
Lola UgarteBrno, December 2007

Resampling Techniques

Permutation Tests

UGARTE, M.D.(*)
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1.
Introduction

Permutation tests are computationally intensive techniques that actually pre-

date computers.

Until recently, permutation tests were more of a theoretical ideal than a useful

technique. With the advent of high-powered computers, permutation tests have

moved out of the abstract into the world of the practical.

The permutation test is examined in only one context here: the two-sample prob-

lem.
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2.
Introduction -Cont.

The fundamental idea behind the permutation test is that if there are no differ-

ences between two treatments, all data sets obtained by randomly assigning the

data to the two treatments have an equal chance of being observed.

Permutation tests are especially advantageous when working with small sam-

ples where verification of assumptions required for tests such as the pooled

t-test are difficult.

2



Lola UgarteBrno, December 2007

3.
Introduction -Cont.

To test a hypothesis with a permutation test:

1. Choose a test statistic θ̂ that measures the effect under study. Note that

certain statistics will have more power to detect the effect of interest than

others.

2. Create the sampling distribution that the test statistic in Step 1 would have if

the effect is not present in the population (the null hypothesis is true).
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3. Find the “observed test statistic” in the sampling distribution from Step 2.

Observed values in the extremes of the sampling distribution suggest that the

effect under study is “real”. In contrast, observed values in the main body of

the sampling distribution imply that the effect is likely to have occurred by

chance.

4. Calculate the p-value based on the observed test statistic. This may be

P (|θ̂| ≥ |θ̂obs|), in a two-sided test

P (θ̂ ≤ θ̂obs), in a left one-sided test

P (θ̂ ≥ θ̂obs), in a right one-sided test
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4.
The two-sample problem

Suppose two independent random samples z = {z1, . . . , zn} and y = {y1, . . . , ym}
are drawn from possibly different probability distributions F and G.

The question of interest is whether F = G.

Assuming H0 : F = G is true, it is possible to create the permutation sampling

distribution for some statistic of interest, θ̂.

Let N equal the combined sample size n + m.
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5.
The two-sample problem

Let v = {v1, v2, . . . , vN}, be the combined and ordered vector of values, (the

first n values correspond to the first sample and the rest to the second).

Let g = {g1, g2 . . . , gN} be a vector indicating the group membership for v.

Since there are n zi’s and m yj ’s in g, there are
(
N
n

)
possible ways of parti-

tioning N elements into two subsets of sizes n and m.

Consequently, under the null hypothesis that F = G, the vector g has prob-

ability 1/
(
N
n

)
of equalling any one of its possible values. That is, all combina-

tions of zi’s and yj ’s are equally likely if F = G.
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6.
The two-sample problem

Suppose HA : F > G and θ̂ = z̄ − ȳ, then the exact p-value is found by finding

#{θ̂ ≥ θ̂obs}(
N
n

)
For all but relatively trivial sized samples n and m, the number

(
N
n

)
will be huge,

making the enumeration of all possible samples of the statistic of interest a

monumental task.

For example, consider that if n = 10 and m = 10 that complete enumeration would

require listing
(20
10

)
= 184, 756 possible outcomes.
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7.
The two-sample problem

Consequently, an approximation to the exact p-value is often obtained by re-

sampling WITHOUT replacement the original data some “large” number of

times, B, which is usually at least 999, and approximating the p-value with

p-value .
=

[1 + #{θ̂ ≥ θ̂obs}]
(B + 1)

=
[1 +

∑B
i=1 I{θ̂ ≥ θ̂obs}]
(B + 1)

When the sampling is done with replacement, a bootstrap test is performed. Boot-

strap tests are somewhat more general than permutation tests since they apply

to a wider class of problems; however, they do not return “exact” p-values.
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8.
Example (Original data: Ott and

Mendenhall, 1985)

The data for this problem will be stored in a data frame called Ratbp. Researchers

wanted to know whether a drug was able to reduce blood pressure of rats. Twelve

rats were chosen and the drug was administered to six rats, the treatment group,

chosen at random. The other six rats, the control group, received a placebo. The

drops in blood pressure (mmHg) for the treatment group (with probability distri-

bution F ) and the control group (with probability distribution G) are stored in the

variables Treat (z) and Cont (y) , respectively. Note that positive numbers indicate

blood pressure decreased while negative numbers indicate that it rose.
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9.
Example

Under the null hypothesis, H0 : F = G, the data come from a single population

(i.e., we are not able to prove the drug efficacy). The question of interest is: How

likely are differences as extreme as those observed between the treatment and

control groups to be seen if the null hypothesis is correct? Use θ̂ = z̄ − ȳ as the

statistic of interest and compute

(a) the exact permutation p-value

(b) an estimated permutation p-value based on 499 permutation replications

(c) an estimated bootstrap p-value based on 499 bootstrap replications
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10.
Solution (a) Exact permutation p-value

The test statistic of interest (Step 1) has been specified to be θ̂ = z̄ − ȳ. Finding

the p− value requires creation of sampling distributions with different methods.

First, create Ratbp data frame.

Combine the treatment (Treat) and control (Cont) data in a single variable called

Blood.
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## To introduce the data in R

Treat<-c(69,24,63,87.5,77.5,40)

Cont<-c(9,12,36,77.5,-7.5,32.5)

Ratbp<-data.frame(Treat, Cont) # to create a data frame

> Ratbp

Treat Cont

1 69.0 9.0

2 24.0 12.0

3 63.0 36.0

4 87.5 77.5

5 77.5 -7.5

6 40.0 32.5

Blood<-c(Treat,Cont)

> Blood

[1] 69.0 24.0 63.0 87.5 77.5 40.0 9.0 12.0 36.0 77.5 -7.5 32.5
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11.
Solution (a) Exact permutation p-value

We compute all of the possible combinations of the indices of Blood:
(12

6

)
=

924 and put them in a vector called pdT6.

To do that we may install in R the package BSDA. Alternatively, we may load

the function Combinations.R.

Now we construct a matrix called Comb of dimension 924 × 12 where each

row contains the values of Blood.

We also construct a vector Theta with all of the possible values of θ̂ = z̄ − ȳ,

i.e., a value for each possible combination.
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library(BSDA)

pdT6<-t(Combinations(12,6))

#Let us show the first three rows of pdT6:

pdT6[1:3,]

> pdT6[1:3,]

N N N N N

[1,] 1 2 3 4 5 6

[2,] 1 2 3 4 5 7

[3,] 1 2 3 4 6 7

## Now we construct the matrix with 924 rows -all the same-

Comb<-matrix(rep(c(Treat,Cont),924),ncol=12,byrow=T)

Comb[1:3,] #three first rows of Comb

> Comb[1:3,]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,] 69 24 63 87.5 77.5 40 9 12 36 77.5 -7.5 32.5

[2,] 69 24 63 87.5 77.5 40 9 12 36 77.5 -7.5 32.5

[3,] 69 24 63 87.5 77.5 40 9 12 36 77.5 -7.5 32.5
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# This is for understanding what we are doing

Comb[2,pdT6[2,]]

#we extract from row 2 of matrix Comb the columns

#specified by the second row of matrix pdT6

> pdT6[2,]

[1] 1 2 3 4 5 7

# In words, we take values of row 2 of Comb

#corresponding to columns 1, 2, 3, 4, 5 y 7

> Comb[2,pdT6[2,]]

[1] 69.0 24.0 63.0 87.5 77.5 9.0

#Could you imagine the result of the following command?

Comb[2, -pdT6[2,]]
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RESULT:

Comb[2, -pdT6[2,]]

> Comb[2, -pdT6[2,]]

[1] 40.0 12.0 36.0 77.5 -7.5 32.5

#Note that it gives the data from row 2 that DO NOT correspond

#to columns 1, 2, 3, 4, 5 y 7

Let’s remember the contents of Comb[2,]

> Comb[2,]

[1] 69.0 24.0 63.0 87.5 77.5 40.0 9.0 12.0 36.0 77.5 -7.5 32.5
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Let’s create now the vector Theta that contains all of the possible values of θ̂ = z̄ − ȳ.

Theta<-array(0,924)

for (i in 1:924) {

Theta[i]<-mean(Comb[i,pdT6[i,]])-mean(Comb[i, -pdT6[i,]])}

Theta.obs<-mean(Treat)-mean(Cont)

pval<-sum(Theta >=Theta.obs)/choose(12,6) # exact permutation p-value

> pval

[1] 0.03138528
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12.
Solution (a) exact permutation p-values

using the package coin

library(coin)

GR<-as.factor(c(rep("Treat",6), rep("Cont",6)))

oneway_test(Blood˜GR, distribution="exact",alternative="less")

Exact 2-Sample Permutation Test

data: Blood by groups Cont, Treat

Z = -1.871, p-value = 0.03139

alternative hypothesis: true mu is less than 0
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13.
Example (Solution (b)). Estimated

permutation p-value

To compute the estimated permutation p-value we draw randomly and without replacement a
certain amount of samples. From a total of 924 permutations we draw randomly B = 499.
set.seed(13)

theta.obs<-mean(Ratbp$Treat)-mean(Ratbp$Cont)

boot.blood<-sample(1:924,size=499, replace=F)

B<-499

theta<-array(0,B)

for (i in 1:length(boot.blood)){

j<-boot.blood[i]

media1<-mean(Comb[j,pdT6[j,]])

media2<-mean(Comb[j,-pdT6[j,]])

theta[i]<-media1-media2}

pval.aprox<-(sum(theta >=theta.obs)+1)/(B+1) ##pval.aprox

pval.aprox

0.032
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14.
Example (Solution (b)). -Using package

boot-

For that we need to load package boot

Let us construct a function called blood.fun() that computes the difference among the six
first values and the six last values of a vector of length 12.

To obtain samples without replacement, we need to add the argument sim=“permutation”
in the function boot()

Let us see the R solution:
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library(boot)

set.seed(13)

B<-499

blood.fun<- function(datos,i){

d<-datos[i]

MD<-mean(d[1:6])-mean(d[7:12])

MD}

boot.blood.b<-boot(Blood,blood.fun, R=B, sim="permutation")

plot(boot.blood.b) #This graphs the sampling

#distribution of the statistic

pval.boot.b<-(sum(boot.blood.b$t >= boot.blood.b$t0)+1)/(B+1)

> pval.boot.b

[1] 0.03
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15.
Example (Solución (c)). Estimated bootstrap

p-value using boot

If we select the 499 samples with replacement, we are doing a BOOTSTRAP TEST

Load package boot

Let us construct a function called blood.fun() that computes the difference among the six
first values and the six last values of a vector of length 12.

To obtain samples with replacement, we need to add the argument sim=“ordinary” in the
function boot()

Let us see the R solution:
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library(boot)

set.seed(13)

B<-499

blood.fun<- function(datos,i){

d<-datos[i]

MD<-mean(d[1:6])-mean(d[7:12])

MD}

boot.blood.b<-boot(Blood,blood.fun, R=B, sim="ordinary")

plot(boot.blood.b) #Podemos representar la distribuci\’on

#en el muestreo del estad\’istico

pval.boot.b<-(sum(boot.blood.b$t >= boot.blood.b$t0)+1)/(B+1)

> pval.boot.b

[1] 0.038
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16.
Example (Solution(c)). Estimated bootstrap

p-value without using boot

set.seed(13)

theta.obs<-mean(Ratbp$Treat)-mean(Ratbp$Cont)

boot.blood<-sample(1:924,size=499, replace=T)

B<-499

theta<-array(0,B)

for (i in 1:length(boot.blood)){

j<-boot.blood[i]

media1<-mean(Comb[j,pdT6[j,]])

media2<-mean(Comb[j,-pdT6[j,]])

theta[i]<-media1-media2}

pval.boot<-(sum(theta >=theta.obs)+1)/(B+1) ##pval.boot

#plot(boot.blood)

pval.boot
0.04

25



Lola UgarteBrno, December 2007

17.
Example Conclusions

Using a permutation test the exact p-value is 0.0314.

The estimated permutation p-value is 0.03.

The estimated bootstrap p-value is 0.038.

The three procedures lead to the same conclusion. We reject the null hy-

pothesis, showing an effect of the drug. It seems to decrease the blood pres-

sure in rats.
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18.
Exercise for the students

A company wants to know if it is efficient to teach some new tools to its workers

using internet courses. The company randomly select 7 workers and randomly

assign them to two groups of sizes 4 and 3. The first group attended traditional

courses and the second internet courses. After the courses a test was adminis-

tered to the workers whose results were:

Internet courses: 37, 49, 55, 57

Traditional courses: 23, 31, 46

Show if internet courses are preferred over traditional courses using a permuta-

tion test and a bootstrap test. Compute the p-value if the company is interested

in checking if both learning methods are different.
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19.
Exercise for the students

A Japanese company and an American company claim that they have developed

new technology to increase network transmission speeds. The marketing man-

agers of both companies simultaneously announce that they can transmit 1 ter-

abyte per second. To substantiate their claims, each company submits trial data

(in seconds) to transmit one terabyte with their new technologies.

Japanese company 0.98 0.85 0.9 1

American company 0.95 0.94 0.8 1 0.99

Is there evidence to suggest the transmission speed using the technology de-

veloped by the American company is superior to the transmission speed using

the technology developed by the Japanese company? Compute the p − value to

answer the question with the following techniques:

1. Enumerate all possible combinations to find the p − value for a permutation

test.
28
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2. Use the function onewaytest from the coin package to calculate an appropri-

ate p− value. Does this p− value match the one in part 1?

3. Obtain an estimated permutation p− value using the boot function from the

boot package.

4. What conclusion do the p− value support?
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