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2.
Introduction

The term bootstrapping is due to Efron (1979), and is an allusion to a German

legend about a Baron Münchhausen, who was able to lift himself out of a swamp

by pulling himself up by his own hair.

In later versions he was using his own boot straps to pull himself out of the sea

which gave rise to the term bootstrapping.

As improbable as it may seem, taking samples from the original data and using

these resamples to calculate statistics can actually give more accurate answers

than using the single original sample to calculate an estimate of a parameter.
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3.
Introduction -Cont.

In fact, resampling methods require fewer assumptions than traditional para-

metric methods and generally give more accurate answers.

The price to pay is that Bootstrap methods are computationally intensive tech-

niques. However, today’s computers are many times faster than those of a gener-

ation ago.

The fundamental concept in bootstrapping is the building of a sampling distribu-

tion for a particular statistic by resampling from the data that is at hand. In this

sense, bootstrap methods are both parametric and nonparametric; however, at-

tention now is focused exclusively on the nonparametric bootstrap.
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4.
Introduction -Cont.

Bootstrap methods offer the practitioner valuable tools for dealing with com-

plex problems.

Even though resampling procedures rely on the new power of the computer to

perform simulations, they are based on the old statistical principles such as pop-

ulations, parameters, samples, sampling variation, pivotal quantities, and confi-

dence intervals.

For most students, the idea of a sampling distribution for a particular statistic is

completely abstract; however, once work begins with the bootstrap distribution,

the bootstrap analog to the sampling distribution, the concreteness of the boot-

strap distribution promotes a conceptual understanding of the more abstract

sampling distribution.

4



Lola UgarteBrno, December 2007

5.
R Tools

R is a free statistical software with many possibilities allowing the practitioner

to use bootstrap techniques very easily

There exist two important R packages:

bootstrap by Efron and Tibshirani (1993) (ported to R from S-PLUSr by

Friedrich Leisch).

boot by Angelo Canty (ported to R from S-PLUSr by B. D. Ripley)

The boot library provides functions and data sets from the book Bootstrap Meth-

ods and Their Applications by Davison and Hinkley (1997).
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6.
The Bootstrap Paradigm

Suppose a random sample X = (X1, X2, . . . , Xn) is taken from an unknown prob-

ability distribution, F , and the values x = (x1, x2, . . . , xn) are observed.

Using x, the parameter θ = t(F ) is to be estimated.

The traditional approach of estimating θ is to make some assumptions about the

population structure and to derive the sampling distribution of θ̂ based on these

assumptions.

This, of course, assumes the derivation of the sampling distribution of the statistic

of interest has either been done or that the individual who needs to do the deriving

has the mathematical acumen to do so. Often, the use of the bootstrap will be

preferable to extensive mathematical calculations.
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7.
Bootstrap Paradigm -Cont

In the bootstrap paradigm, the original sample, x, takes the place the popula-

tion holds in the traditional approach. Subsequently, a random sample of size

n is drawn from x with replacement.

The resampled values are called a bootstrap sample and are denoted x∗.

Sampling with replacement means that after we randomly draw an observation

from the original sample we put it back before drawing the next observation. Think

of drawing a number from a hat, then putting it back before drawing it again.

That is, given x = {4, 5, 6, 2, 8, 12}, one possible bootstrap sample x∗ might be

x∗ = {6, 6, 5, 12, 2, 8}

Some values from the original sample x may appear once, more than once, or

not at all in the bootstrap sample x∗.
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8.
Bootstrap Paradigm -Cont

Remember that the star notation indicates that x∗ is not the original data set x,

but rather, it is a random sample of size n drawn with replacement from x.

The idea of calculating the sampling distribution of a statistic in the classical

approach is to collect the values of the statistic from many samples. The boot-

strap distribution of a statistic collects its values from many resamples.

These values are used to calculate an estimate of the statistic of interest s(x) = θ̂.
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9.
Bootstrap Paradigm -Cont

The fundamental bootstrap assumption is that the sampling distribution of the

statistic under the unknown probability distribution F may be approximated

by the sampling distribution of θ̂∗ under the empirical probability distribution

F̂ .

Remember that the empirical probability distribution puts probability 1/n for each

value xi.
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10.
Bootstrap Paradigm -Cont

The process of creating a bootstrap sample x∗ and a bootstrap estimate θ̂∗ of the

parameter of interest is repeated B times.

The B bootstrap estimates of θ, the θ̂∗s, are subsequently used to estimate spe-

cific properties of the bootstrap sampling distribution of θ̂∗.

There are a total of
(2n−1

n

)
distinct bootstrap samples. Yet, a reasonable estimate

of the standard error of θ̂∗, σ̂θ̂∗ ≡ ŜEB, can be achieved with only B = 200 boot-

strap replications in most problems.

For confidence intervals and quantile estimation, B generally should be at least

999.
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11.
Bootstrap Estimate of Standard Error

Under the fundamental bootstrap assumption, we may write

seF (θ̂) =

√
varF (θ̂)

.
= seF̂ θ̂∗

The algorithm that we will describe soon will allow us to calculate a good numeri-

cal approximation of seF̂ θ̂∗
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12.
Bootstrap Estimate of Standard Error

The drawing of bootstrap samples can be easily done in a computer. We just need

a selection procedure of integer random numbers among 1 and n with probability

1/n: i1, . . . , in.

The bootstrap sample corresponding to a single drawing is

x∗1 = xi1, x
∗
2 = xi2, . . . , x

∗
n = xin
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In R the function sample does this task:

x<-c(10, 15, 25, 37, 48, 23, 44, 19, 32, 20)

set.seed(30) #to reproduce the same result

indices<-sample(1:10, replace=T)

indices

[1] 1 5 4 5 4 2 9 3 10 2

x.asterisco<-x[indices]

x.asterisco

[1] 10 48 37 48 37 15 32 25 20 15

Also (and easier)

set.seed(30)

sample(c(10, 15, 25, 37, 48, 23, 44, 19, 32, 20), replace=T)

[1] 10 48 37 48 37 15 32 25 20 15
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13.
Bootstrap Estimate of Standard Error

The bootstrap algorithm works drawing independent bootstrap samples, and

calculating the corresponding statistic using these samples. The bootstrap

standard error of a statistic is the standard deviation of the bootstrap dis-

tribution of that statistic.

The result is called bootstrap standard error and it is denoted by ŝeB, where

B is the number of replications.

To apply the bootstrap idea we must start with a statistic that estimates the

parameter we are interested in. We usually come up with a suitable statistic

by appealing to another principle that we often apply without thinking: the

plug-in principle
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THE PLUG-IN PRINCIPLE

To estimate a parameter, a quantity that describes the population, use a statistic

that is the corresponding quantity for the sample.

For example, to estimate µ we use x̄ or to estimate the population standard

deviation σ, we use the sample standard deviation s.

The bootstrap idea itself is a form of the plug-in principle: substitute the

sample data for the population, then draw samples (resamples) to mimic the

process of building a sampling distribution.
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14.
Bootstrap Estimate of Standard Error

The general procedure for estimating the standard error of θ̂∗ is:

1. Generate B independent bootstrap samples x∗1,x∗2, . . .x∗B, each consisting

of n values drawn with replacement from the original sample.

2. Compute the statistic of interest for each bootstrap sample b.

θ̂∗(b) = s(x∗b), b = 1, . . . , B

3. Estimate the standard error of θ̂ by computing the sample standard deviation

of the bootstrap replications of θ̂∗b , b = 1, 2, . . . , B.

ŝeB =

{
B∑

i=1

(θ̂∗b −
¯̂
θ∗)2

(B − 1)

}1/2

, where ¯̂
θ∗ =

B∑
b=1

θ̂∗b
B
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15.
Bootstrap Estimate of Standard Error

The number of replications needed to calculate the bootstrap standard error

is rarely superior to 200 (Efron and Tibshirani, 1993)

The limit of ŝeB when B goes to infinity is the ideal bootstrap estimate of

seF (θ̂).

The fact that ŝeB is approximately equal to seF̂ (θ̂∗) when B goes to infinity

is similar to saying that the empirical standard deviation is approximately

equal to the population standard deviation when the number of replications

increases.

The ideal bootstrap estimate seF̂ (θ̂∗) and its numerical approximation ŝeB

are called non-parametric bootstrap estimates because they are based on

F̂ , a non-parametric estimator of F .
18
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16.
Bootstrap Standard Error- Example

We generate 10 values from a N(0, 1). Think in the sample mean X̄ as an estima-

tor of µ (in this case the true value of µ is known and equal to 0). We know theo-

retically that the standard error of the sample mean estimator is ee(X̄) =
√

σ2/n

and the corresponding estimator of this standard error is êe(X̄) =
√

S2/n. Then,

the true standard error of X̄ is
√

1/10 = 0,3162.

Let us calculate a bootstrap numerical approximation using B=200 replicates.

The student should repeat this little experiment generating a sample of size 100.

Fix the seed in 10 using the command set.seed(10) to be able to reproduce

results.
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SOLUTION
set.seed(10)

n<-10

muestra.original<-rnorm(n)

muestra.original

> muestra.original

[1] 0.01874617 -0.18425254 -1.37133055 -0.59916772 0.29454513 0.38979430

[7] -1.20807618 -0.36367602 -1.62667268 -0.25647839

sqrt(var(muestra.original)/n) # With theoretical results

[1] 0.2213258

B<-200

muestras.bootstrap<-matrix(0,B,n)

estadistico.boot<-array(0,B)

i<-1

while (i < (B+1)){

muestras.bootstrap[i,]<-sample(muestra.original,replace=T)

estadistico.boot[i]<-mean(muestras.bootstrap[i,])

i<-i+1}

error.estandar<-sd(estadistico.boot)

> error.estandar

[1] 0.2059542
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17.
Bootstrap Estimate of Bias

A statistic is biased as an estimate of a population parameter if its sampling

distribution is not centered at the true value of the parameter.

We may check bias by seeing whether the bootstrap distribution of the statistic

is centered at the value of the statistic for the original sample.

More precisely, the bias of θ̂ = s(X) is the difference between the expected value

of θ̂ and the true parameter value θ = t(F ).

Bias(s(X)|F ) = EF [s(X)]− t(F )
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We may use bootstrap to estimate the bias of any estimator θ̂ by writing in the

previous expression F̂ instead of F

Bias(s(X)|F̂ ) = EF̂ [s(X∗)]− t(F̂ )

In words, the bootstrap estimate of bias is the difference between the mean of

the bootstrap distribution and the value of the statistic in the original sample

We will calculate the bootstrap bias of s(X) using B resamples of the original

sample

B̂iasB[s(X)] =
¯̂
θ∗ − θ̂ donde ¯̂

θ∗ =
B∑

i=1

θ̂∗

B
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18.
Bootstrap Confidence Intervals

With estimates of the standard error (standard deviation) and bias of some

statistic of interest, various types of confidence intervals for the parameter θ

can be constructed.

Although exact confidence intervals for specific problems can be computed,

most confidence intervals are approximate.

The most common confidence interval for a parameter θ when θ̂ follows either

a normal or approximately normal distribution is

C.I.1−α(θ) = [θ̂ − z1−α/2σ̂θ̂, θ̂ + z1−α/2σ̂θ̂]
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The student may remember that this interval is easily obtained from the dis-

tribution of θ̂ − θ using the pivotal quantity

θ̂ − θ√
ˆvar(θ̂)

≈ N(0, 1)

The confidence interval described above works well when the distribution of

θ̂−θ is normal, at least approximately, but this is not always the case. In some

cases we could know the approximate normality but we may have difficulties

deriving the variance of the estimator.
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19.
Bootstrap Confidence Intervals

The confidence interval that we will call normal is a slight modification to

the traditional CI that incorporates both a bootstrap adjustment for bias and

a bootstrap estimate of the standard error. The normal confidence interval is

calculated as

C.I.1−α(θ) = [θ̂ − B̂iasB(θ̂)− z1−α/2ŜEB(θ̂), θ̂ − B̂iasB(θ̂) + z1−α/2ŜEB(θ̂)]

To use this confidence interval it is convenient to check normality, using for

instance a qq-norm of θ̂∗1 = s(x∗1), . . . , θ̂
∗
B = s(x∗B).

25



Lola UgarteBrno, December 2007

20.
Bootstrap Confidence Intervals

The basic bootstrap confidence interval is based on the idea that the quan-

tity θ̂∗ − θ̂ has roughly the same distribution as θ̂ − θ, and then it is possible

to approximate the percentiles of θ̂ − θ by the percentiles of θ̂∗ − θ̂

P
[
θ̂∗((B+1)α/2) − θ̂ ≤ θ̂∗ − θ̂ ≤ θ̂∗((B+1)(1−α/2)) − θ̂

]
.
= 1− α

P
[
θ̂∗((B+1)α/2) − θ̂ ≤ θ̂ − θ ≤ θ̂∗((B+1)(1−α/2)) − θ̂

]
.
= 1− α

And then,

P
[
2θ̂ − θ̂∗((B+1)(1−α/2)) ≤ θ ≤ 2θ̂ − θ̂∗((B+1)α/2)

]
.
= 1− α

I.C.1−α(θ) = [2θ̂ − θ̂∗((B+1)(1−α/2)), 2θ̂ − θ̂∗((B+1)α/2)]
26
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21.
Bootstrap Confidence Intervals

The bootstrap-t interval or Studentized interval is based on the idea of

replacing the approximation of Z = θ̂−θ
σ̂θ̂

to the standard normal distribution

N(0, 1) by a bootstrap approximation Z∗ = (θ̂∗ − θ̂)/SEB.

We generate B bootstrap samples and compute Z∗(b). The p percentile of

the Z distribution is approximated by the (B + 1)p percentile of Z∗(b).

The interval takes the form

C.I.1−α(θ) = [θ̂ + z∗((B+1)(α/2))σ̂θ̂, θ̂ + z∗((B+1)(1−α/2))σ̂θ̂]

The notation z∗(Integer) is used to denote the (Integer)th z∗ of the B sorted Z∗

values. The values of B and α are generally chosen so that (B + 1) · α/2 is

an integer. In cases where (B +1) ·α/2 is not an integer, interpolation can be

used. (Note that different programs use different interpolation techniques.)
27
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22.
Bootstrap Confidence Intervals

The percentile confidence interval is based on the quantiles of the B boot-

strap replications of s(X).

Specifically, the (1 − α) percentile confidence interval of θ uses the α/2 and

the 1 − α/2 quantiles of the θ̂∗ values to create a (1 − α) · 100 % confidence

interval for θ.

C.I.1−α = [θ̂∗((B+1)α/2), θ̂
∗
((B+1)(1−α/2))]
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23.
Bootstrap Confidence Intervals

At this point, a reasonable question might be which confidence interval

is recommended for general usage since the normal confidence interval is

based on large sample properties, the t-bootstrap confidence interval is not

recommended if the bootstrap distribution is not normal or shows substan-

tial bias, and the percentile and basic bootstrap confidence interval formulas

give different answers when the distribution of θ̂∗ is skewed?

In fact, the answer is to use none of the confidence intervals discussed thus

far. The bootstrap confidence interval procedure recommended for general

usage is the BCa method, which stands for bias-corrected and accelerated.

The bottom line is that there are theoretical reasons to prefer the BCa con-

fidence interval over the normal, percentile, and basic bootstrap confidence

intervals.
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It is possible that both the percentile and basic methods provide confidence

intervals not centered around the true value of the parameter. Only if the

bootstrap distribution is symmetric around θ̂, all of the methods provide the

same results. Otherwise, the BCa CI corrects for bias and skewness.

The underlying idea of the BCa CI is to assume that there exist a transforma-

tion of θ̂ whose distribution is normal and its mean and standard error depend

on θ. Then, one derives an interval of the transformed parameter and then

back-transformed the confidence limits to obtain an interval for θ.

The most interesting thing is that it is possible to calculate the interval

without knowing the explicit form of the transformation by using boot-

strap.
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24.
Bootstrap Confidence Intervals

To compute a BCa interval for θ, C.I.1−α(θ) =
[
θ̂∗lower, θ̂

∗
upper

]
, first compute the bias

factor, z, where

z = Φ−1

[∑B
i=1 I{θ̂∗b < θ̂}

B

]
Φ−1 is the inverse of the cumulative distribution function of the standard normal

distribution and I is the indicator function.

Provided the estimated bootstrap distribution of θ̂∗ is symmetric with respect

to θ̂, and if θ̂ is unbiased, then
∑B

b=1 I{θ̂∗b<θ̂}
B will be close to 0,5, and the biased

correction factor z will be close to zero since Φ−1(0,5) = 0.

Using R, type qnorm(.5)=0.
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25.
Bootstrap Confidence Intervals

Next, we compute the skewness correction factor

a =

∑n
i=1

(
¯̂
θ(−i) − θ̂(−i)

)3

6
[∑n

i=1(
¯̂
θ(−i) − θ̂(−i))2

]3/2 ,

where θ̂(−i) is the value of θ̂ = s(X) when the i-th value is deleted from the sample

of n values and ¯̂
θ(−i) =

∑n
i=1

θ̂(−i)

n .

Using z and a, we compute

a1 = Φ

[
z +

z + zα/2

1− a(z + zα/2)

]
and a2 = Φ

[
z +

z + z1−α/2

1− a(z + z1−α/2)

]
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The BCa confidence interval for θ is

C.I.1−α(θ) = [θ̂∗((B+1)a1), θ̂
∗
((B+1)a2)]

When either lower= ((B + 1)a1 or upper=((B + 1)a2 is not an integer, interpola-

tion can be used to obtain the lower and upper endpoints of the BCa confidence

interval.

The function boot.ci of the package boot computes all of the confidence inter-

vals just shown.
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26.
Example

The times recorded are those for 41 successive vehicles travelling northwards

along the M1 motorway in England when passing a fixed point near Junction 13

in Bedfordshire on Saturday, March 23, 1985. After subtracting the times, the

following 40 interarrival times were reported to the nearest second.

Times<-c(12,2,6,2,19,5,34,4,1,4,8,7,1,21,6,11,8,28,6,

4,5,1,18,9,5,1,21,1,1,5,3,14,5,3,4,5,1,3,16,2)

Determine the distribution of the interarrival times and calculate bootstrap confi-

dence intervals for the mean of those times using the function boot.ci from the

boot library. In addition, compute an exact confidence interval for the mean know-

ing that 2nX̄/θ ∼ χ2
2n where θ is the mean of the exponential distribution. What

type of confidence interval is closer to the exact interval?
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Solution

To determine the distribution of interarrival times, a histogram is created and the

mean and standard deviation are calculated.

> hist(Times,prob=T)

> mean(Times)

[1] 7.8

> sd(Times)

[1] 7.871402

> lamb<-1/mean(Times)

> x<-seq(0,35,length=800)

> f<-lamb*exp(-lamb*x)

> lines(x,f,lwd=1)
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27.
Example

It seems an approximate Poisson process for the number of cars passing

Junction 13 Saturday 23 March 1985 with x̄ = 1/λ̂ = 7,8 is present.

Recall that the waiting time between outcomes in a Poisson process has an

exponential distribution. Note that the interarrival times seems to be fit well

with an exponential density with λ̂ = 1/7,8.

Recall that mean and standard deviation of the exponential are 1/λ.
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28.
Example

The bootstrap confidence intervals are now constructed for the mean using the

function boot.

To use the package boot we need first to build the following function

library(boot)

times.fun <- function(data, i)

{ media <- mean(data[i]) # compute the mean of each bootstrap sample

n <- length(i)

v <- (n-1)*var(data[i])/nˆ2 # compute the variance of the sample mean

it is needed only for the t-bootstrap CI

c(media, v)

}
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29.
Example -Cont.

Set the number of bootstrap replications B to 9999 and generate the bootstrap distribution of X̄ denoted

by t∗ when using the boot package. Note that R in boot is the number of bootstrap replications which we

denoted B before, so R is set equal to B. A random seed value of 10 is used so the reader can reproduce

the results.

B<-9999

set.seed(10)

b.obj<-boot(Times, times.fun, R=B)

> b.obj

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = Times, statistic = times.fun, R = B)

Bootstrap Statistics :

original bias std. error

t1* 7.80000 -0.01249375 1.2149888 #mean

t2* 1.51025 -0.04141159 0.4712177 #variance of the mean
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30.
Example -Cont.

Let us represent now the bootstrap distribution of the mean (t∗1) (we will ob-

serve from the histogram and qq-norm that the distribution is slightly skew to

the right)

Hence, there will be small differences between the alternative confidence

intervals

Type in R:

plot(b.obj)
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31.
Example -Cont.

Next, use the function boot.ci on the object b.obj to create the five types of

bootstrapped confidence intervals.

> boot.ci(b.obj)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 9999 bootstrap replicates

CALL :

boot.ci(boot.out = b.obj)

Intervals :

Level Normal Basic Studentized

95% ( 5.431, 10.194 ) ( 5.275, 10.050 ) ( 5.681, 11.070 )

Level Percentile BCa

95% ( 5.550, 10.325 ) ( 5.800, 10.700 )

Calculations and Intervals on Original Scale
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32.
Exact Confidence Interval

From 2nX̄
θ ∼ χ2

2n, we may write

P

(
χ2

2n;α/2 ≤
2nX̄

θ
≤ χ2

2n;1−α/2

)
= 1− α

From the above expression, it follows

P

(
χ2

2n;α/2 ≥
θ

2nX̄
≥ χ2

2n;1−α/2

)
= 1− α

Then a 1− α confidence interval for θ is

C.I.1−α(θ) =

[
2nX̄

χ2
2n;1−α/2

,
2nX̄

χ2
2n;α/2

]
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33.
Exact Confidence Interval

In R:

> lower<-2*length(Times)*mean(Times)/qchisq( 0.975, 2*length(Times))

> upper<-2*length(Times)*mean(Times)/qchisq( 0.025, 2*length(Times))

> intervalo<-round(c(lower,upper),3)

> intervalo

[1] 5.852 10.918
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34.
Comparison of Results

Method Lower Limit Upper Limit
Normal 5.431 10.194

Basic 5.275 10.050
t or Studentized 5.681 11.070

Percentile 5.550 10.325
BCa 5.800 10.700

Exact 5.852 10.918
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