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Abstract

This paper provides a detailed description of the
implementation of Unveil, an ab initio gene-prediction
program for Eukaryotic DNA. Unveil is implemented
as a 283-state Hidden Markov Model (HMM). We
describe the structure, training, utilization, and
performance of this HMM on a real genomic
annotation task. The program is available as open-
source software and can be downloaded from the
TIGR website, http://www.tigr.org/software. It is
hoped that the availability of the source code together
with this documentation will enable others to extend
this work to produce better genome annotation and
analysis tools.

Introduction

Gene Prediction

The problem of gene prediction is one of parsing:
given a long DNA sequence, aubstrate, we wish to
identify the parts of that sequence which correspond
to the exons and introns of the genes occurring in the
substrate, if any. This entails identificatiof the
signals— namely, splice sites and start/stop codens
which delimit those structures. Although 5’ and 3’
untranslated regions (UTRs) are valuable parts of the
gene, they are generally not identified by current
genefinders. Instead, the emphasistill on the
accurate identification of those open reading frames
(ORFs) which are actually transcribed and translated
into proteins-i.e., true coding segments, or CDSs.
An ORF is a sequence of codons (three
nucleotides) beginning with a start codtypically
ATG) and ending with a stop codon (usually TAG,
TGA, or TAA). In eukaryotes, this codon sequence
can be interrupted bytrons, noncoding regions
which are spliced out by a spliceosome molecule after
transcription into mMRNA and before transbatinto a
protein. An intron begins withdonor site (typically

GT) and ends with aacceptor site (typically AG).
Predicting a CDS therefore consists of identifying a
start codon, followed by a sequence of zero or more
donor and acceptor pairs, follogdvby an inframe

stop codon.

Unfortunately, many ORFs are not true CDSs, and
in eukaryotic genomes there typically are vastly more
ORFs than genes. In Arabidopsis, for example, there
are on average approximately 350 million ORFs in
every 900 base pairs séquence. Thus, the problem
is in determining which of the potentially many ORFs
are true coding segments.

A genefinder typically performs this
discrimination by applying a set sifjnal sensors and
content sensorsto identify likely components of a
CDSand then assembling these components inte well
formed gene models. #gnal sensor is any model
which identifies fixedength signals, such as splice
sites and start/stop codons. Such a sensor typically
examines the bases surrounding the signal (asawell
those comprising the signal itself) and scores them
based on their identity and position relative to the
signal. A content sensor is a model which scores
variablelength subsequences for their conformation to
a statistical model of a specific featusach as an
exon or intron. Content sensors for exons typically
incorporate some measure of trinucleotide frequency,
to account for the codon bias found in real CDSs.

Hidden Markov Models

A Hidden Markov Model (HMM) is a particular class
of statistical mdel for sequences of discrete symbols.
The model consists of a finite set of states, each of
which can emit a symbol from a finite alphabet with a
fixed probability distribution over those symbols, and
a set of transitions between states, which allow the
model to change state after each symbol is emitted.
The transition and emission probabilities may differ
between states. The model is conceptualized as
starting in a designatesthrt state, transitioning
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stochastically from state to state for some vigiab
number of time units, and then terminating when a
designatedinal state is reached.

In order for an HMM to be employed in the task
of gene prediction its transition and emission
probabilities must be tuned to reflect the statistical
characteristics ahe genes of a particular species.
This training phase can be performed in the following
way: Given a set of training sequences (i.e., confirmed
CDSs), we extract the exons and introns, as well as
intergenic and untranslated regions surrounding the
CDS, ad then use these individual features to train
the specific sets of states,sobmodels, within the
HMM which emit those particular features. Thus, for
example, the states of the HMM which are intended to
model the exon portions of genes are trained reith
exon example sequences using some training
procedure such as Expectation Maximization (EM) or
maximum likelihood (both described below). This
process will determine the emission probabilities for
all of the states as well as the transition proktasli
among states within each submodel. Transitions
between submodels can then be trained by observing
the frequencies of feature alternation within correct
CDS parses.

Once an HMM has been trained it can be used to
predict gene structures on a given staisby
identifying the most probable pattthrough the
HMM which would emit that substrate; i.e.
maximizing P(xz|M) over all pathx for sequence x
and model M. This can be efficiently computed using
the Viterbi algorithm (described below).

Unveil employs &#83-state HMM, grouped into

substates as shown in Figure 1. Separate programs are

provided for retraining the HMM for new organisms,
and for predicting genes on novel sequences. The
remainder of this document describe the specific
algorithms and technigs used in those programs.

Design and Implementation
Model Structure

The overall structure of Unveil’s HMM is shown in
Figure 1. This structure is very similar to that
described inHlendersonet al., 1997] for the program
VEIL. Shown in the figure arie eight submodels
constituting the forward strand, plus the intergenic
model, which is strandless.
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Figure 1. HMM metamodel structure.

The overall structure is referred to as nfetamodel,

and the individual states in the metamodel constitute
submodels. The metamodel and submodels are loaded
dynamically at rusime, and the metamodel is used to
direct the merging of all of the submodels into a single
composite HMM which can then be subjected to the
standard HMM algorithms.

Merging is performed dsllows. Let Rj(x—y)
denote the probability of a transition from state x to
state y in submodel M with states S(M), and Igt &
denote the silent start/stop state in M. Then the
merged model M>M,is defined by combining
submodels Mand M according totte following:

S(Mi>My) = S(My) O S(My) O
{Qn1mz} —{Dw1, Bz}

Hanisowa), trsvz) Puismz(8—b) =
Ri(8=Bw1) - Ri2(Buma—D) -
Pmetamod&M 1—M 2)

Oaposmipomy Pussmz(@—D) = Ru(a—Db)
aposmzriomz; Puismz(@—D) = Ry(a—Db)
aosvy Puvzsmz2(Buisme—a) = R (Gwi—a)
Obosmz) Putsmz(0—Bvi=mz) = Puz(b—3wu2)

The composite HMM is formed through a succession
of such binary merges, as directed by the metamodel



(i.e., entailing M>M, whenever ReamogdM1—M>) >
0), until only one submodetmains. The resulting
model is then merged with its reveixsEmplementary
model to produce an HMM capable of predicting
genes on either strand.

The submodels currently in use are shown in
Figures 29. Circles depict states and arrows depict
all nonzeraransition probabilities. States labeled
with a nucleotide indicate treepriori expected
consensus for that state, and are initialized to those
consensus bases prior to execution of the training
algorithm, though the consensus is not otherwise (i.e.,
artficially) enforced.

O=0O—e—~0-0—-0=0
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Figure 2. Donor site submodel.
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Figure 3. Acceptor site submodel.

The donor and acceptor site submodels work
effectively as a positional weight matrix by scoring
bases immediately left and right of the consensus
positions.

Figure 4. Exon submodel.

The exon submodel, copied directly frfifenderson,
et al., 1997],explicitly represents all 64 trinucleotide
combinations, effectively performing as a measure of

codon bias. Note that this model could be
significantly reduced isize by eliminating the third
(rightmost) tier and replacing it with a simpler version
in which every group of four {A,T,C,G} states is
instead represented as a single state emitting all four
bases. Such a variant submodel would perform
identically to theoriginal, since the emission
probabilities of the new states would simply reflect
the transition probabilities of their predecessors in the
middle tier. This modification cannot be generalized
to all three tiers without changing the performance of
the malel, however.

e
O

Figure 5. Frameshift submodel.

The frameshift submodel occurs both before and after
the exon submodel in order to accommodateobut
phase introns. When such an intron occurs, one or
two bases at the beginning or end of the exon will by
matched by the frameshift submodel instead of the
main exon submodel.

Figure 6. Intergenic submodel.

The intergenic submodel consists of a 5’ UTR
submodel and a 3' UTR submodel, each a linear
sequence of nine states, joined in the middle with a
pair of states with self transitions allowing arbitrarily
large intergenic regions. During training we assume
that the ten bases immediately upstream of the start
codon or immediately downstream of the stop codon
are UTR, although this will in many cases nethe
case. This simple heuristic avoids the problem of
identifying highconfidence UTR sequence for
training while presumably capturing some of the
signal present in such UTRs when they do occur (as
well as noise where they do not occur). Note that the
5" UTR and 3' UTR components of this submodel are
trained separately.



Figure 7. Intron submodel.

The intron submodel consists of a linear sequence of
six states, to reflect hexanucleotide frequencies,
flanked on either end by a buiilt frameshift

medanism to allow for the proper concordance of the
central sixstate path with any hexanucleotide signal
that may be present.

Figure 8. Start codon submodel.

The start codon and stop codon submodels encode the
common consensus sequences for thoselsigiée

still allowing noncanonical consensus signals to be
encountered and appropriately incorporated during
training.
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Figure 9. Stop codon submodel.
Training Submodels

Unveil provides two methods for the training of its
submodels. The first methoghich utilizes a simple
maximum likelihood approach, is applicable only to
those submodels for which a single, unambiguous
path exists through the submodel for every sequence
emitted by that submodel. In this case, it is a simple
matter to align the tiaing sequences with the path’s

4

state sequence and compute the relative transition and
emission frequencies for each state pair and each state
x symbol pair, respectively. In the model currently
used by Unveil, this training procedure is applicable
only to exon, splice junction, and start/stop codon
submodels.

For the remaining features, the BaMvielch
algorithm is used to perform Expectation
Maximization (EM) training, which is described at
length in the following sections. The treatment
follows [Durbin, et al., 1998], but differs on some
crucial points, due to problems with numerical
underflow which were encountered during
development of Unveil. Durbimt al. prescribe a
scaling approach to avoid such underflow problems,
after [Rabiner, 1989], but twaroblems were found
with that formulation, namely (1) that the formulas
given for scaling in the forward algorithm were not
entirely adequate to avoid underflow, and (2) that the
suggestion, originally made by Rabiner, that identical
scaling factors coulde used in the forward and
backward algorithms was found empirically to be
false for a set dDrosophila melanogaster genes used
to train Unveil. Note that Rabiner’s original paper
addressed the use of HMMs for natural language
processing, not sequencebysis, which likely
explains the discrepancy. We use notation similar to
that of [Durbin.et al., 1998].

1. Notation and Overview of Computation

a. Basic Notation

M=(Z,Q,e,a) represents a hidden Markov model,
where

Q is the set oftates,

>={A,T,C,G,N} is thealphabet of symbols which
are emitted by the states of the model,

&s= P[M emits symbol s | M is in state K] gives
emission probabilities, and

a,; = P[M transitions to state j | M is in state i]
gives transition probabilities.

Note that state O is the silent start/stop state @ referred
to earlier. In the context of processing a given
sequence, L will be used to denote the length of that
sequence, andix will denote the'f symbol in the
sequence, where i=1 corresponds to the very first



symbol. |S|is used to denote set cardinality, and In(x)
denotes the natural logarithm (i.e.,dog

b. Overview of the EM algorithm

The BaurmWelch algorithm is aiterative procedure
which consists of repeated applications offtnevard
andbackward algorithms to produce progressively
better estimates of the transition and emission
probabilities of the HMM. It can be formally shown
that during the operation of thprocedure, the
likelihood of the training data given the current
parameterization of the model increases
monotonically, so that one can get arbitrarily close to
a local maximum for this likelihood by simply
extending the computation out indefinitely.o&¥ of
this assertion is given in [Durbiet, al., 1998, p324
325].

The forward algorithm is embodied in the
computation of a multidimensional variablg, f
Formally, {; denotes the probability P[a model M in
the initial state will emit the sequence.x and reside
in state k when emitting &t time i]. Similarly, the
backward algorithm is embodied ig; & P[M will
next emit the string;x..x. and then terminate | M is
currently in state k]. The forward and backward
variables are computed usiaglynamic programming
approach, as described in [Durbéhal., 1998, p58
59].

The modification of the forward and backward
algorithms to incorporate scaling will make use of two
additional variables;sand g; (respectively). To
distinguish betweethe scaled and unscaled versions
of the forward and backward variables, we will denote

by Fk’i the scaled version of;f and by'f)k'i the scaled
version of R;.

2. Theforward algorithm

As a scaling factor for thi@rward algorithm we use
Q-1 Q-1 __

S z ez,x(i)z fi-18 s
£=1 k=0

(2.2)

as suggested by [Durbiet,al., 1998, p78]. Because
this formula makes use df ;_,, computation of; ;

and f, ; occurin tandem.

Initialization of the forward variable is unaffected
by scaling:

0 fe=0 (2.2)
0 f, =0 (2.3)
foo =1 (2.4)

The recursion portion of the algorithm now
incorporates the scaling term in the denominator:

0 O f, =
I<i<L 1<(<|Q]
eé,x(i)l =~ (2.5)
fk,i—lak,e
Sti k=0

again, as given in [Durbimet al., 1998, p3]. Finally,
the scaled probability, of a training sequence j is
given by:

l

Q-1 _
L= 2 Tl (2.6)
k=1

3. The backward algorithm

A scaling factor for the backward algorithm can be
computed a follows:

|QI-1|QI-1

Si = Z Z ak,éeé,x(i)t;é,i

k=0 ¢=1

(3.1)

Note again that while [Durbin, et al., 1998, p78] state
that §; must be used as the scaling factor fay;, and

[Rabiner, 1989] states thatniiy be used for such, we
hawe found that in practice doing so fails to protect

by; from underflow, and so we use (3.1) instead.

Similarly to (2.5), this scaling factor can be
incorporated into the denominator of the recursion for

b,; as follows



b, =

0<| <L 0<k<|Q|
Q-1 ~

SD Z ak,éezf,x(i+1)b£,i+1
J+l £=1

(3.2)

As in the forward algorithm, no scaling is necessary
for the initialization step of the backward algorithm:

bk L~ (3.3)

0<|<<|QI

4. The Baum-Welch algorithm

a. The scaling ratio

Scaling the forward and backward algorithms as
described above invalidates the invariants which
ensure convergence of the BaMvielch algorithm.

For this reason, the scaling factgs ands;; must

be explicitly cancelled out Wheﬁ(’i and Bk’i are later

combined to reestimate the model parameters.
Failure to do this properly will typically result in
failure to converge, giving rise to poorly trained
models,and can even result in underflow or overflow
errors. The following scaling ratio provides most of
the necessary cancellation:

0 1 = In| ] Soen
1<isL ! S, L_:.l St

The remaining terms that are not cancelled by (4.1)
are handled individuallipelow.

(4.2)

b. Updating the transition counts

Before the transition probabilities can beestimated,

the expected number of uses of each transition during
a hypothetical generation of the training sequences by

the current model must be tabulated. Initatian
steps for this procedure are given by (4.2) and (4.3):

Ab 0=0 (4.2)
:I_k<|Q| Ao =
Z et S¢ ,ij,Lak,O (4.3)

stringsj PJ

Equation (4.3) incorporates the scaling ratiand an
additional term to be cancelled,.s Cancellation in
the recursion step is achieved fully by the scaling ratio
Fi1:

0 A=

0<k<IQIJ—4<IQI

(4.4)

Z ielﬂ klak ef x(|+1)b2|+1

strlngs i=0 F’J

c¢. Updating the emission counts

As with the expected transition counts, the expected
emission counts must be modified to cancel the
extraneous scaling terms:

0 OE,,

1<k<|Q| sz

DD

strings 1<i<lL,
I ox(i)=s

e f Pk (4.5)
P

d. Updating the transition and emission probabilities
Given the foregoing modifications,-estimation of

the transition and emissiongiabilities may proceed
exactly as given in [Durbiret al., 1998]:

A
oo akf_|Q|1é

0<k<|Q| 0<(<[Q| (4.6)
2 Ace
=0
E
0 0 =w——
1<k<|QsTz < ZEK . (4.7)
sox

e. Computing the log-likelihood

Although the logdikelihood of the model @ed not be
explicitly computed in order to perfortraining, it is
useful to do so during development in order to verify
that an implementation is correct. Except for
extremely small fluctuations due to rounding errors in
floating point numbers, the ldgelihood of the
current model should increase monotonically
throughout the training process. Any but the smallest
of decreases in this value are indications of an error in
the implementation.

The loglikelihood may be computed as:



A= 3 n@)+YinG,) 4o

stringsj

5. Verification

Although scaling is necessary during execution of the
forward and backward algorithms in order to avoid
numerical underflow, all scaling factors applied
during those computations must be subsequently
canceled before the updating of the expected
transition and emission counts. Failure to do this will
invalidate the proof, given in [Durbiet al., 1998,
p323325] that the likelihood of the model increases
monotonically- that is, it will fail to ensure comtual
progress during the learning process. This was
remedied above by incorporating additional terms into
equations (4.2) through (4.5).

That these modifications do achieve the
cancellation without otherwise modifying the basic
mathematical structure cée seen by applying simple
algebra. Expressing all scaled quantities as closed
form (i.e., not recurrence) expressions and then
substituting these back into the equations from section
4 will show that all scaling terms cancel, leaving the
original, unmodied equations from [Durbiret al.,
1998].

Equations (5.1)5.3) give the closetbrm
equations. The algebra is left as an exercise for the
enthusiastic reader.

~ 1 Q1
Px = L fk,Lak,O (51)
S, \ k=1
0 of, =
weopsiel G0 (5.2)
L—lsf,h
~ bk,i
0<k</Q| O<i<L b == (5.3)
S

Quantifying the Adaptation Process

To see that the scaled implementation of the Baum
Welch algorithm in Unveil behaves as intended it is
instructive to pmt out the logikelihood of the model
during training and verify that it increases
monotonically.

Figure 10 shows the result of performing such an
exercise. The training procedure was performed on a
training set of 100 sequences, each 5000 nucleotides
long. The logikelihood is shown on the “dxis and
iterations on the >axis. As the adaptation proceeds,
the loglikelihood of the model improves according to
an Scurve, rising slowly at first, then making rapid
gains, and then finally leveling off adocal optimum
is approached.
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Figure 10. Log-likelihood graph showing that log-
likelihood (Y) monotonically increases as EM
iterations (X) proceed. The training set consisted of
100 sequences, each 5000 nucleotides long.

Viterbi Decoding

In the BaurAWelch training program for Unveil we
used a multiplicative scaling approach, because
logarithmic scaling is not easily performed in the
forward and backward algorithms due to the addition
(vs. multiplication) of probabilities. However, in the
Viterbi algaithm, which is used to find the most
likely path through the HMM for a given sequence
(thereby choosing a gene model), probabilities are
only multiplied, making the log transformation
simple. The dynamic programming implementation in
Unveil follows [Durhin, et al., 1998, p78] exactly.



Performance Evaluation

To see that Unveil performs gene prediction with
accuracy rivaling other genefinders, a comparison on
300 full-length cDNAs fromArabidopsis thaliana was
performed. Table 1 shows the results.

program | nucle- exon exon percen-
otide speci- sensi- tageof
accu- ficity tivity exact
racy genes

Unveill 94% 75% 74% 46%
Exonomy | 95% 63% 61% 42%
GlimmerM | 93% 71% 71% 44%
Genscan |94% 80% 75% 27%

Table 1. Gene prediction accuracy on a set of 300
cDNAs from A. thaliana.

As can be seen from the table, Unveil scores very
highly in terms of nucleotide accuracy, exon accuracy,
and wholegene accuracy.
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