Remark. If (2.1.5) is replaced by

$$[I(f_0) < \infty, \sum_{i=1}^{N} (d_i - \bar{d})^2 \to 0],$$

then L_v converges in P_v -probability to 1, i.e. the distribution of $\log L_v$ converges to the degenerate normal distribution (0,0). This could be proved as follows: First, we note that T_d given by (2.1.13) satisfies $\mathrm{E}T_d^2 \to 0$, and that considerations employed in the proofs of Lemmas 2.1.a and 2.1.b yield the relation $\mathrm{E}(W_d - T_d)^2 \to 0$. Thus $\mathrm{E}W_d^2 \to 0$, and, consequently, the distribution of W_d converges to the degenerate normal distribution (0,0). Thus it remains to show that LeCam's second lemma extends to this case, too. However, the degenerate convergence of the distribution of W_d entails that (1.3.10), (1.3.11) and (1.3.12) hold with $\sigma^2 = 0$ (Loève (1955), p. 317). The rest of the proof needs no change, and we obtain that $(\log L_v - W_v) \to 0$ in probability, and hence $\log L_v \to 0$ in probability. Consequently the Theorem remains valid even for b = 0 and $I(f_0) < \infty$, and every statistic has the same limiting distribution, if any, under q_d as under p_d . Furthermore, the theorem remains valid even if we replace (2.1.5) by $I(f_0) < \infty$ and

$$\sum_{i=1}^{N} (d_i - \overline{d})^2 \leq b^2 < \infty.$$

For, if it were not valid, there would exist a sequence $\{d_v\}$ satisfying (15) and such that the theorem would not be valid for any of its subsequences. However, since we can draw a subsequence $\{d_i\} \subset \{d_v\}$ such that

$$\sum_{i=1}^{N} (d_{ji} - \bar{d}_{j})^{2} \to b_{1}^{2} \leq b^{2},$$

this would contradict the theorem if $b_1^2 > 0$, and the above extension of the theorem, if $b_1^2 = 0$.

The results of the present section and related results were adapted and generalized from HÁJEK (1962).

2.5. Rank statistics for H1. Consider

$$q_{N\Delta} = \prod_{i=1}^{N} f_0(x_i - \Delta),$$

where f_0 is a known density symmetric about zero, and Δ satisfies

(2)
$$N\Delta^2 \rightarrow b^2$$
, $0 < b^2 < \infty$.