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Abstract  

This paper provides a detailed description of the 
implementation of Unveil, an ab initio gene-prediction 
program for Eukaryotic DNA.  Unveil is implemented 
as a 283-state Hidden Markov Model (HMM).  We 
describe the structure, training, utilization, and 
performance of this HMM on a real genomic 
annotation task.   The program is available as open-
source software and can be downloaded from the 
TIGR website, http://www.tigr.org/software.  It is 
hoped that the availability of the source code together 
with this documentation will enable others to extend 
this work to produce better genome annotation and 
analysis tools. 
 

Introduction  

Gene Prediction 

The problem of gene prediction is one of parsing: 
given a long DNA sequence, or substrate, we wish to 
identify the parts of that sequence which correspond 
to the exons and introns of the genes occurring in the 
substrate, if any.  This entails identification of the 
signals – namely, splice sites and start/stop codons – 
which delimit those structures.  Although 5’ and 3’ 
untranslated regions (UTRs) are valuable parts of the 
gene, they are generally not identified by current 
genefinders.  Instead, the emphasis is still on the 
accurate identification of those open reading frames 
(ORFs) which are actually transcribed and translated 
into proteins – i.e., true coding segments, or CDSs. 

An ORF is a sequence of codons (three 
nucleotides) beginning with a start codon (typically 
ATG) and ending with a stop codon (usually TAG, 
TGA, or TAA).  In eukaryotes, this codon sequence 
can be interrupted by introns, noncoding regions 
which are spliced out by a spliceosome molecule after 
transcription into mRNA and before translation into a 
protein.  An intron begins with a donor site (typically 

GT) and ends with an acceptor site (typically AG).  
Predicting a CDS therefore consists of identifying a 
start codon, followed by a sequence of zero or more 
donor and acceptor pairs, followed by an in-frame 
stop codon. 

Unfortunately, many ORFs are not true CDSs, and 
in eukaryotic genomes there typically are vastly more 
ORFs than genes.  In Arabidopsis, for example, there 
are on average approximately 350 million ORFs in 
every 900 base pairs of sequence.  Thus, the problem 
is in determining which of the potentially many ORFs 
are true coding segments. 

A genefinder typically performs this 
discrimination by applying a set of signal sensors and 
content sensors to identify likely components of a 
CDS and then assembling these components into well-
formed gene models.  A signal sensor is any model 
which identifies fixed-length signals, such as splice 
sites and start/stop codons.  Such a sensor typically 
examines the bases surrounding the signal (as well as 
those comprising the signal itself) and scores them 
based on their identity and position relative to the 
signal.  A content sensor is a model which scores 
variable-length subsequences for their conformation to 
a statistical model of a specific feature, such as an 
exon or intron.  Content sensors for exons typically 
incorporate some measure of trinucleotide frequency, 
to account for the codon bias found in real CDSs. 
 

Hidden Markov Models 

A Hidden Markov Model (HMM) is a particular class 
of statistical model for sequences of discrete symbols.  
The model consists of a finite set of states, each of 
which can emit a symbol from a finite alphabet with a 
fixed probability distribution over those symbols, and 
a set of transitions between states, which allow the 
model to change state after each symbol is emitted.  
The transition and emission probabilities may differ 
between states.  The model is conceptualized as 
starting in a designated start state, transitioning 



 2 

stochastically from state to state for some variable 
number of time units, and then terminating when a 
designated final state is reached. 

In order for an HMM to be employed in the task 
of gene prediction its transition and emission 
probabilities must be tuned to reflect the statistical 
characteristics of the genes of a particular species.  
This training phase can be performed in the following 
way: Given a set of training sequences (i.e., confirmed 
CDSs), we extract the exons and introns, as well as 
intergenic and untranslated regions surrounding the 
CDS, and then use these individual features to train 
the specific sets of states, or submodels, within the 
HMM which emit those particular features.  Thus, for 
example, the states of the HMM which are intended to 
model the exon portions of genes are trained with real 
exon example sequences using some training 
procedure such as Expectation Maximization (EM) or 
maximum likelihood (both described below).  This 
process will determine the emission probabilities for 
all of the states as well as the transition probabilities 
among states within each submodel.  Transitions 
between submodels can then be trained by observing 
the frequencies of feature alternation within correct 
CDS parses. 

Once an HMM has been trained it can be used to 
predict gene structures on a given substrate by 
identifying the most probable path  through the 
HMM which would emit that substrate; i.e. 
maximizing P(x, |M) over all paths  for sequence x 
and model M.  This can be efficiently computed using 
the Viterbi algorithm (described below). 

Unveil employs a 283-state HMM, grouped into 
substates as shown in Figure 1.  Separate programs are 
provided for retraining the HMM for new organisms, 
and for predicting genes on novel sequences.  The 
remainder of this document describe the specific 
algorithms and techniques used in those programs. 

Design and Implementation 

Model Structure 

The overall structure of Unveil’s HMM is shown in 
Figure 1.  This structure is very similar to that 
described in [Henderson, et al., 1997] for the program 
VEIL.  Shown in the figure are the eight submodels 
constituting the forward strand, plus the intergenic 
model, which is strandless.   
 

 
Figure 1.  HMM metamodel structure. 
 
The overall structure is referred to as the metamodel, 
and the individual states in the metamodel constitute 
submodels.  The metamodel and submodels are loaded 
dynamically at run-time, and the metamodel is used to 
direct the merging of all of the submodels into a single 
composite HMM which can then be subjected to the 
standard HMM algorithms. 

Merging is performed as follows.  Let PM(x y) 
denote the probability of a transition from state x to 
state y in submodel M with states S(M), and let ØM 
denote the silent start/stop state in M.  Then the 
merged model M1

� M2 is defined by combining 
submodels M1 and M2 according to the following: 

 
S(M1

� M2) = S(M1) ∪ S(M2) ∪  
           {ØM1 � M2} – {ØM1,ØM2}  

 
∀a∈S(M1), b∈S(M2) PM1 � M2(a b) =  

           PM1(a ØM1) · PM2(ØM2 b) · 
Pmetamodel(M1 M2) 

 
∀a,b∈S(M1)-{ØM1}  PM1 � M2(a b) = PM1(a b)  

 
∀a,b∈S(M2)-{ØM2}  PM1 � M2(a b) = PM2(a b)  

 
∀a∈S(M1) PM1 � M2(ØM1 � M2 a) = PM1(ØM1 a)  

 
∀b∈S(M2) PM1 � M2(b ØM1 � M2) = PM2(b ØM2)  

 
The composite HMM is formed through a succession 
of such binary merges, as directed by the metamodel 



 3 

(i.e., entailing M1
� M2 whenever Pmetamodel(M1 M2) > 

0), until only one submodel remains.  The resulting 
model is then merged with its reverse-complementary 
model to produce an HMM capable of predicting 
genes on either strand. 

The submodels currently in use are shown in 
Figures 2–9.  Circles depict states and arrows depict 
all nonzero transition probabilities.  States labeled 
with a nucleotide indicate the a priori expected 
consensus for that state, and are initialized to those 
consensus bases prior to execution of the training 
algorithm, though the consensus is not otherwise (i.e., 
artificially) enforced. 
 

 
Figure 2.  Donor site submodel. 
 

 
Figure 3.  Acceptor site submodel. 
 
The donor and acceptor site submodels work 
effectively as a positional weight matrix by scoring 
bases immediately left and right of the consensus 
positions. 

 
Figure 4.  Exon submodel. 
 
The exon submodel, copied directly from [Henderson, 
et al., 1997], explicitly represents all 64 trinucleotide 
combinations, effectively performing as a measure of 

codon bias.  Note that this model could be 
significantly reduced in size by eliminating the third 
(rightmost) tier and replacing it with a simpler version 
in which every group of four {A,T,C,G} states is 
instead represented as a single state emitting all four 
bases.  Such a variant submodel would perform 
identically to the original, since the emission 
probabilities of the new states would simply reflect 
the transition probabilities of their predecessors in the 
middle tier.  This modification cannot be generalized 
to all three tiers without changing the performance of 
the model, however. 
 

 
Figure 5.  Frameshift submodel. 
 
The frameshift submodel occurs both before and after 
the exon submodel in order to accommodate out-of 
phase introns.  When such an intron occurs, one or 
two bases at the beginning or end of the exon will by 
matched by the frameshift submodel instead of the 
main exon submodel. 
 

 
Figure 6.  Intergenic submodel. 
 
The intergenic submodel consists of a 5’ UTR 
submodel and a 3’ UTR submodel, each a linear 
sequence of nine states, joined in the middle with a 
pair of states with self transitions allowing arbitrarily 
large intergenic regions.  During training we assume 
that the ten bases immediately upstream of the start 
codon or immediately downstream of the stop codon 
are UTR, although this will in many cases not be the 
case.  This simple heuristic avoids the problem of 
identifying high-confidence UTR sequence for 
training while presumably capturing some of the 
signal present in such UTRs when they do occur (as 
well as noise where they do not occur).  Note that the 
5’ UTR and 3’ UTR components of this submodel are 
trained separately. 
 



 4 

 
Figure 7.  Intron submodel. 
 
The intron submodel consists of a linear sequence of 
six states, to reflect hexanucleotide frequencies, 
flanked on either end by a built-in frameshift 
mechanism to allow for the proper concordance of the 
central six-state path with any hexanucleotide signal 
that may be present. 
 

 
Figure 8.  Start codon submodel. 
 
The start codon and stop codon submodels encode the 
common consensus sequences for those signals while 
still allowing noncanonical consensus signals to be 
encountered and appropriately incorporated during 
training. 
 

 
Figure 9.  Stop codon submodel. 

Training Submodels  

Unveil provides two methods for the training of its 
submodels.  The first method, which utilizes a simple 
maximum likelihood approach, is applicable only to 
those submodels for which a single, unambiguous 
path exists through the submodel for every sequence 
emitted by that submodel.  In this case, it is a simple 
matter to align the training sequences with the path’s 

state sequence and compute the relative transition and 
emission frequencies for each state pair and each state 
× symbol pair, respectively.  In the model currently 
used by Unveil, this training procedure is applicable 
only to exon, splice junction, and start/stop codon 
submodels. 

For the remaining features, the Baum-Welch 
algorithm is used to perform Expectation 
Maximization (EM) training, which is described at 
length in the following sections.  The treatment 
follows [Durbin, et al., 1998], but differs on some 
crucial points, due to problems with numerical 
underflow which were encountered during 
development of Unveil.  Durbin, et al. prescribe a 
scaling approach to avoid such underflow problems, 
after [Rabiner, 1989], but two problems were found 
with that formulation, namely (1) that the formulas 
given for scaling in the forward algorithm were not 
entirely adequate to avoid underflow, and (2) that the 
suggestion, originally made by Rabiner, that identical 
scaling factors could be used in the forward and 
backward algorithms was found empirically to be 
false for a set of Drosophila melanogaster genes used 
to train Unveil.  Note that Rabiner’s original paper 
addressed the use of HMMs for natural language 
processing, not sequence analysis, which likely 
explains the discrepancy.  We use notation similar to 
that of [Durbin, et al., 1998]. 

 
1. Notation and Overview of Computation 
 
a. Basic Notation 
 
M=( ,Q,e,a) represents a hidden Markov model, 
where 
 

Q is the set of states, 
 

={A,T,C,G,N} is the alphabet of symbols which 
are emitted by the states of the model, 

 
ek,s = P[M emits symbol s | M is in state k] gives 

emission probabilities, and 
 
ai,j = P[M transitions to state j | M is in state i] 

gives transition probabilities. 
 
 
Note that state 0 is the silent start/stop state Ø referred 
to earlier.  In the context of processing a given 
sequence, L will be used to denote the length of that 
sequence, and x(i) will denote the ith symbol in the 
sequence, where i=1 corresponds to the very first 
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symbol.  |S| is used to denote set cardinality, and ln(x) 
denotes the natural logarithm (i.e., loge). 
 
 
b. Overview of the EM algorithm 
 
The Baum-Welch algorithm is an iterative procedure 
which consists of repeated applications of the forward 
and backward algorithms to produce progressively 
better estimates of the transition and emission 
probabilities of the HMM.  It can be formally shown 
that during the operation of this procedure, the 
likelihood of the training data given the current 
parameterization of the model increases 
monotonically, so that one can get arbitrarily close to 
a local maximum for this likelihood by simply 
extending the computation out indefinitely.  Proof of 
this assertion is given in [Durbin, et al., 1998, p324-
325]. 

The forward algorithm is embodied in the 
computation of a multidimensional variable, fk,i.  
Formally, fk,i denotes the probability P[a model M in 
the initial state will emit the sequence x1..xi and reside 
in state k when emitting xi at time i].  Similarly, the 
backward algorithm is embodied in bk,i = P[M will 
next emit the string xi+1..xL and then terminate | M is 
currently in state k].  The forward and backward 
variables are computed using a dynamic programming 
approach, as described in [Durbin, et al., 1998, p58-
59]. 

The modification of the forward and backward 
algorithms to incorporate scaling will make use of two 
additional variables, sf,i and sb,i (respectively).  To 
distinguish between the scaled and unscaled versions 
of the forward and backward variables, we will denote 

by i,kf
~

 the scaled version of fk,i, and by i,kb
~

 the scaled 

version of bk,i. 
 
2. The forward algorithm 
 
As a scaling factor for the forward algorithm we use 
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as suggested by [Durbin, et al., 1998, p78].  Because 
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again, as given in [Durbin, et al., 1998, p78].  Finally, 

the scaled probabilityjP
~

 of a training sequence j is 

given by: 
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3. The backward algorithm 
 
A scaling factor for the backward algorithm can be 
computed as follows: 
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Note again that while [Durbin, et al., 1998, p78] state 

that sa,i must be used as the scaling factor for i,kb
~

 and 

[Rabiner, 1989] states that it may be used for such, we 
have found that in practice doing so fails to protect 

i,kb
~

 from underflow, and so we use (3.1) instead. 

Similarly to (2.5), this scaling factor can be 
incorporated into the denominator of the recursion for 

i,kb
~

 as follows: 
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As in the forward algorithm, no scaling is necessary 
for the initialization step of the backward algorithm: 
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4. The Baum-Welch algorithm 
 
a. The scaling ratio 
 
Scaling the forward and backward algorithms as 
described above invalidates the invariants which 
ensure convergence of the Baum-Welch algorithm.  
For this reason, the scaling factors i,fs  and i,bs  must 

be explicitly cancelled out when i,kf
~

 and i,kb
~

 are later 

combined to re-estimate the model parameters.  
Failure to do this properly will typically result in 
failure to converge, giving rise to poorly trained 
models, and can even result in underflow or overflow 
errors.  The following scaling ratio provides most of 
the necessary cancellation: 
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The remaining terms that are not cancelled by (4.1) 
are handled individually below. 
 
b. Updating the transition counts 
 
Before the transition probabilities can be re-estimated, 
the expected number of uses of each transition during 
a hypothetical generation of the training sequences by 
the current model must be tabulated.  Initialization 
steps for this procedure are given by (4.2) and (4.3): 
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Equation (4.3) incorporates the scaling ratio rL and an 
additional term to be cancelled, sf,L.  Cancellation in 
the recursion step is achieved fully by the scaling ratio 
ri+1: 
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c. Updating the emission counts 
 
As with the expected transition counts, the expected 
emission counts must be modified to cancel the 
extraneous scaling terms: 
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d. Updating the transition and emission probabilities 
 
Given the foregoing modifications, re-estimation of 
the transition and emission probabilities may proceed 
exactly as given in [Durbin, et al., 1998]: 
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e. Computing the log-likelihood 
 
Although the log-likelihood of the model need not be 
explicitly computed in order to perform training, it is 
useful to do so during development in order to verify 
that an implementation is correct.  Except for 
extremely small fluctuations due to rounding errors in 
floating point numbers, the log-likelihood of the 
current model should increase monotonically 
throughout the training process.  Any but the smallest 
of decreases in this value are indications of an error in 
the implementation. 

The log-likelihood may be computed as: 
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5. Verification 
 
Although scaling is necessary during execution of the 
forward and backward algorithms in order to avoid 
numerical underflow, all scaling factors applied 
during those computations must be subsequently 
cancelled before the updating of the expected 
transition and emission counts.  Failure to do this will 
invalidate the proof, given in [Durbin, et al., 1998, 
p323-325] that the likelihood of the model increases 
monotonically – that is, it will fail to ensure continual 
progress during the learning process.  This was 
remedied above by incorporating additional terms into 
equations (4.2) through (4.5). 

That these modifications do achieve the 
cancellation without otherwise modifying the basic 
mathematical structure can be seen by applying simple 
algebra.  Expressing all scaled quantities as closed-
form (i.e., not recurrence) expressions and then 
substituting these back into the equations from section 
4 will show that all scaling terms cancel, leaving the 
original, unmodified equations from [Durbin, et al., 
1998].   

Equations (5.1)-(5.3) give the closed-form 
equations.  The algebra is left as an exercise for the 
enthusiastic reader. 
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Quantifying the Adaptation Process 

To see that the scaled implementation of the Baum-
Welch algorithm in Unveil behaves as intended it is 
instructive to print out the log-likelihood of the model 
during training and verify that it increases 
monotonically.   

Figure 10 shows the result of performing such an 
exercise.  The training procedure was performed on a 
training set of 100 sequences, each 5000 nucleotides 
long.  The log-likelihood is shown on the Y-axis and 
iterations on the X-axis.  As the adaptation proceeds, 
the log-likelihood of the model improves according to 
an S-curve, rising slowly at first, then making rapid 
gains, and then finally leveling off as a local optimum 
is approached. 

 

 
Figure 10. Log-likelihood graph showing that log-
likelihood (Y) monotonically increases as EM 
iterations (X) proceed.  The training set consisted of 
100 sequences, each 5000 nucleotides long. 
 

Viterbi Decoding 

In the Baum-Welch training program for Unveil we 
used a multiplicative scaling approach, because 
logarithmic scaling is not easily performed in the 
forward and backward algorithms due to the addition 
(vs. multiplication) of probabilities.  However, in the 
Viterbi algorithm, which is used to find the most 
likely path through the HMM for a given sequence 
(thereby choosing a gene model), probabilities are 
only multiplied, making the log transformation 
simple.  The dynamic programming implementation in 
Unveil follows [Durbin, et al., 1998, p78] exactly. 
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Performance Evaluation  

To see that Unveil performs gene prediction with 
accuracy rivaling other genefinders, a comparison on 
300 full-length cDNAs from Arabidopsis thaliana was 
performed.  Table 1 shows the results. 
 
program nucle-

otide 
accu-
racy 

exon 
speci-
ficity 

exon 
sensi-
tivity 

percen-
tage of 
exact 
genes 

Unveil 94% 75% 74% 46% 
Exonomy 95% 63% 61% 42% 
GlimmerM 93% 71% 71% 44% 
Genscan 94% 80% 75% 27% 
Table 1.  Gene prediction accuracy on a set of 300 
cDNAs from A. thaliana. 
 
As can be seen from the table, Unveil scores very 
highly in terms of nucleotide accuracy, exon accuracy, 
and whole-gene accuracy. 
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