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Kinazy zavisle na cyklinech kontroluji bunéény cyklus
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Kontrola vstupu do mitozy
- vysledek vyuziti riznych bunéénych modelu




Experimental Systems Important for Cell Cycle Studies

Schizosaccharomyces pombe Xenopus laevis
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Cyclin was Discovered in Sea Urchin Embryos
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Frog life cycle
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The Maturation of Frog Eggs

{a} Oocyte maturation in vitro
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MPF activity
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Proc. Natl. Acad. Sci. USA
Vol. 85, pp. 3009-3013, May 1988
Cell Biology

Purification of maturation-promoting factor, an intracellular
regulator of early mitotic events

(cell cycle/mitosis/protein phosphorylation)

MANFRED J. LoHKA*, MARIANNE K. HAYESt, AND JAMES L. MALLER

Department of Pharmacology, University of Colorado School of Medicine, Denver, CO 80262

Communicated by Raymond L. Erikson, December 22, 1987 (received for review October 10, 1987)

ABSTRACT Maturation-promoting factor causes germi-
nal vesicle breakdown when injected into Xenopus oocytes and
can induce metaphase in a cell-free system. The cell-free assay
was used to monitor maturation-promoting factor during its
purification from unfertilized Xenopus eggs. Ammonium sul-
fate precipitation and six chromatographic procedures resulted
in a preparation purified >3000-fold that could induce germi-
nal vesicle breakdown within 2 hr when injected into cyclo-
heximide-treated oocytes. Proteins of 45 kDa and 32 kDa were
correlated with fractions of highest activity in both assays.
These fractions contained a protein kinase activity able to
phosphorylate the endogenous 45-kDa protein, as well as
histone H1, phosphatase inhibitor 1, and casein. The highly
purified preparations described here should help to identify the
mechanism of action of maturation-promoting factor and to
elucidate the role of protein kinases in the induction of
metaphase.
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Purification of MPF: The Birth
of Cyclin Dependent Kinases

A B
97—-"% ;E § -
67— } .= 7l
This 1s cdc2™!! TR

(Cdc28 in
S. cerevisiae)

1
NEBD (units) ©0 0 1

[ —

00 0050352500|0
I I

1
;I - W

GVBD (%)

Fraction 6 9 12 15 6 9 12 15
Number
F1G. 2. Polyacrylamide gel analysis of fractions eluting from the

Mono S column. A 45-ul aliquot of fractions 5-16 was incubated with
[y-**P]ATP and electrophoresed through a 10% NaDodSO,/poly-
acrylamide gel. (A) Silver-stained polyacrylamide gel of purified
MPEF. The activity of the fractions in the cell-free assay (NEBD) and
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S fractions 6-15 were assayed for H1 kinase activity. The autora-
diograph of the region of the gel with histone 1 is shown. Fraction 12

had a specific activity of =270 nmol'min ~mg 1.

This is cyclin!!

Which = cdcl3*
in S. pombe




Fission yeast: Schizosaccharomyces pombe
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Budding Yeast Saccharomyces cerevisiae
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Cdc Mutants Arrest at the Same Cell Cycle Phase
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Cdc Genes Encode Proteins Needed for the G2-M Transition:
Studies 1n S. pombe
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Phosphorylation of CDK Targets Changes Their Activity
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Jak jsou CDK regulovany?

1. prostrednictvim syntézy a odbouravani cyklinu
2. fostorylaci

3. pomoci CDK 1nhibitory proteins (CKIs)
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Cyclin Destruction 1s Controlled by Ubiquitination

(a) Mitotic cyclin destruction box
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Predstavuji cykliny jediny zpusob regulace CDK?




Exprese cyklinu v jednotlivych fazich BC
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CDK jsou regulovany fosforylaci
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Conformational Changes Associated
with CDK Phosphorylation
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Cyclin Dependent Kinase Inhibitors (CKls)
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Figure 17-19. Molecular Biology of the Cell, 4th Edition.
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The p21 Family of CDK inhibitors
(p21CIP1/WAF1 p27KIP1 p57KIP2)
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The INK4 Family of CDK 1nhibitors
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CKlIs Regulate the G1-S Transition
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Mitogens

l
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Figure 1 | Regulation of G1 and the G1/S transition. In quisscent, GO cells, EZF-DP
transcription factors are bound to p120, the principal pocket protein in these cels, which
keeps them inactive. In G1, however, RE-E2F-DP complexes predominate. Mitogenic
signalling results in cyclin D (Cyc) synthesis, formation of active COK4A/6-cyclin-D complexes
and initial phosphorylation of RE. Partially phosphorylated RE still binds to E2F-0F, but the
transcription factor is still able to transcribe some genes, such as cyclin E, presumably due to
impaired repression. Cyclin E binds to and activates COKZ. It is generally accepted that
COK2-dependent phosphorylation of RB results in its complete inactivation, which allows
Induction of the E2F-responsive genes that are neaded to drive cells through the G1/5
transition and to initiate DNA replication. INK4 and WAF1/KIP proteins can inhibit COK4/6 or
COK2 kinazes, respectively, following specific antimitogenic signals. The COK4/E complexes
can alzo bind WAR KR inhibitors, while remaining active. This sequesters them from CDKZ,
which facilitates its full activation. R represents the restriction point that separates the mitogen-
dependent early G1 phase from the mitogen-independent late G1 phase.

Nature Reviews Cancer 2001, 1:222
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pRB Binds to the E2F Transcription Factor
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Figure 1 | Regulation of G1 and the G1/S transition. In quisscent, GO cells, EZF-DP
transcription factors are bound to p120, the principal pocket protein in these cels, which
keeps them inactive. In G1, however, RE-E2F-DP complexes predominate. Mitogenic
signalling results in cyclin D (Cyc) synthesis, formation of active COK4A/6-cyclin-D complexes
and initial phosphorylation of RE. Partially phosphorylated RE still binds to E2F-0F, but the
transcription factor is still able to transcribe some genes, such as cyclin E, presumably due to
impaired repression. Cyclin E binds to and activates COKZ. It is generally accepted that
COK2-dependent phosphorylation of RB results in its complete inactivation, which allows
Induction of the E2F-responsive genes that are neaded to drive cells through the G1/5
transition and to initiate DNA replication. INK4 and WAF1/KIP proteins can inhibit COK4/6 or
COK2 kinazes, respectively, following specific antimitogenic signals. The COK4/E complexes
can alzo bind WAR KR inhibitors, while remaining active. This sequesters them from CDKZ,
which facilitates its full activation. R represents the restriction point that separates the mitogen-
dependent early G1 phase from the mitogen-independent late G1 phase.

Nature Reviews Cancer 2001, 1:222




Kontrola bunécného cyklu uzce souvisi s:
» kontrolou bunécného rustu;
» pritomnosti rustovych faktoru a dalSich
rustovych stimulu a zivin;

» pusobenim ostatnich bunék populace

a mezibunécné hmoty.




The Difference Between Growth and Cell Division
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Box 1 | Cell growth versus cell division

Cell growth (the increase in cell size and protein mass) is a term that has frequently been misused to mean cell
proliferation. In fact, both processes are highly coordinated. Only in certain biological systems — such as oocytes,
neurons and muscle cells, where cell growth might exist without cell division, and in fertilized eggs, where cell
divisions might occur without cell growth — can these processes function in an independent, or even
complementary, fashion. In most cells, however, cell division without concurrent cell growth would generate smaller
daughter cells, which would affect their viability.

Ribosome biosynthesis is a key process for cell growth. Before entering the cycle, cells need to accumulate sufficient
translational machinery, mainly ribosomes, to ensure the rapid processing of transcripts through the cycle. This is
accomplished, at least in part, by phosphorylation of the ribosomal 56 protein by 56 kinase (56K) (see REE 85 for a
review). Once the appropriate pool of ribosomes has been achieved, the system is desensitized, either by negative
regulators of S6K or by the size of the ribosomal pool (see figure).

56K 1s regulated by mitogenic stimuli mediated through the insulin receptor (IR)/IR substrate
([R5 )/ phosphatidylinositol-3 kinase (PI3K)/PDKI pathway. 56K is also regulated directly by TOR, a member of the
PI3K-related kinase family®™®. TOR is thought to be

important in cell growth and amino-acid sensing™, Growth

. ; Lt : : . . factors [
but its upstream activators and mechanism of o220 DD
activation are unknown. TOR controls several Mutrients DE.-" 0 CJO

growth-related readouts, including actin organization,
transcription and ribosome biosynthesis.

TOR alse affects translation of key regulators of
cell proliferation, such as cyclin D and MYC, by
phosphorylating 4E-BP1 (a translational inhibitor
that is also targeted by AKT/PKDE) and causing its Ribosome
dissociation from the initiation factor e[F4L. biosynthesis
Mitogen-activated protein kinases such as ERK

phosphorylate and activate MNK1, which in turn an
is able to phosphorylate el FAE (REFs 88,89}, The
RAS/ERK cascade is also known to signal to cell-

cycle regulators such as cyclin D or KIP1 to induce '
progression through G1 (REF 12). Several of these 5 E
proteins, such as PI3K, AKT, MYC and RAS, can be * i !
activated as oncogenes, which illustrates the e, i
s — ; between cell erowth and GE||-C‘}I'D|_E ""--,__‘ == SN A g :
intimate connections between cell growth anc progressicn -

cell proliferation,

Nature Reviews Cancer 2001, 1:222




Growth Factors Induce Cell Cycle Progression
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Box 2 | The Restriction Point

The term ‘Restriction Point’ was coined in 1974 by Arthur Pardee™ to define a specific event in G1 after which cultured cells could proliferate
independently of mitogenic stimuli. Briefly, cultured mammalian cells that had undergone mitosis within the previous 3 hours could be prevented
from progressing through the cell cycle by growth-factor starvation or moderate inhibition of protein synthesis. These cells then re-entered the cell
cyele after re-stimulation with growth factors, However, if the cells had undergone cell division more than 4 hours before, they did not respond to
mitogen deprivation and advanced through the cell cycle with the same kinetics as unstarved cells. [t was postulated that the latter cells had ‘passed’
the restriction point (R}, Today, R is often used to divide the early and late G1 phases.

R does not represent a checkpoint as originally defined in yeast™™. In culture cells, R occurs 3—4 hours after mitosis (see figure). However, entry into
S phase is usually initiated 5—13 hours after mitosis. This variability is characteristic of the late G1 phase and accounts for most of the observed
differences in the length of the cell cycle. Indeed, the differential kinetics of

these two transitions indicates distinct control mechanisms. The molecular Femove grawdh

events that allow cells to pass R have not been well defined. However, Mitogens JHChE
members of the RB family are likely to be important, as ablation of this (
gene family eliminates R*%, M : Early Gt M

It has been postulated that loss of regulation of Ris critical in cancer.

R normally prevents cells from entering the cycle until they have Growth-factor
—=

removel .

accumulated a certain threshold of mitogen-induced events, so loosening
of R control due to mutations in G1 regulators or other, as yet unidentified, )
genes would allow cells to enter the cycle even in the absence of adequate (#]

Lats 1 G2

- - L] . - [32
mitogenic signalling, leading to unscheduled preliferation. Validation of "-—-"O ‘(rcs
5 3

this model will require definition of the molecular players that regulate R.

Nature Reviews Cancer 2001, 1:222
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F1G. 7. Schematic model of cell cycle in Swiss 3T3 cells. During
the first 3.5-hr after mitosis (G;pm), the cell makes the decision
whether or not to progress through the cell cycle. This decision
depends on the presence of growth factors (gf). If the cell senses a
lack of growth factors (—gf) in G;pm, it will leave the cell cycle within
15-60 min and enter a state of quiescence (Gy) from which it takes
8 hr to reenter the cycle after the growth factor level in the
environment again becomes optimal (+gf) for proliferation. Once the
cell has entered G;ps, it will eventually initiate DNA synthesis.
However, G,ps is highly variable in length and in fact responsible for
most of the variability in the duration of G, and of the whole cell
cycle.

Zetterberg and Larsson, PNAS 82:5365 (1985)




Growth Factors Induce Gene Expression
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Growth Factors Induce Cyclin D1 Expression

Receptor Activation

|

Raf ——= Ras = PI3K

; * Proteasomal
MEK AKT Degradation
ERK —— Holoenzyme Assembly 55_}(_.3[1

l D1 + Cdk4 + p27 o

D1
AP1
l e
l D1 Cdk4 D1 Cdk4

[ ¢yelin D1 Gene p27 p27

Transcription

NUCLEUS

Sherr and McCormick, Cancer Cell, Vol 2, 103-112 (2002)




Mitogen Induced Cell Cycle Progression
in Cell Culture
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Is all DNA replicated?
Are all chromosomes
Is environment favorable? attached to the spindle?
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Figure 17-14. Molecular Biclogy of the Cell, 4th Edition.




Cell Cycle Checkpoints
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Cell Cycle Checkpoints Improve Cell Viability

100 Fig. 3. Rapid loss of viability in cells
defective both for DNA ligase and for
the RADY gene. cdc9 (@) and cdc9-rad9
(O) cells growing at 23°C were shifted to
the restrictive temperature and viability
was determined by plating for viable

o 107 colonies at the permissive temperature
s (23°C). The cell viability reported is
2 relative to viability at the time of tem-
3 perature shift. Results were reproducible
p in separate experiments and with other
S congenic strains.
0.1 — r T
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Time (hours) at 36°

Weinert and Hartwell, Science 246:629 (1989)




How do Cell Cycle Checkpoints Work?
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Zhou and Elledge Nature 408, 433 - 439 (2000)
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Figure 2 Organization of the mammalian DNA damage response pathway.
Arrowheads represent positively acting steps while perpendicular ends represents
inhibitory steps. Gene names are shown at the approximate positions where their
encoded proteins function in the pathway. Although the general organization of the
pathway is correct, some details are omitted, especially conceming the relationship
between the ATR/ATM and Hus1/Rad17/Rad9/Rad1 proteins, which may participate
in mutual regulation.

Zhou and Elledge Nature 408, 433 - 439 (2000)
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Metaphase 1n a mammalian cell
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The Metaphase to Anaphase Transition
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The Spindle Assembly Checkpoint
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