8)=0,
i=1
N
{11) ZET'FEI B -i'dls
i=1

Ry
(12) ¥ var T) - o2,

im]
Now (10), holding for every & = 0, entails

g

1[2{1 — A1 + 44T, )] di ~_E{T¢i}z

o0 i=1

Ny
(13) s
im]
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where ~ denotes that the ratio of both sides tends to 1 in P,-probability. Thus,
in order to prove (6), it remains to show that

Nw

(14) 3(T) o
i=1

in P-probability. For this purpose it suffices to prove
e

(15) pLE S

and

Ny
(16) lim lim sup ¥ var (T7)* =0,

d=0 w=m i=1

since then (14) will follow by the Chebyshev inequality. Further, in view of (12), (15)
is equivalent to

Ne
(17) Y (ET)? 0.
i=]1

We first prove (17). If § > 2, then T}, £ T,,, since T,; = —2, in view of (8). Con-
sequently,

(18) ET?

< ET,, = 2E{g, (X )/f (X )}
< 2{E[g. (X )Ifu(X )]} = 2

Nw Nu
Z(ET:’:-): = min ET,"',-Z ET?
i=1

vi 3
i=1 15i5Ny

Thus, for é > 2,

and {IT] follows from {ll} and from the fact that

min ETS, -0,

15igN

which is an easy consequence of (4). Now it remains to note that the validity of (17)
for any § > 2 entails its validity for any & > 0, because of (12) and of

N, N
Y, E(Tﬂj}j =2 E{ﬁf): s 01 <9;.
i=1 i=1

As for (16), first note that

Fvar [(18)7] 5 Y 6T 5 5 Y T

I=1
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Thus, on account of (15),

Ny
(19) lim sup 3 var (TP = 8%

v=m i=1

Consequently, (16) holds.

Finally, asymptotic normality (—1e¢”, ¢°) is an immediate consequence of (6).
Q.E.D,

The reader, having finished the above proof, can observe that we did not evade
niceties connected with the truncation of summands. However, they are concentrated
in the above proof and will not trouble us any more.

1.4. LeCam’s third lemma. Limiting distributions of test statistics §, under the
alternative are important from the point of view of the power properties of the
respective tests. Unfortunately, their derivations are considerably more difficult than
the proofs of limiting distributions under the hypothesis. Nonetheless, in the conti-
guity case, the difficulties are essentially diminished by the following lemma due
to LeCam,

We say that the pair (S,, log L,) is asymptotically jointly normal (u,, u,, &3, o3,
@y,) if it converges in distribution to a normal vector (Z,, Z,) such that EZ; = y;.
varZ, =o}, i =1,2, and cov(Z,, Z;) = oy,. (For convergence in distribution
in k = 2 dimensions see the definitions of Section V.2.1 }

Lemma. Assume that the pair (S, log L,) is under P, asymptotically jointly
normal ({y, fa, af, ol, oy2) With gy = —-ifrg,

Then 8, is under Q, asymptotically normal (u, + 7,5, o).

Proof. Obviously,

[1] Qv{sv =x dQv =

[SvEx}

L,dP, + Q.l.{p, =05 5x)=
[Su=x}

J e dF (u,v) + 0,(p, =0, 5, = x),

-

where F,(u,v) denotes the distribution function of (S,,log L,). Now p; = —1ea3
implies contiguity (Corollary 1.2), and hence

(2) erip'r = S-r é -‘"'} 0 L]
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since P,{p, =0,5,5 x} = () = 0. Furthermore, for any ¢ > 0

e

Q) j ) J_e A )= | ) J eaofw),

where ®(u, v) denotes the two-dimensional normal distribution function with para-

meters (py, ft3, 01, 63, 612). Actually, F, — @ according to our assumption, and the
function

hu,v)=¢", —w<u<x, —c=v
=0, otherwise,

is uniformly bounded and continuous except ontheset {(u,v):v = —corv =cor
ti=x}, which obviously has ®-probability 0. Thus we may apply DI of Section V.2.1.

Now (1), (2) and (3) will imply

%

(4) 0,(5, = x) —*J J.::ﬂe" dd(u, v)

— &
if we show that for every ¢ there exist ¢; and v, such that

£ =& x =
(5) [ [ e”dF,-{—j Je"dﬂ.-ﬂa, Y=,
—wad — — e o £

In other words we must show that the truncated parts of the integral are uniformly
small if ¢, is sufficiently large. However, (5) is an easy consequence of contiguity.
Actually, if (5) were not true for some ¢ > 0, we would have a sequence of pairs
(¢; v;) such that

(6) lim ¢; = o, limv;,= o,
j v

and

Q,(logL,, < —¢;orlog L, > ¢;) =

W oy oo =
=[ J e"dF,.j-r-J [e“dF,Jg

& = - =m C-j
= ol ¥ | x o
:;I J & dF, +J' j S dF, 2.
—w e —m —mad ey
On the other hand, since log L, is asympiotically normal under P,
Pv:l[lclg L,, < —¢; or logL,, > c)—+0,

because of (6). This contradicts contiguity, and thercby (4) is proved.

14 — Hijek-Sidik: Theory of Rank Tests




since P,(p, =085 = x} = [} — (. Furthermore, for any ¢ > 0

3) J ) J’ _e T i, € j_ ) J' @ d0(u0),

where @(u, v) denotes the two-dimensional normal distribution function with para-
meters (py, ps, :J'f. a3, 0‘12}. Actually, F, - @ according to our assumption, and the
function
hu,v)=¢", —0<u<x, —-cZvsc
=0, otherwise,

is uniformly bounded and continuous except ontheset {(u,v):v = —corv=cor
u=x}, which obviously has ®-probability 0. Thus we may apply D1 of Section V.2.1.
Now (1), (2) and (3) will imply

' (]

@ 0.5, < %) {

e" dd(u, v)

—=}J—;\‘.\
if w2 show that for every ¢ there exist ¢; and v, such that

©) I

& = om -]

—&n x [
j e“'dF,-f-J {e"dﬂ{a, V=V

=« 9

In other words we must show that the truncated parts of the integral are uniformly
small if ¢ is sufficiently large. However, (5) is an easy consequence of contiguity.
Actually, if (5) were not true for some & > 0, we would have a sequence of pairs
(e, v;) such that

(6) lim ¢; =0, limv;=o00,
Jw f=+a

Q,(logL, < —c;jorlogL,, > ¢;) =

o] =gy roa @
=J J e’ dF,, +J [ ¢ dF,, =
—a —m

- o £

x —ef fE o
g[ j e“dF”+J J e dF, 2 5.
o —md = -mJ ey

n

On the other hand, since log L, is asymptotically normal under P,,
P,(logL,, < —¢; or logL,, > ¢;) =0,
because of (6). This contradicts contiguity, and thereby (4) is proved.

14 — Hajek-Sidik: Theory of Rank Tests
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Now, by easy computations, we derive that

o

& || ew=] | @awmrw-an
cexp {o = [2(1 = ¢*)] 7" [(w — m)* 01" —
~ 20(u — p;) (v + Yo3) (010.)" + (v + Y03) 07 7]} dude =

X

= a[‘{Zn)_iJ exp [—Hu — py — 0,5)" o7 ] du,

where ¢ = a,;(7,0;)"". Combining (4) and (7), we easily conclude the proof.

Remark. The above Lemma holds even if 53 = 0, i.e. if log L, converges to 0
in probability.

2. Simple linear rank statistics

2.1. Location alternatives for H,. We shall consider alternatives

(1) s = ‘ljlfu{x:‘ - dy),

where f;, is a known density with I(f,) < o, and d = (d, ..., dy) is an arbitrary
vector. Recall that the vector d runs through the set of all real vectors of all finite
dimensions, and that the asymptotic statements concern sequences {d, = (d,,, ...
..y dyy )} selected from this set. However, to simplify the notation, we shall drop
the index v. First of all, we shall establish conditions under which sequences of such
alternatives are contiguous with respect to corresponding sequences of the hypotheses
H, = H,y. For this purpose we associate with each g, the following density

(2 py = _]rjlfn[_t; - d).

Obviously p, e Hgy, where N is the dimension of d, and it depends on d only through
d = N™' }d, If we show that under certain conditions the densities g, are conti-
guous with respect to the densities p,, then, a fortiori, they will be contiguous with
respect to the hypotheses Hg,. The densities p, have been chosen so as to be least
favourable for H,, against q,, in an asymptotic sense.

According to LeCam’s first lemma, the densities g, are contiguous to the densities
Pa if log Ly, where L, = g,fp,, is asymptotically normal (—1¢?, ¢*). Moreover, on
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Application 2. Approximate scores corresponding to some density f such that
@(u, f) is a sum of monotone and square integrable functions, If, in addition, g(u, f)
is skew symmetric, then

(10) ‘2-' (L f)

+n+1

with (8) and (9) still applicable. If ¢(u, f) is not symmetric, we have to subtract
the expectation under H,, i.e. to put

Smm S0 () - 2 Yo ()

However, since [g @(u, f)du = 0, the correction is asymptotically negligible,
as may be shown.

2.4, Rank statistics for H; against regression. Now we shall investigate the limiting
distribution under g, of the statistics

N

(1) S, = LZI(‘H — &)ay(Ry).

Theorem. Let q; be given by (2.1.1) and assume that (2.1.4) and (2.1.5) hold.
T.f:en under g, the statistics S_ given by (1), where the scores satisfy (2.3.1), are for

Z{c — ) max I[c — &) — oo asymptotically normal (p.. o ]I with
1

iml

@ o= [ e = 9 = 1 [ o) ol fo)

o o2 = [3e- 1 o) - o au.

The assertions remain true if we replace (2.1.1), (2.1.5) and ¢(u. f;) by (2.2.1),
(2.2.3) and ¢,(u, ), respectively.

Proof. Without loss of generality, we may assume that

(@ T -o =1

|[|:.‘ — &) (d; —d)—=by,.




Note that under (4) ¥(c; — £)*/max (¢; — €)* = o is equivalent to
(6) max (¢, — £)* = 0.
1SI=N

Furthermore, if 87 is given by
N
(M S? = _Z'r[cJ — £)af(R),

where the scores are related to @ by (V.1.4.12), then (S, — S7) (var S2)"* = 0 in
probability under H, (see the proof of Theorem V.I.6.a). We shall denote this briefly
by S, ~ S%. Furthermore, inspecting the proof of Theorem V.1.5.a, we see that
S? ~ T, T. given by

(8) T. =I§1(¢i -8 o(U),

where U, = F{X,), F{x) = P{X; < x) with P, given by (2.1.2). Thus S, ~ T,
and S, may be replaced by T, in considerations concerning the limiting distribution.

On the other hand, we know from Theorem 2.1 that log L; ~ (T; — 4b%), T,
given by (2.1.13), or equivalently, by

(9) Ty =Ji(‘£i i 3} ‘P{Uh fu) .
Thus

(10) (SalogLy) ~ (T, T, — 1b%),

where it should be noted that T, and T} differ not only in their regression constants
but also in their ¢-functions. Consequently, if we show that (T, T;) is under P,asym-
ptotically jointly normal with g, = p, = 0, variances ¢ = [ [p(u) — #]* du and
o2 = b*, and covariance o,; = by; [5 o(u) @(u, fo)du, we can conclude that
(8., log L;) is asymptotically jointly normal with the same parameters except for
p; = —1b% and the theorem will follow immediately from LeCam’s third lemma.

Mow, since the U,'s are indepzndent and uniformly distributed under P,, we have
ET. = ET; = 0, and in view of (2.1.5) and (5),

var T, =i§j{ci - E]EJ:[qu(u] — @) du,

N 1
var T, = ¥ (d; — d)° [ @*(u, fo) du — b*,
iI=1

w0

cov (T, Ty) = [I_i{ff - &) (d; — d)] J:ﬁf’{“} o(u, fo) du —

- b”_[ ofu) ofu, fy) du .
o
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Thus the limiting parameters have the required values. In view of D3 of Section V.2.1,
it remains to show, for all real Ay and 2, that 4, T, + 43Ty is either asymptotically
normal (0, o2) with ¢2, = var (4, T, + 2,T)), or var (AT, + 2,T3) = 0. Write

MT, + A,T, =;;th[i1{’c; ) o(U,) + Aa(dy — d) qﬂfU;,f.;ﬂl] :

and assume that
(11) var (L, T, + 4,Ty) — o* > 0.
Now put

Zy = Myfe, - @) [e(U) - ?],

Ly = Jy(d; = d) r;a[:U:-,fu] ;

Z; =Z,+2Z,,,

Ze) =2, if |z|>3,

=0, if |Z])<s,
and define Z, (5) and Z, (s) similarly. In view of (11) the Lindeberg condition for
44T, + 2, T, may be expressed as follows:
N

(12) :-;1 E[Z(8)]* =0, 6>0.

However, wa obviously have

[Z{3)]* = 4]z 1l(39)]% + 4[Z, (18)]7,

so that (12) follows from

(13) !IZV E[Z, 5P =0, 550 :

and

(14) ﬁ E[Z,(3) =0, >0,

Finally, observe that (13) and (14) are equivalent to the Lindeberg condition for
41T, and 1, T,, respectively, in view of (4) and (2.1.5). Moreover, from (6) and (2.1.4)
it follows that this condition is satisfied in both cases (see the proof of Theorem v.1.2)
This concludes the proof for qa given by (2.1.1). If g, were given by (2.2.1), we would
proceed quite similarly, Q.ED.
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The density g, will bz associated with the density

®) p = T1Ae).

which obviously belongs to H;. Our aim is to establish the limiting distribution of
H s
(4) Sy =Y ay(R}) sign X;
i=1

under g,.

Theorem. Let gy, be given by (1), where fy is symmetric about zero, I{fq) < oo,
and (N, 4) satisfy (2). Further assume that the functions ay(l + [uN]), 0 < u < 1,
converge in quadratic mean lo a square integrable function @*(u). Then the
statistics (4) are under gy, asymptotically normal (ux. o8) with

1

(5) ty = AN f o (1) o™ (u, f5) du
(6) ol = I;qu [an(D]* ~ N J:[q:a*'(u}]z du .

Remark. Recall that ¢*(u, f) = @(% + 1u, fy).

Proof. Following the pattern of the proof of Theorem 2.1, we can show that
i
(7) log Lys ~ 4y @ (U], fo) sign X; — 1b
i=1

where U = F*(|X}]). The rest follows from 53 ~ Ty, Ty given by (V.1.7.5).
Application 1. Put ay(i) = ay (i f), f symmetric about zero, I{f) < c0. Then

)

(8) Sy = Z‘n_.f,’{:’,fj sign X,
=1
15 under gy, asymptotically normal (1tns crﬁ.] with

(9) Uy =;‘1qu o (1w, ) o™ (u, fo) du ,
0

ﬁ=Njh%JWw~
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Mote that

[lotwnoios = oo 980

Application 2. Put ayli) = @t + 1if(N + 1), f). where { is symmetric about
zero, I(f) < and ofu, f) 18 2 finite sum of monotone and square integrable
functions. Then the statistics

RY
N+1

(11) Sy = i:'i'_,lqn (-li + fj sign X,

are asymptotically normal (fxs o) with py and o5 given by (9) and (10) respectively.
2.6, Rank statistics for H;- Unfortunately, we do not have at our disposal satis-
factory methods for treating the distribution of these statistics under the alternatives.

Heuristic considerations suggest, however, that we should obtain, possibly under
some additional assumptions, the following result: Consider

)
{1} Jwa = :il;li h..![;xi! }’F} 2
with

(2) hyx, ¥) = rj folx = 42) 8oy — Az) dM(z) ,

(see Section 11.4.11). Assume that the variance corresponding to M (z) is finite and
positive, and that

(3) NA*I(fo) I(go) = p2, 0<b®<co.

Further, introduce the statistic

@ 5 = 3, an(Re) B(0)

and suppose that

(5) lim jl[ﬂ,‘{L + [uN]) - ()] du =0

N—=w 0

and

]

tim [;[bh-{l + [uN]) — W du = 0.




