
 1

 White Paper

Unveil: An HMM-based Genefinder for Eukaryotic DNA

William H. Majoros1

1 The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
(bmajoros@tigr.org)

Abstract

This paper provides a detailed description of the
implementation of Unveil, an ab initio gene-prediction
program for Eukaryotic DNA. Unveil is implemented
as a 283-state Hidden Markov Model (HMM). We
describe the structure, training, utilization, and
performance of this HMM on a real genomic
annotation task. The program is available as open-
source software and can be downloaded from the
TIGR website, http://www.tigr.org/software. It is
hoped that the availability of the source code together
with this documentation will enable others to extend
this work to produce better genome annotation and
analysis tools.

Introduction

Gene Prediction

The problem of gene prediction is one of parsing:
given a long DNA sequence, or substrate, we wish to
identify the parts of that sequence which correspond
to the exons and introns of the genes occurring in the
substrate, if any. This entails identification of the
signals – namely, splice sites and start/stop codons –
which delimit those structures. Although 5’ and 3’
untranslated regions (UTRs) are valuable parts of the
gene, they are generally not identified by current
genefinders. Instead, the emphasis is still on the
accurate identification of those open reading frames
(ORFs) which are actually transcribed and translated
into proteins – i.e., true coding segments, or CDSs.

An ORF is a sequence of codons (three
nucleotides) beginning with a start codon (typically
ATG) and ending with a stop codon (usually TAG,
TGA, or TAA). In eukaryotes, this codon sequence
can be interrupted by introns, noncoding regions
which are spliced out by a spliceosome molecule after
transcription into mRNA and before translation into a
protein. An intron begins with a donor site (typically

GT) and ends with an acceptor site (typically AG).
Predicting a CDS therefore consists of identifying a
start codon, followed by a sequence of zero or more
donor and acceptor pairs, followed by an in-frame
stop codon.

Unfortunately, many ORFs are not true CDSs, and
in eukaryotic genomes there typically are vastly more
ORFs than genes. In Arabidopsis, for example, there
are on average approximately 350 million ORFs in
every 900 base pairs of sequence. Thus, the problem
is in determining which of the potentially many ORFs
are true coding segments.

A genefinder typically performs this
discrimination by applying a set of signal sensors and
content sensors to identify likely components of a
CDS and then assembling these components into well-
formed gene models. A signal sensor is any model
which identifies fixed-length signals, such as splice
sites and start/stop codons. Such a sensor typically
examines the bases surrounding the signal (as well as
those comprising the signal itself) and scores them
based on their identity and position relative to the
signal. A content sensor is a model which scores
variable-length subsequences for their conformation to
a statistical model of a specific feature, such as an
exon or intron. Content sensors for exons typically
incorporate some measure of trinucleotide frequency,
to account for the codon bias found in real CDSs.

Hidden Markov Models

A Hidden Markov Model (HMM) is a particular class
of statistical model for sequences of discrete symbols.
The model consists of a finite set of states, each of
which can emit a symbol from a finite alphabet with a
fixed probability distribution over those symbols, and
a set of transitions between states, which allow the
model to change state after each symbol is emitted.
The transition and emission probabilities may differ
between states. The model is conceptualized as
starting in a designated start state, transitioning

 2

stochastically from state to state for some variable
number of time units, and then terminating when a
designated final state is reached.

In order for an HMM to be employed in the task
of gene prediction its transition and emission
probabilities must be tuned to reflect the statistical
characteristics of the genes of a particular species.
This training phase can be performed in the following
way: Given a set of training sequences (i.e., confirmed
CDSs), we extract the exons and introns, as well as
intergenic and untranslated regions surrounding the
CDS, and then use these individual features to train
the specific sets of states, or submodels, within the
HMM which emit those particular features. Thus, for
example, the states of the HMM which are intended to
model the exon portions of genes are trained with real
exon example sequences using some training
procedure such as Expectation Maximization (EM) or
maximum likelihood (both described below). This
process will determine the emission probabilities for
all of the states as well as the transition probabilities
among states within each submodel. Transitions
between submodels can then be trained by observing
the frequencies of feature alternation within correct
CDS parses.

Once an HMM has been trained it can be used to
predict gene structures on a given substrate by
identifying the most probable path through the
HMM which would emit that substrate; i.e.
maximizing P(x, |M) over all paths for sequence x
and model M. This can be efficiently computed using
the Viterbi algorithm (described below).

Unveil employs a 283-state HMM, grouped into
substates as shown in Figure 1. Separate programs are
provided for retraining the HMM for new organisms,
and for predicting genes on novel sequences. The
remainder of this document describe the specific
algorithms and techniques used in those programs.

Design and Implementation

Model Structure

The overall structure of Unveil’s HMM is shown in
Figure 1. This structure is very similar to that
described in [Henderson, et al., 1997] for the program
VEIL. Shown in the figure are the eight submodels
constituting the forward strand, plus the intergenic
model, which is strandless.

Figure 1. HMM metamodel structure.

The overall structure is referred to as the metamodel,
and the individual states in the metamodel constitute
submodels. The metamodel and submodels are loaded
dynamically at run-time, and the metamodel is used to
direct the merging of all of the submodels into a single
composite HMM which can then be subjected to the
standard HMM algorithms.

Merging is performed as follows. Let PM(x y)
denote the probability of a transition from state x to
state y in submodel M with states S(M), and let ØM
denote the silent start/stop state in M. Then the
merged model M1

� M2 is defined by combining
submodels M1 and M2 according to the following:

S(M1

� M2) = S(M1) ∪ S(M2) ∪
 {ØM1 � M2} – {ØM1,ØM2}

∀a∈S(M1), b∈S(M2) PM1 � M2(a b) =

 PM1(a ØM1) · PM2(ØM2 b) ·
Pmetamodel(M1 M2)

∀a,b∈S(M1)-{ØM1} PM1 � M2(a b) = PM1(a b)

∀a,b∈S(M2)-{ØM2} PM1 � M2(a b) = PM2(a b)

∀a∈S(M1) PM1 � M2(ØM1 � M2 a) = PM1(ØM1 a)

∀b∈S(M2) PM1 � M2(b ØM1 � M2) = PM2(b ØM2)

The composite HMM is formed through a succession
of such binary merges, as directed by the metamodel

 3

(i.e., entailing M1
� M2 whenever Pmetamodel(M1 M2) >

0), until only one submodel remains. The resulting
model is then merged with its reverse-complementary
model to produce an HMM capable of predicting
genes on either strand.

The submodels currently in use are shown in
Figures 2–9. Circles depict states and arrows depict
all nonzero transition probabilities. States labeled
with a nucleotide indicate the a priori expected
consensus for that state, and are initialized to those
consensus bases prior to execution of the training
algorithm, though the consensus is not otherwise (i.e.,
artificially) enforced.

Figure 2. Donor site submodel.

Figure 3. Acceptor site submodel.

The donor and acceptor site submodels work
effectively as a positional weight matrix by scoring
bases immediately left and right of the consensus
positions.

Figure 4. Exon submodel.

The exon submodel, copied directly from [Henderson,
et al., 1997], explicitly represents all 64 trinucleotide
combinations, effectively performing as a measure of

codon bias. Note that this model could be
significantly reduced in size by eliminating the third
(rightmost) tier and replacing it with a simpler version
in which every group of four {A,T,C,G} states is
instead represented as a single state emitting all four
bases. Such a variant submodel would perform
identically to the original, since the emission
probabilities of the new states would simply reflect
the transition probabilities of their predecessors in the
middle tier. This modification cannot be generalized
to all three tiers without changing the performance of
the model, however.

Figure 5. Frameshift submodel.

The frameshift submodel occurs both before and after
the exon submodel in order to accommodate out-of
phase introns. When such an intron occurs, one or
two bases at the beginning or end of the exon will by
matched by the frameshift submodel instead of the
main exon submodel.

Figure 6. Intergenic submodel.

The intergenic submodel consists of a 5’ UTR
submodel and a 3’ UTR submodel, each a linear
sequence of nine states, joined in the middle with a
pair of states with self transitions allowing arbitrarily
large intergenic regions. During training we assume
that the ten bases immediately upstream of the start
codon or immediately downstream of the stop codon
are UTR, although this will in many cases not be the
case. This simple heuristic avoids the problem of
identifying high-confidence UTR sequence for
training while presumably capturing some of the
signal present in such UTRs when they do occur (as
well as noise where they do not occur). Note that the
5’ UTR and 3’ UTR components of this submodel are
trained separately.

 4

Figure 7. Intron submodel.

The intron submodel consists of a linear sequence of
six states, to reflect hexanucleotide frequencies,
flanked on either end by a built-in frameshift
mechanism to allow for the proper concordance of the
central six-state path with any hexanucleotide signal
that may be present.

Figure 8. Start codon submodel.

The start codon and stop codon submodels encode the
common consensus sequences for those signals while
still allowing noncanonical consensus signals to be
encountered and appropriately incorporated during
training.

Figure 9. Stop codon submodel.

Training Submodels

Unveil provides two methods for the training of its
submodels. The first method, which utilizes a simple
maximum likelihood approach, is applicable only to
those submodels for which a single, unambiguous
path exists through the submodel for every sequence
emitted by that submodel. In this case, it is a simple
matter to align the training sequences with the path’s

state sequence and compute the relative transition and
emission frequencies for each state pair and each state
× symbol pair, respectively. In the model currently
used by Unveil, this training procedure is applicable
only to exon, splice junction, and start/stop codon
submodels.

For the remaining features, the Baum-Welch
algorithm is used to perform Expectation
Maximization (EM) training, which is described at
length in the following sections. The treatment
follows [Durbin, et al., 1998], but differs on some
crucial points, due to problems with numerical
underflow which were encountered during
development of Unveil. Durbin, et al. prescribe a
scaling approach to avoid such underflow problems,
after [Rabiner, 1989], but two problems were found
with that formulation, namely (1) that the formulas
given for scaling in the forward algorithm were not
entirely adequate to avoid underflow, and (2) that the
suggestion, originally made by Rabiner, that identical
scaling factors could be used in the forward and
backward algorithms was found empirically to be
false for a set of Drosophila melanogaster genes used
to train Unveil. Note that Rabiner’s original paper
addressed the use of HMMs for natural language
processing, not sequence analysis, which likely
explains the discrepancy. We use notation similar to
that of [Durbin, et al., 1998].

1. Notation and Overview of Computation

a. Basic Notation

M=(,Q,e,a) represents a hidden Markov model,
where

Q is the set of states,

={A,T,C,G,N} is the alphabet of symbols which
are emitted by the states of the model,

ek,s = P[M emits symbol s | M is in state k] gives

emission probabilities, and

ai,j = P[M transitions to state j | M is in state i]

gives transition probabilities.

Note that state 0 is the silent start/stop state Ø referred
to earlier. In the context of processing a given
sequence, L will be used to denote the length of that
sequence, and x(i) will denote the ith symbol in the
sequence, where i=1 corresponds to the very first

 5

symbol. |S| is used to denote set cardinality, and ln(x)
denotes the natural logarithm (i.e., loge).

b. Overview of the EM algorithm

The Baum-Welch algorithm is an iterative procedure
which consists of repeated applications of the forward
and backward algorithms to produce progressively
better estimates of the transition and emission
probabilities of the HMM. It can be formally shown
that during the operation of this procedure, the
likelihood of the training data given the current
parameterization of the model increases
monotonically, so that one can get arbitrarily close to
a local maximum for this likelihood by simply
extending the computation out indefinitely. Proof of
this assertion is given in [Durbin, et al., 1998, p324-
325].

The forward algorithm is embodied in the
computation of a multidimensional variable, fk,i.
Formally, fk,i denotes the probability P[a model M in
the initial state will emit the sequence x1..xi and reside
in state k when emitting xi at time i]. Similarly, the
backward algorithm is embodied in bk,i = P[M will
next emit the string xi+1..xL and then terminate | M is
currently in state k]. The forward and backward
variables are computed using a dynamic programming
approach, as described in [Durbin, et al., 1998, p58-
59].

The modification of the forward and backward
algorithms to incorporate scaling will make use of two
additional variables, sf,i and sb,i (respectively). To
distinguish between the scaled and unscaled versions
of the forward and backward variables, we will denote

by i,kf
~

 the scaled version of fk,i, and by i,kb
~

 the scaled

version of bk,i.

2. The forward algorithm

As a scaling factor for the forward algorithm we use

−

=

−

=
−

���
�����=

1||

1

1||

0
,1,)(,,

~Q Q

k
kikixif afes 	 		

(2.1)

as suggested by [Durbin, et al., 1998, p78]. Because

this formula makes use of 1i,kf
~

− , computation of i,fs

and i,kf
~

 occur in tandem.

Initialization of the forward variable is unaffected
by scaling:

0f
~

0,k
|Q|k1

=∀
<≤

 (2.2)

0f
~

i,0
Li1

=∀
≤≤

 (2.3)

1f
~

0,0 = (2.4)

The recursion portion of the algorithm now
incorporates the scaling term in the denominator:

−

=
−

<≤≤≤
=∀∀

1||

0
,1,

,

)(,

,
||11

~

~

Q

k
kik

if

ix

i
QLi

af
s

e

f

 (2.5)

again, as given in [Durbin, et al., 1998, p78]. Finally,

the scaled probabilityjP
~

 of a training sequence j is

given by:

−

=

=
1||

1
0,,

~~ Q

k
kLkj afP (2.6)

3. The backward algorithm

A scaling factor for the backward algorithm can be
computed as follows:

−

=

−

=

=
1||

0

1||

1
,)(,,,

~Q

k

Q

iixkib beas � ���
 (3.1)

Note again that while [Durbin, et al., 1998, p78] state

that sa,i must be used as the scaling factor for i,kb
~

 and

[Rabiner, 1989] states that it may be used for such, we
have found that in practice doing so fails to protect

i,kb
~

 from underflow, and so we use (3.1) instead.

Similarly to (2.5), this scaling factor can be
incorporated into the denominator of the recursion for

i,kb
~

 as follows:

 6

−

=
++

+

<≤<≤
=∀∀

1||

1
1,)1(,,

1,

,
||00

~1

~

Q

iixk
ib

ik
QkLi

bea
s

b

� ��� (3.2)

As in the forward algorithm, no scaling is necessary
for the initialization step of the backward algorithm:

0,,
||0

~
kLk

Qk
ab =∀

<≤
 (3.3)

4. The Baum-Welch algorithm

a. The scaling ratio

Scaling the forward and backward algorithms as
described above invalidates the invariants which
ensure convergence of the Baum-Welch algorithm.
For this reason, the scaling factors i,fs and i,bs must

be explicitly cancelled out when i,kf
~

 and i,kb
~

 are later

combined to re-estimate the model parameters.
Failure to do this properly will typically result in
failure to converge, giving rise to poorly trained
models, and can even result in underflow or overflow
errors. The following scaling ratio provides most of
the necessary cancellation:

�
�

���
�

=∀ ∏
−

=

+

≤≤

1L

ih h,f

1h,b

L,f
i

Li1 s

s

s

1
lnr (4.1)

The remaining terms that are not cancelled by (4.1)
are handled individually below.

b. Updating the transition counts

Before the transition probabilities can be re-estimated,
the expected number of uses of each transition during
a hypothetical generation of the training sequences by
the current model must be tabulated. Initialization
steps for this procedure are given by (4.2) and (4.3):

00,0 =A (4.2)

=∀
<≤

j strings

0,,,

0,
||1

~

~

j

kLkLf
r

k
Qk

P

afse

A

L
 (4.3)

Equation (4.3) incorporates the scaling ratio rL and an
additional term to be cancelled, sf,L. Cancellation in
the recursion step is achieved fully by the scaling ratio
ri+1:

−

=

++

<≤<≤

+

=∀∀

j
 strings

1

0

1,)1(,,,

,
||1||0

~

~~

1L

i j

iixkik
r

k
QQk

P

beafe

A

i ���
��

 (4.4)

c. Updating the emission counts

As with the expected transition counts, the expected
emission counts must be modified to cancel the
extraneous scaling terms:

=
≤≤

Σ∈<≤

=

∀∀

j
 strings

)(
,1

,,,

,
||1

~

~~

six
Li j

ifikik
r

sk
sQk

P

sbfe

E

i

 (4.5)

d. Updating the transition and emission probabilities

Given the foregoing modifications, re-estimation of
the transition and emission probabilities may proceed
exactly as given in [Durbin, et al., 1998]:

−

=′
′

<≤<≤
=∀∀ 1||

0
,

,
,

||0||0 Q

k

k
k

QQk
A

A
a

� �
��� (4.6)

Σ∈′
′

Σ∈<≤
=∀∀

s
s,k

s,k
s,k

s|Q|k1 E

E
e (4.7)

e. Computing the log-likelihood

Although the log-likelihood of the model need not be
explicitly computed in order to perform training, it is
useful to do so during development in order to verify
that an implementation is correct. Except for
extremely small fluctuations due to rounding errors in
floating point numbers, the log-likelihood of the
current model should increase monotonically
throughout the training process. Any but the smallest
of decreases in this value are indications of an error in
the implementation.

The log-likelihood may be computed as:

 7

=

+=λ
j strings

L

1i
i,fj)sln()P

~
ln((4.8)

5. Verification

Although scaling is necessary during execution of the
forward and backward algorithms in order to avoid
numerical underflow, all scaling factors applied
during those computations must be subsequently
cancelled before the updating of the expected
transition and emission counts. Failure to do this will
invalidate the proof, given in [Durbin, et al., 1998,
p323-325] that the likelihood of the model increases
monotonically – that is, it will fail to ensure continual
progress during the learning process. This was
remedied above by incorporating additional terms into
equations (4.2) through (4.5).

That these modifications do achieve the
cancellation without otherwise modifying the basic
mathematical structure can be seen by applying simple
algebra. Expressing all scaled quantities as closed-
form (i.e., not recurrence) expressions and then
substituting these back into the equations from section
4 will show that all scaling terms cancel, leaving the
original, unmodified equations from [Durbin, et al.,
1998].

Equations (5.1)-(5.3) give the closed-form
equations. The algebra is left as an exercise for the
enthusiastic reader.

∏

−

=

=

=
1||

1
0,,

1
,

1~ Q

k
kLkL

h
hf

x af
s

P (5.1)

∏
=

≤≤<≤
=∀∀ i

h
hf

i
i

LiQ
s

f
f

1
,

,
,

1||1

~ ��� (5.2)

∏
−

=
+

<≤<≤
=∀∀ 1

1,

,
,

0||0

~
L

ih
hb

ik
ik

LiQk
s

b
b (5.3)

Quantifying the Adaptation Process

To see that the scaled implementation of the Baum-
Welch algorithm in Unveil behaves as intended it is
instructive to print out the log-likelihood of the model
during training and verify that it increases
monotonically.

Figure 10 shows the result of performing such an
exercise. The training procedure was performed on a
training set of 100 sequences, each 5000 nucleotides
long. The log-likelihood is shown on the Y-axis and
iterations on the X-axis. As the adaptation proceeds,
the log-likelihood of the model improves according to
an S-curve, rising slowly at first, then making rapid
gains, and then finally leveling off as a local optimum
is approached.

Figure 10. Log-likelihood graph showing that log-
likelihood (Y) monotonically increases as EM
iterations (X) proceed. The training set consisted of
100 sequences, each 5000 nucleotides long.

Viterbi Decoding

In the Baum-Welch training program for Unveil we
used a multiplicative scaling approach, because
logarithmic scaling is not easily performed in the
forward and backward algorithms due to the addition
(vs. multiplication) of probabilities. However, in the
Viterbi algorithm, which is used to find the most
likely path through the HMM for a given sequence
(thereby choosing a gene model), probabilities are
only multiplied, making the log transformation
simple. The dynamic programming implementation in
Unveil follows [Durbin, et al., 1998, p78] exactly.

 8

Performance Evaluation

To see that Unveil performs gene prediction with
accuracy rivaling other genefinders, a comparison on
300 full-length cDNAs from Arabidopsis thaliana was
performed. Table 1 shows the results.

program nucle-

otide
accu-
racy

exon
speci-
ficity

exon
sensi-
tivity

percen-
tage of
exact
genes

Unveil 94% 75% 74% 46%
Exonomy 95% 63% 61% 42%
GlimmerM 93% 71% 71% 44%
Genscan 94% 80% 75% 27%
Table 1. Gene prediction accuracy on a set of 300
cDNAs from A. thaliana.

As can be seen from the table, Unveil scores very
highly in terms of nucleotide accuracy, exon accuracy,
and whole-gene accuracy.

Acknowledgements

The development of Unveil was supported by the
National Science Foundation under grant MCB-
0114792.

References and Suggested
Reading

[Durbin, et al., 1998] Durbin, R., Eddy, S., Krogh, A. &
Mitchison, G. Biological Sequence Analysis.
Cambridge University Press. (1998).

[Henderson, et al., 1997] Henderson, J., Salzberg, S. &
Fasman, K. Finding Genes in Human DNA with a
Hidden Markov Model. Journal of Computational
Biology 4:127-141 (1997).

[Rabiner, 1989] Rabiner, L.R. A tutorial on hidden Markov
models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257-286 (1989).

[Rabiner and Juang, 1986] Rabiner, L.R. & Juang, B.-H.
An introduction to hidden Markov models. IEEE
Transactions on Acoustics Speech, Signal Processing ,
3(1):4-16 (1986).

