Nonparametric Statisifes, Vol. 2, pp. 307-331 i) 1993 Gordon and Breach Science Publishers
Reprints available directly from the publisher Printed in the United States of America
Photocopying permitted by license anly

TESTS OF LINEAR HYPOTHESES BASED ON
REGRESSION RANK SCORES

C. GUTENBRUNNER', J. JURECKOVA?, R. KOENKER® and
S. PORTNOY?

"Philipps Universitiit, Marburg, Germany, “Charles University, Prague,
Czechoslovakia and “University of Hlinois at Urbana-Champaign, USA

(Received September 25, 1992; in final form December 16, 1992}

Dedicated to the memory of Jaroslav Hijek

We propose a general class of asymptotically distribution-free tests of a linear hypothesis in the linear
regression model. The tests are based on regression rank scores, recently introduced by Guienbrunner
and Jurcikovd (1992) as dual variables to the regression quantiles of Koenker and Bassert (1978).
Their properties are analogous to those of the corresponding rank tests in location model. Unlike the
other regression tests based on aligned rank statistics, however, our tests do not require preliminary
estimation of nuisance parameters, indeed they are invariant with respect to a regression shift of the
nuisance parameters,
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L. INTRODUCTION

Several authors including Koul (1970), Puri and Sen (1985) and Adichie (1978)
have developed asymptotically distribution-free tests of linear hypotheses for the
linear regression model based upon aligned rank statistics. Excellent reviews of
these results including extensions to multivariate models may be found in Puri
and Sen (1985) and the survey paper of Adichie (1984). The hypothesis under
consideration typically involves nuisance parameters which require preliminary
estimation; the aligned (or signed) rank statistics are then based on residuals from
the preliminary estimate. Alternative approaches to inference based on rank
estimation have been considered by McKean and Hettmansperger (1978),
Aubuchon and Hettmansperger (1988) and Draper (1988) among others.

A completely new approach to the construction of rank statistics for the linear
model has recently been introduced by Gutenbrunner and Jurefkovi (1992).
Their approach is based on the dual solutions to the regression quantile statistics
of Koenker and Bassett (1978). These regression rank scores represent a natural
extension of the “location rank scores” introduced by Hajek and Siddk (1967,
Section V.3.5), which play a fundamental role in the classical theory of rank
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statistics. In this paper we consider tests of a general linear hypothesis for the
linear regression model based upon regression rank scores. These tests have the
advantages of more familiar rank tests; they are robust to outliers in the response
variable and they are asymptotically distribution free in the sense that no
nuisance parameter depending on the error distribution need be estimated in
order to compute the test statistic. Furthermore, they are considerably simpler
than many of the proposed aligned rank tests which require preliminary
estimation of the linear model by computationally demanding rank estimation
methods. The robustness of the proposed tests and the sensitivity of the aligned
rank procedures to response outliers is illustrated in the sensitivity analysis of the
example discussed in Section 2.

In the classical linear model,

Y=Xf+E, (1.1)
the vector B(a)=(fi(a), ..., P.(a)) e R® of ath regression quantiles is any
solution of the problem

min ¥, p.(¥Y,—x/t), teR”? (1.2)
i=]l
where
pait) =u| {(1— a)M[u<0]+ af[u=0]}), ueR. (1.3)

Least absolute error regression corresponds to the median case with & = 1. In the
one-sample location model, with X=1,, solutions to (1.2) are the ordinary
sample quantiles: when na is an integer we have an interval of solutions between
two adjacent order statistics. Computation of the regression quantiles is greatly
facilitated by expressing (1.2) as the linear program

almw™ +(1—a)lu” :=min (1.4)

XB+ut—u =Y
B € R, ", u e R

and 1,=(1,..., 1) eR", with 0<a<1. Even in this form, the problem of
finding alf the regression quantile solutions may appear computationally demand-
ing, since there would appear to be a distinct problem to solve for each a € (0, 1).
Fortunately, there are only a few distincs solutions. In the location model we
know, of course, that there are at most n distinct quantiles. In regression,
Portnoy (1991) has shown that the number of distinct solutions to (1.2) is
O, (nlogn). Finding all the regression quantiles is a straightforward exercise in
parametric linear programming. From any given solution for fixed o we may
compute the interval containing « for which is solution remains optimal, and one
simplex pivot brings us to a new solution at either endpoint of the interval.
Proceeding in this way we may compute the entire path 3(-) which is a piecewise
constant function from [0,1] to R”. Detailed descriptions of algorithms to
compute the regression quantiles may be found in Koenker and d'Orey (1990),
and Osborne (1992). Finite-sample as well as asymptotic properties of B(a) are
studied in Koenker and Bassett (1978), Ruppert and Carroll (1980), Juretkova
(1984), Gutenbrunner (1986), Koenker and Portnoy (1987), Gutenbrunner and
Jureckova (1992), and Portnoy (1991b).
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The regression rank scores introduced in Gutenbrunner and Jurefkovd (1992)
arise as a n-vector a,{a) = (d,(a), ..., d,.(a)) of solutions to the dual form of
the linear program required to compute the regression quantiles. The formal dual
program to (1.4) can be written in the form

Y'd( o) ;= max
Xd(a)=(1-a)X'1, (1.5)
alw) g0, 177, l=a<1

As shown in Gutenbrunner and Juretkovi (1992), many aspects of the duality of
order statistics and ranks in the location model generalize naturally to the linear
model through (1.4) and (1.5). Moreover, as pointed out there, @ is regression
invariant with respect to X1, in the sense that &(a) is unchanged if V¥ is
transformed to ¥ + X1y for any y e R”.

To motivate our dpproach, consider {d,(a), 0<a <1} in the location model
with X = 1,.. In this case, d,(«) specializes to

1 if e =(R,—1)/n
dla)=al(R, a)=yR,—an if (R,—1)/n<a=R,/n (1.6)
0 if R/n<a
where R, is the rank of ¥, among Y, ..., ¥,. The function a;(j, «), j=1,....n

0= a<1, coincides exactly with that introduced in Hijek and Sidak (1967,
Section V.3.5). Under the general model (1.1), both the finite-sample and
asymptotic properties of the regression rank scores and of the process
{d,(a), 0<< =<1} are described in the next section. The regression rank score
process may be efficiently computed by standard parametric linear programming
technigues, essentially as a byproduct of the regression quantile computation
requiring no additional computational effort and only some additional storage.
See Koenker and d'Orey (1990) for algorithmic details.
The formal duality between B(«) and a(a) implies that fori=1,...,n

I EEs i x,B(a)
i (1.7)

&m{ ﬂ’] =

0 iftY<3 xpe)

while the components of &,(a) corresponding to {i | ¥, =x/f(a)} are determined
by the equality constraints of (1.5). Thus, as in the location model, the regression
rankscore for observation { is one while y; is above the ath quantile regression
plane, and zero when y; falls below this plane, and taking an intermediate value
while y; falls on the ath plane. Integrating the regression rankscore function for
each observation over [0, 1] yields a vector of (Wilcoxon) ranks: observations
falling “‘below™ most the the others receiving small ranks, while those falling
“above™ the others, and thus having rankscore one over a wide interval, receive
large ranks. This observation is completely transparent in the location model
where “above” and *“below™ have an obvious interpretation. In regression, the
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interpretation of these terms relies on the optimization problem defining the
regression quantiles. The resulting rank scores illustrated, for example, in Figure
2.1, are, we believe, a useful graphical diagnostic in linear regression in addition
to their role in formal hypothesis testing.

The next section of the paper surveys our results, establishes some notation,
and provides an illustrative example. Section 3 develops some theory of the
regression rank score process. Section 4 treats the theory of simple linear rank
statistics based on this process, and Section 5 contains a formal treatment of the
proposed tests.

2. NOTATION AND PRELIMINARY CONSIDERATIONS

We will partition the classical linear regression model

Y=XB+E (2.1)
as
Y=X,8 +X.5.+E (2.2)

where B, and f, are p- and g-dimensional parameters, X=X, is a known,
n X (p +q) design matrix with rows x,, =x/ = (X, Xx3:) e R*™, i=1,...,n We
will assume throughout that x;; =1 fori=1,..., n. Y is a vector of observations
and E is an n % 1 vector of 1.i.d. errors with common distribution function F. As
in the familiar two-sample rank test, our test statistics is shift-invariant and hence
independent of location. Thus like other rank tests, hypotheses on the intercept
cannot be tested. This is immediately apparent from the regression invariance of
the test statistic noted above. The precise form of F need not be known but we
shall generally assume that F has an absolutely continuous density f on (A, B)
where —= = A =sup{x: F(x) =0} and 4= = B =inf{x: F(x) = 1}. Moreover, we
shall impose some conditions on the tails of f assuming, among other conditions,
thait f monotonically decreases to (0 when x— A+, or x— B—. Define D, =
n XX,

H, =X,(XiX,)'X] and Q,=n""(X,-X))'(X,— X)) (2.3)

with X, = H,X, being the projection of X, on the space spanned by the columns
of X,. We shall also assume

limD,=D, limQ,=Q (2.4)

i

where I) and Q are positive definite (p % p) and (g X g) matrices, respectively.
We are interested in testing the hypotheseis

Hy: f,=10, f, unspecified (2.5)
versus the Pitman (local) alternatives
H,: B =n""", (2.6)
with [, being a fixed vector in R
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As in the classical theory of rank tests, we shall consider a score-function
@: (0, 1)= R which is nondecreasing and square-integrable on (0,1). We may
then construct scores based on the regression rankscore process following Hajek
and Siddk, (1967) as,

1
b= —J (1) dé,. (1), i=1,...,M (2.7)
i}
Defining
S.’T =n" I;Z(XRE = ir12}.lﬁrl (2' 8}
where b, = (b1, ..., 6.,)', we propose the following statistic for testing H,
against H,:
T.=8.Q.'S,/A%¥) (2.9)
where
1 1
A @)= L (@(r) — ¢)* de, = J (1) dt (2.10)
(1]

and with Q,, defined as in (2.3). An important feature of the test statistic T, is that
it requires no estimation of nuisance parameters, since the functional A{g)
depends only on the score function and not on (the unknown) F. This is familiar
from the theory of rank tests, but stands in sharp constrast with other methods of
testing in the linear model where typically some estimation of a scale parameter
of F is required to compute the test statistic. See for example the discussion in
Aubuchon and Hettmansperger (1989) and Draper (1988).

We shall show in Section 3, that the asymptotic distribution of T, under H, is
central ¥* with g degrees of freedom while under H, it is noncentral ¥ with g
degrees of freedom and noncentrality parameter

n° =¥ (@, F)A*(¢)]FsQB (2.11)
where

v ) == [ 0O E©). 2.12)

Like A, y is also familiar from the classical theory of rank tests. The test
statistic T, is first-order asymptotically distribution free in the sense that the
first-order term in its asymptotic representation is exactly distribution free, as
follows from (4.2). Moreover, it follows from (2.11) that the Pitman efficiency of
the test based on T, with respect to the classical F test of H, coincides with that of
the two-sample rank test of shift in location with respect to the t-test. For f
unimodal, we obtain an asymptotically optimal test if we take

SFETE)
FET@)
Thus for Wilcoxon scores (see below) the asymptotic relative efficiency of the

test based on T, relative to the classical F test is 3/m =0.955 at the normal

distribution and is bounded below by 0.864 for all F. When F is heavy tailed this
asymptotic efficiency is generally greater than one, and can in fact be unbounded.

plt)= g (1) = O=t=1. (2.13)
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For normal (van der Waerden) scores (q(u) = ®'(u)) the situation is even more

striking. Here the test based on 7, has asymptotic efficiency greater than one,

relative to the classical F test, for all symmetric F, attaining one at the normal

distribution. See e.g. Lehmann (1959, p. 239), and Lehmann (1983, pp 383-87).
Let us now examine more closely the scores (2.7), which can be written as

b= —Jcp{f}&;,{rj dr.  i=laeean (2.14)

where the functions a,(r)=da,{r)/dt are piecewise constant on [0,1]. The
piecewise linearity of the regression rank scores follows immediately from the
linear programming formulation (1.5) of the dual, greatly simplifying the
computation in (2.14). In the location model, using (2.13) this reduces to the
well-known Hajek and Siddk (1967) scores

R
E,,;=;:J‘ g(ydy, i=1,...,n
Ry_in

There are three typical choices of -

(i) Wilcoxon scores: @(t)=t—3, 0<<t<1. The scores are b= —[ (r— %) dd,(r) =
[ a(t) dr — 1 while A*(@) =1k, and y(@, F) = [ f*(x) dx. Wilcoxon scores are
optimal when f is logistic.

(i) Normal (van der Waerden) scores: @(t)=®d Y1), 0<t<1, & being the d.f.
of standard normal distribution. Here A%(g)=1 and v, F)=
I F(F~'(@(x))) dx. These scores are asymptotically optimal when f is normal.

(it} Median (sign) scores: @(t)=1sign(t=1), 0<r<1, then (2.7) leads to the
form b,;=d,,(3) — 1 which is ! if the ith [, residual is positive and —1 if it
is negative, and between —1 and } otherwise.

REMark. Using the standard reduction to canonical form e.g. Scheffé (1959,
Section 2.6) or Amemiya (1985, Section 1.4.2), we may consider a more general
form of the linear hypothesis

R'B=reR? (2.15)

where R is a (p + g) X ¢ matrix of rank g <p. Let Vbe a (p + q) ¥ p matrix such
that A=[V:R]' is nonsingular and R'V=0. Set y=Af and Z=XA"".
Partitioning y =[yi, y:]' where ¥, =V'§ and y,=R’'S, under the hypothesis
(2.15) we have

Y- XR(R'R) r=XV(V'V)"ly, + E.

Thus, in view of the equivariance of regression quantiles, see Koenker and
Bassett (1978), Theorem 3.2, we may define Y=Y - XR(R'R) 'r, X, =
XV(V'V)™', X;=XR(R'R)"!, and proceed as previously discussed with
(Y, X, X:) playing the roles of (Y, X, X,). By this device the tests described
above and detailed in Section 5 may be extended to a wide range of applications
including, for example, the hypotheses of parallelism and coincidence of
regression lines discussed by Adichie (1984) and others.

To illustrate the tests proposed above we consider briefly an example taken
from Adichie (1984, Example 3) dealing with the combustion of tobacco. The log
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of the leaf burn (in seconds) of 30 batches of tobacco is thought to depend upon
the percent composition of nitrogen, chlorine, and potassium. Adichie suggests
testing the potassium effect and describes an aligned rank version of the test. We
are unable to reproduce some details of his calculations, however, using his
approach we get least squares estimates of the nitrogen and chlorine effects of
—0.529 and —0.290 with an intercept of 2.653. With these preliminary estimates
we obtain aligned (Wilcoxon) ranks

717 2 18 6 1 11 3 3 13
23 16 4 29 26 27 21 23 19 12
28 10 8 15 24 20 22 5 14 9

which vield a test statistic of 13.59 highly significant relative to the 1% y7 critical
value of 6.63.

The full set of regression rank scores 4,(r) for the restricted model excluding
potassium for this data are illustrated in Figure 2.1. There are 34 distinct
regression quantile solutions and therefore each d,(f) is a piecewise linear
function with at most 34 distinct segments. Recall that 4,(1)=1 while the
observed y; is above the tth regression guantile plane, 0 while below, and takes
some intermediate value when y; falls on the rth plane. The plots are ordered
according to their Wilcoxon rank score, which may be computed as 6, =
—[a(t =1 dé(r) = [ 4,(f) dr — 1. While the Wilcoxon rank scores provide an
unambiguous ranking of the observations, since the regression rank score
functions typically cross in regression applications, in contrast to the location
model, this ranking depends upon the score function employed. The regression
rank score plots give some further visual evidence concerning the ranking of the
sample observations. Note that if @,(t) =d,/(r) for all ¢, then b, =b,; for any
montone score function ¢. Numerical calculations give Wilcoxon ranks

-0.27 006 0.4 009 -032 -048 —0.17 —-0.38 048 —0.06
0.23 004 —-037 042 028 037 019 041 015 -0.26
0.33 -0.16 —-023 —-0.01 033 012 015 —-042 —0.10 -0.06

and yield a test statistic of 13.17. In view of Theorem 5.1 the approximate p-value
is 0.0003. The two vectors of Wilcoxon ranks correspond closely. Observation 6 is
smallest in both rankings and observations 14 and 9 are largest in both. The
simple correlation between the two rankings is 0.978. Note that as a practical
matter when @ = [j, @(r) dr =0, we may omit the X, term in the computation of
S, in (2.8) since b, is orthogonal to X,. This is in contrast with the aligned rank
situation where the use of X, — X, is essential.
Corresponding calculations for the normal scores using

b= —L @ (1) da(t) = 2 () (@7'(6)) = PP (5-1))]

where ¢ denotes the standard normal density, and ¢, is the ith regression quantile
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original data. The same perturbation of y; changes the Wilcoxon regression
rankscore test statistic from 13.17 to 14.70 with a correlation between the two
rank vectors of 0.87. A more robust initial estimator would improve the
performance of the aligned rank test somewhat. The regression Tank score
version of the test is seen to be relatively insensitive to such perturbations. One
should be aware that comparable perturbations in the X, design observations may
wreck havoe even with the rank score form of the test. Recent work of Antoch
and Jureckovi (1985) and deJongh, deWet, and Welsh (1988) contain suggestions
on robustifying regression quantiles and therefore the corresponding regression
rank scores to the effect of influential design points.

Computation of the tests was carried out in S+ using the algorithm described in
Koenker and d’Orey (1987, 1990) to compute regression guantiles.

3. PROPERTIES OF REGRESSION RANK SCORES

Consider the linear regression model (2.1) with design X,, of dimension n % p. Let
Bla)eR” be the a-regression quantile and &(a)eR" be the vector of ath
regression rank scores defined in (2.7). We see from the form of the linear
constraints in (1.5) that the regression rank scores are regression invariant, 1.e.,

ﬁu o, Y +Xb} =ﬁ_.,(a', Y} hERP- {3]}

Moreover, in view of the invariance, we may assume
f
>x=0, j=2,....p (3.2)
i=1

without loss of generality.

Our primary interest in this section will be the properties of the regression rank
SCOTES Process

{#,0):0=1=1}. (3.3)
Gutenbrunner and Jureckova (1992) studied the process
W= {Wﬁ{r} =Vn D d,d.(1):0=t= 1} (3.4)
i=1
and showed that
W) = U() + 0,(1) (3.5)
where
Ul) =n""" 2 4 J[E; = F'(1)] (3.6)

i=1
as n—»oo uniformly on any fixed interval [e 1—¢], where 0<eg<4i for any
appropriately standardized triangular array {d,:i=1,...,n} of vectors from
RY. They also showed that the process (3.3) {and hence (3.4)) has continuous
trajectories and, under the standardization Y7, d,, =0, (3.5) is tied-down to 0 at
t=0, and r = 1. The same authors also established the weak convergence of (3.4)
to the Brownian bridge over [g, 1 — £]. Note however that Theorem V.3.3 in
Hijek and Siddk (1967) establishes the weak convergence of (3.4) to the
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Brownian bridge over the entire interval [0, 1] in the special case of the location
submodel. Here we extend the results of Gutenbrunner and Juretkovd (1992) in
the tails of [0, 1], in order to find the asymptotic behavior of the rank scores and
the test statistics (2.7) and (2.8), for which the score functions are not constant in
the tails.

It may be noted that this extension is rather delicate. If the rank scores
involved integration from € to 1 — £ (i.e., if ¢ were constant near 0 and 1), then
the earlier Gutenbrunner—Jureckova (1992) representation theorem could be
used to obtain the asymptotic distribution theory here under somewhat weaker
hypotheses (see the remark following Theorem 5.1). It is the desirability of
treating such tests as the Wilcoxon and Normal Scores Tests that requires the
extensions here. Nonetheless, the fact shown here that the rank score process can
be represented uniformly on an interval (a), 1 — a)) with & decreasing as a
negative power of n (precisely, a)=n""""* for some b=>0) is rather
remarkable and of independent theoretical interest.

To this end, we will assume that the errors E,,...,E, in (2.1) are
independent and identically distributed according to the distribution function
F(x) which has an absolutely continuous density f. We will assume that f is
positive for A <x <8 and decreases monotonically as xr— A4 and r— B-
where

—w=4=sup{x: F(x)=0} and +==B=inf{x: F(x)=1}
For 0 < a <1, let vy, denote the score function corresponding to (1.2):
Yo(x)=a—-1I[x<0], xeR. (3.7
We shall impose the following conditions on F:

(F.1) [F Y a)|sc(a(l-—a))™ for 0<a=a,, l-as,=a<], where 0<a=
g, e=0and c=0.

(F.2) 1/f(F Y{a)=cle(l—a))y " “for0<a=a,and 1 —a,=a<1, c=0.

(F.3) f(x)>=01is absolutely continuous, bounded and monotonically decreasing as
x— A+ and x — B—. The derivative f' is bounded a.e.

(F.4)

‘flf )
fx)

Remark. These conditions are satisfied, for example, by the normal, logstic,
double exponential and ¢ distributions with 5, or more, degrees of freedom.
Condition (F.1) implies [ [¢|*"®dF(r) <+ for some §=>0. Hence using (F.4)
also, F has finite Fisher Information, a fact to be applied in Theorem 5.1.

The following design assumptions will also be employed.

=c |x| for x| =K =0, c =0,

I:K.l} x,-.=1, i=1,...,ﬂ
(X.2) lim, .. D, =D where D,=n"'X/X, and D is a positive definite p X p
maltrix.

(X.3) n7 B, Il = O(1) as n— e,
(X.4) max,_;., ||x]| = O(n*E~=—2¥1+20) for some b =0 and & =0 such that
O<b—a<ef2 (hence 0<<b<1—gf2).
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The following theorem which follows from Theorem 3.2 is an extension of
Theorem V.3.5 in Hajek and Siddk (1967) to the regression rank Scores. Some
applications of this result to Kolmogorov—Smirnov type tests appears in
Juretkovd (1991).

TueoreM 3.3 Under the conditions of Theorem 3.2, as n— %=,

sup {|p2 S dutan(@) - a0 (3.47)
=a=1 i=1
Moreover, the process
{&‘ 14-12% d b)) 0=a= 1} (3.48)
=1

converges to the Brownian bridge in the Prokhorov topology on C[0, 1].
Proof. By Theorem 3.2,

22 S 4 (0(@) - )| 20 (3.49)
i=1

sup

ar;ﬂﬂ"'-:l—cr;

Further, using the fact that B, (1 — i, (@) = na, due to the linear constraints in

(1.5),

sup n-mzd,.,.a,,,.;a)l: sup ]n"-*idmn;l—man\

== =S oo =S o ==y i=1
5”1.-2 max ]dur'l ﬂ': i D{"1.'24-[2{h—ajpb].':1+4b]—]fg1+ah}} i D{”--'lb} {35{}}
1=i=n

and we obtain an analogous conclusion for Sup;_az=a=1 =" Ty dud( @) On
the other hand,
I : I ;=
sup |n"”1 3. d,,,-ei,-l:cr}| = sup ||r1'“' >, duld[E: < FYa)] — ar}l
i=1

(1= o= gy f=1 = =S

= max |d,| - Oplan(l — a2 =0,(1) (35D
l=i=n
and analogously

n~12 Y dale)

i=1

sup

1—or=a=l

= o,(1).

Thus (3.47) follows. and consequently (3.48). )

4. ASYMPTOTIC PROPERTIES OF SIMPLE LINEAR REGRESSION
RANK SCORES STATISTICS

Maintaining the notation of Section 3, let @(r):0<tr=<1 be a nondecreasing
square—integrable seore-generating function and let by, i=1, ..., 7 be the scores
defined by (2.7). Let {d,} be a sequence of vectors satisfying (D.1)-(D.3)
of Lemma 3.2.
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Following Hajek and Sidédk (1967), we shall call the statistics
S.=n2Y, dby (4.1)
i=1

simple linear regression rank-score statistics, or just simple linear rank statistics.
Qur primary objective in this section is to investigate the conditions on ¢ under
which we may integrate (3.47) and obtain an asymptotic representation for S, of
the form

S, =n"12 3, dy@(F(E)) +0,(1). (4.2)
i=1
We shall prove (4.2) for ¢ satisfying a condition of the Chernoff—Savage (1958)
type; thus our results will cover Wilcoxon, van der Waerden (Normal), and
median scores, among others.

Tueorem 4.1. Let @(1):0<t<1, be a nondecreasing square integrable function
such that ¢'(r) exists for0<t<ag l—apg=t<1 and satisfies

@' () =e(e(1—)7""" (4.3)

for some 8*<d where O is given in condition (X.4), and for te(0, a) UV
(1 - ap, 1). Then, under (F.1)-(F.4), (X.1)-(X.4) and (D.1)=(D.3) of Lemma
3.2. the statistics S, admits the representation (4.2) and hence is asymptotically
normally distributed with zero expectation and with variance

M(E FOd-§), b= j (1) d. (a.4)

Proof. Let us consider S, defined in (4.1) with the scores (2.7). Integrating by
parts (notice that (1) —da(n=0forr= 0, 1), we obtain

L3 1 n 1
—HR w q;:(f) d(dni(f] = ﬁl(r}} =n i Z dm'j {.dau{r) T EI{I}) dipl:_f} ':.45}
i=1 [} i=1 i

which we must show is 0,(1). We shall split the domain of integration into the
intervals (0, &), (an, @), [ap, 1 — @al, (1— @, 1- a’), [1— an, 1) and denote
the respective integrals by I, ..., I Regarding Theorem 3.2, we immediately
get that L2>0 by the dominated convergence theorem. Similarly, for some
6* =14,

= ["e1 7 S duao -ao)| e

ECJ‘“:’(I(l — ) (1 — ") e )~ % d(id, (1) — a(t))] de

_ cru (t(1— )¢ de - 0, (1) = 0, (1).

oy
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Finally,
=07 max [ [ 19/ S 18u(0) = (0] e =y +

where )

= max 4 [ 1901 (1= 4.0) d (@.6)
and )

e =n~" max 4l [ 19701 3 (1= a(0) @7
Then =
L, =n'? P:?Ex,, |dm'l'[j L T G[nl-‘l-'-{Z{h—a}—ﬁ]-'[l+-‘|M—Ll—-5‘}-f1I+4b]}

= O(n-Ho-o Y10y

Finally,

ha=n"23 d, J " gl > F(E)) d

i=1 i

— b2 i] d.Jo(a}) — @(F(E)H[F(E;) < @y

Now we may assume that @(a;)<0 for n=n,, since otherwise if ¢ were
bounded from below then I, 0. Hence

Var(lp) =n~' S, EEQeFENFIFE) <o) = [ ¢ du-0(1)=0
i=1 i

due to the square-integrability of . Treating the integrals I, Is analogously, we

arrive at (4.5) and this proves the representation (4.2) [

5. TESTS OF LINEAR SUBHYPOTHESES BASED ON REGRESSION
RANK SCORES

Returning to the model (2.2), assume that the design matrix X = (X, :X,) satisfies
the conditions (X.1)-(X.4), (2.3) and (2.4). We want to test the hypothesis
Hy:B:=0 (B, unspecified) against the alternative H,:f,, = n~ "8, (foeR?
fixed).

Let @,(a)=(d(a), ..., dn(a)) denote the regression rank scores cor-
responding to the submodel

Y= Xhﬁl + E under Hu. {5. 1}

Let @(f):(0, 1)— R" be a nondecreasing and square integrable score-generating
function. Define the scores b, i=1,...,n by the relation (2.7), and consider
the test statistic
T, = $,Q,'8,/A%(¢) (5.2)
where .
8, =n""(X,;— X.2)'b, (5.3)
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and where Q, and A*(g) are defined in (2.4) and (2.10), respectively. The test is
based on the asymptotic distribution of T, under H,, given in the following
theorem. Thus, we shall reject H;, provided T, = xé(m], i.e. provided T, exceeds
the @ critical value of the y* distribution with g d.f. The same theorem gives the
asymptotic distribution of T, under H, and thus shows that the Pitman efficiency
of the test coincides with that of the classical rank test.

Tueorem 5.1. Assume that X, satisfies (X.1)-(X.4) and (X,:X,) satisfies (2.3)
and (2.4). Further assume that F satisfies (F.1)—(F.4). Let T, defined in (5.3) and
(5.4) be generated by the score function ¢ satisfying (4.3), and nondecreasing and
square-integrable on (0, 1).

(i) Then, under H,, the statistic T, is asymptotically central y* with g degrees of
freedom.

(i) Under H,, T, is asymptotically noncentral x° with g degrees of freedom and
with noncentrality parameter,

n* = BuQBy - v (g, F)/ A (@) (5.4)
with

Y@, F)= ‘L @(0) dF (F(0)). (5.5)

Remarks. (I) If @ is of bounded variation and is constant near 0 and 1, the
representation given in Theorem 2(ii) of Gutenbrunner and Jureékovd (1992)
could be used to provide the conclusion of Theorem 5.1 under somewhat weaker
hypothesis; namely, (X.1), (X.2), max, ||x;|| = o(n"?), F has finite Fisher Infor-
mation, and 0<f <w on {x:0<F(x)<1}.

(ii) The analogy between the location and regression models concerning the
noncentrality parameter y(¢, F) may be extended in the following way: instead
of defining local alternatives via (2.6), the definition of Behnen (1972) can be
generalized to the regression model. That is, with F{r)=F(r—x;/,) and
G; = L(Y;), consider

dG;
Hy:G;=F vs. H, :EF'I- =1+ x38:.h.(F)
where
Bo, =n~ 20, h, —he L*0,1), and max |jxy]| [|h.]12=e(n'?).
L ]

In this setting, even without the assumption of finite Fisher Information, (4.2)
implies that the conclusion of Theorem 5.1 holds with y(g, F) in (5.4) replaced
by the F-independent constant

e e I{tP{u]—@]Eh{!f-]*E]_du
: (J(@(u) — @)* du [ (h(u) — h)* du)™®’
i.e., the correlation of the functions ¢ and h. Such local alternatives provide

insight into the structure of the regions of constant efficiency for regression rank
Lests.
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Proof. (i) It follows from Theorem 4.1 that, under H,, S, has the same
asymptotic distribution as

g.'| =h _Iﬂl::xnz (27 inz)fﬁ“

where b, =(b,,,...,5,) and b= @(F(E)), i=1,...,n The asymptotic
distribution of 8, follows from the central limit theorem and coincides with
g-dimensional normal distribution with expectation 0 and the covariance matrix
Q- A%(g).

(ii) The sequence of local alternatives H, is contiguous with respect to the
sequence of null distributions with the densities {II;_, f(e;)}. Hence, (4.1) holds

also under H, and the asymptotic distributions of §, under H, coincide. The
proposition then follows from the fact that the asymptotic distribution of §, under
H, is normal N,(y(g, FIQf,, QA%g)). O
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